
Chapter 6

Lyapunov exponents

[...] people should be taught linear algebra a lot earlier

than they are now, because it short-circuits a lot of really

stupid and painful and idiotic material.

— Stephen Boyd

L
et us apply our newly acquired tools to the fundamental diagnostics in dy-

namics: Is a given system ‘chaotic’? And if so, how chaotic? If all points in example 2.3

a neighborhood of a trajectory converge toward the same orbit, the attrac-

tor is a fixed point or a limit cycle. However, if the attractor is strange, any two section 1.3.1

trajectories x(t) = f t(x0) and x(t)+δx(t) = f t(x0 + δx0) that start out very close to remark 6.1

each other separate exponentially with time, and in a finite time their separation

attains the size of the accessible state space.

This sensitivity to initial conditions can be quantified as

‖ δx(t) ‖ ≈ eλt ‖ δx0 ‖ (6.1)

where λ, the mean rate of separation of trajectories of the system, is called the

leading Lyapunov exponent. In the limit of infinite time the Lyapunov exponent

is a global measure of the rate at which nearby trajectories diverge, averaged over

the strange attractor. As it so often goes with easy ideas, it turns out that Lyapunov

exponents are not natural for study of dynamics, and we would have passed them

over in silence, were it not for so much literature that talks about them. So in a

textbook we are duty bound to explain what all the excitement is about. But then

we round the chapter off with a scholarly remark almost as long as the chapter

itself: we do not recommend that you evaluate Lyapunov exponents and Lyapunov

singular vectors. Compute the stability exponents / covariant vectors.

6.1 Stretch, strain and twirl

Diagonalizing the matrix: that’s the key to the whole thing.

— Governor Arnold Schwarzenegger
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CHAPTER 6. LYAPUNOV EXPONENTS 116

Figure 6.1: The linearized flow maps a swarm

of initial points in an infinitesimal spherical neigh-

borhood of squared radius δx2 at x0 into an ellip-

soid δx⊤(J⊤J) δx at x(t) a finite time t later, rotated

and stretched/compressed along the principal axes by

streches {σ j} .

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

δ

δ+   x

J

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

x0

x0

f (   )t

x(t)+     x

In general the Jacobian matrix J is neither diagonal, nor diagonalizable, nor con-

stant along the trajectory. What is a geometrical meaning of the mapping of a

neighborhood by J? Here the continuum mechanics insights are helpful, in par-

ticular the polar decomposition which affords a visualization of the linearization

of a flow as a mapping of the initial ball into an ellipsoid (figure 6.1).

First, a few definitions: A symmetric [d × d] matrix Q is positive definite,

Q > 0, if x⊤Qx > 0 for any nonzero vector x ∈ Rd. Q is negative definite,

Q < 0, if x⊤Qx < 0 for any nonzero vector x. Alternatively, Q is a positive

(negative) definite matrix if all its eigenvalues are positive (negative). A matrix

R is orthogonal if R⊤R = 1, and proper orthogonal if det R = +1. Here the

superscript ⊤ denotes the transpose. For example, (x1, · · · , xd) is a row vector,

(x1, · · · , xd)⊤ is a column vector.

By the polar decomposition theorem, a deformation J can be factored into a

rotation R and a right / left stretch tensor U / V , remark 6.2

J = RU = VR , (6.2)

where R is a proper-orthogonal matrix and U, V are symmetric positive definite

matrices with strictly positive real eigenvalues {σ1, σ2, · · · , σd} called principal

stretches (singular values, Hankel singular values), and with orthonormal eigen-

vector bases,

U u(i) = σiu
(i) , {u(1), u(2), · · · , u(d)}

V v(i) = σiv
(i) , {v(1), v(2), · · · , v(d)} . (6.3)

σi > 1 for stretching and 0 < σi < 1 for compression along the direction u(i)

or v(i). {u( j)} are the principal axes of strain at the initial point x0; {v( j)} are the

principal axes of strain at the present placement x. From a geometric point of

view, J maps the unit sphere into an ellipsoid, figure 6.1; the principal stretches

are then the lengths of the semiaxes of this ellipsoid. The rotation matrix R carries

the initial axes of strain into the present ones, V = RUR⊤ . The eigenvalues of the

remark 6.1

right Cauchy-Green strain tensor: J⊤J = U2

left Cauchy-Green strain tensor: J J⊤ = V2 (6.4)
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CHAPTER 6. LYAPUNOV EXPONENTS 117

Figure 6.2: A long-time numerical calculation of the

leading Lyapunov exponent requires rescaling the dis-

tance in order to keep the nearby trajectory separation

within the linearized flow range.
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are {σ2
j
}, the squares of principal stretches.

example 6.2

p. 123

6.2 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

The mean growth rate of the distance ‖ δx(t) ‖ / ‖ δx0 ‖ between neighboring

trajectories (6.1) is given by the leading Lyapunov exponent which can be esti-

mated for long (but not too long) time t as

λ ≃ 1

t
ln
‖ δx(t) ‖
‖ δx(0) ‖ (6.5)

For notational brevity we shall often suppress the dependence of quantities such

as λ = λ(x0, t), δx(t) = δx(x0, t) on the initial point x0. One can use (6.5) as is,

take a small initial separation δx0, track the distance between two nearby trajecto-

ries until ‖ δx(t1) ‖ gets significantly big, then record t1λ1 = ln(‖ δx(t1) ‖ / ‖ δx0 ‖),
rescale δx(t1) by factor δx0/δx(t1), and continue add infinitum, as in figure 6.2,

with the leading Lyapunov exponent given by

λ = lim
t→∞

1

t

∑

i

tiλi , t =
∑

i

ti . (6.6)

Deciding what is a safe ’linear range’, the distance beyond which the separation

vector δx(t) should be rescaled, is a dark art.

We can start out with a small δx and try to estimate the leading Lyapunov ex-

ponent λ from (6.6), but now that we have quantified the notion of linear stability

in chapter 4, we can do better. The problem with measuring the growth rate of the

distance between two points is that as the points separate, the measurement is less

and less a local measurement. In the study of experimental time series this might

be the only option, but if we have equations of motion, a better way is to measure

the growth rate of vectors transverse to a given orbit.
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CHAPTER 6. LYAPUNOV EXPONENTS 118

Given the equations of motion, for infinitesimal δx we know the δxi(t)/δx j(0)

ratio exactly, as this is by definition the Jacobian matrix

lim
δx(0)→0

δxi(t)

δx j(0)
=
∂xi(t)

∂x j(0)
= Jt

i j(x0) ,

so the leading Lyapunov exponent can be computed from the linearization (4.16)

λ(x0) = lim
t→∞

1

t
ln

w

w

w

w

w
Jt(x0) δx0

w

w

w

w

w

‖ δx0 ‖
= lim

t→∞
1

2t
ln
(

n̂⊤Jt⊤Jtn̂
)

. (6.7)

In this formula the scale of the initial separation drops out, only its orientation

given by the initial orientation unit vector n̂ = δx0/ ‖ δx0 ‖matters. If one does not

care about the orientation of the separation vector between a trajectory and its per-

turbation, but only its magnitude, one can interpret
w

w

w

w

w
Jtδx0

w

w

w

w

w

2
= δx0

⊤(Jt⊤Jt) δx0 ,

as the error correlation matrix. In the continuum mechanics language, the right

Cauchy-Green strain tensor J⊤J (6.4) is the natural object to describe how lin-

earized neighborhoods deform. In the theory of dynamical systems the stretches

of continuum mechanics are called the finite-time Lyapunov or characteristic ex-

ponents,

λ(x0, n̂; t) =
1

t
ln
w

w

w

w

w
Jtn̂
w

w

w

w

w
=

1

2t
ln
(

n̂⊤Jt⊤Jtn̂
)

. (6.8)

They depend on the initial point x0 and on the direction of the unit vector n̂,

‖ n̂ ‖ = 1 at the initial time. If this vector is aligned along the ith principal stretch,

n̂ = u(i) , then the corresponding finite-time Lyapunov exponent (rate of stretching)

is given by

λ j(x0; t) = λ(x0, u
( j); t) =

1

t
lnσ j(x0; t). (6.9)

We do not need to compute the strain tensor eigenbasis to determine the leading

Lyapunov exponent,

λ(x0, n̂) = lim
t→∞

1

t
ln
w

w

w

w

w
Jtn̂
w

w

w

w

w
= lim

t→∞
1

2t
ln
(

n̂⊤Jt⊤Jtn̂
)

, (6.10)

as expanding the initial orientation in the strain tensor eigenbasis (6.3), n̂ =
∑

(n̂ ·
u(i))u(i) , we have

n̂⊤Jt⊤Jtn̂ =

d
∑

i=1

(n̂ · u(i))2σ2
i = (n̂ · u(1))2σ2

1

(

1 + O(σ2
2/σ

2
1)
)

,

with stretches ordered by decreasing magnitude, σ1 > σ2 ≥ σ3 · · · . For long

times the largest stretch dominates exponentially in (6.10), provided the orien-

tation n̂ of the initial separation was not chosen perpendicular to the dominant

expanding eigen-direction u(1). Furthermore, for long times Jtn̂ is dominated by

the largest stability multiplier Λ1, so the leading Lyapunov exponent is

λ(x0) = lim
t→∞

1

t

{

ln
w

w

w

w

w

w

n̂ · e(1)
w

w

w

w

w

w

+ ln |Λ1(x0, t)| + O(e−2(λ1−λ2)t)
}

= lim
t→∞

1

t
ln |Λ1(x0, t)| , (6.11)
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CHAPTER 6. LYAPUNOV EXPONENTS 119

Figure 6.3: A numerical computation of the loga-

rithm of the stretch n̂⊤(Jt⊤Jt)n̂ in formula (6.10) for the

Rössler flow (2.27), plotted as a function of the Rössler

time units. The slope is the leading Lyapunov exponent

λ ≈ 0.09. The exponent is positive, so numerics lends

credence to the hypothesis that the Rössler attractor is

chaotic. The big unexplained jump illustrates perils of

Lyapunov exponents numerics. (J. Mathiesen)
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where Λ1(x0, t) is the leading eigenvalue of Jt(x0). The leading Lyapunov expo-

nent now follows from the Jacobian matrix by numerical integration of (4.10). The

equations can be integrated accurately for a finite time, hence the infinite time limit

of (6.7) can be only estimated from a finite set of evaluations of 1
2

ln(n̂⊤Jt⊤Jtn̂) as

function of time, such as figure 6.3 for the Rössler flow (2.27).

As the local expansion and contraction rates vary along the flow, the tempo-

ral dependence exhibits small and large humps. The sudden fall to a low value

in figure 6.3 is caused by a close passage to a folding point of the attractor, an

illustration of why numerical evaluation of the Lyapunov exponents, and proving

the very existence of a strange attractor is a difficult problem. The approximately

monotone part of the curve you can use (at your own peril) to estimate the leading

Lyapunov exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the

Lyapunov exponent by using the definition (6.11) directly. First of all, the state

space is dense with atypical trajectories; for example, if x0 happens to lie on a

periodic orbit p, λ would be simply ln |σp,1|/Tp, a local property of cycle p, not

a global property of the dynamical system. Furthermore, even if x0 happens to

be a ‘generic’ state space point, it is still not obvious that ln |σp,1(x0, t)|/t should

be converging to anything in particular. In a Hamiltonian system with coexisting

elliptic islands and chaotic regions, a chaotic trajectory gets captured in the neigh-

borhood of an elliptic island every so often and can stay there for arbitrarily long

time; as there the orbit is nearly stable, during such episode ln |σp,1(x0, t)|/t can

dip arbitrarily close to 0+. For state space volume non-preserving flows the trajec-

tory can traverse locally contracting regions, and ln |σp,1(x0, t)|/t can occasionally

go negative; even worse, one never knows whether the asymptotic attractor is pe-

riodic or ‘chaotic’, so any finite time estimate of λ might be dead wrong. exercise 6.3

Résumé

Let us summarize the ‘stability’ chapters 4 to 6. A neighborhood of a trajectory

deforms as it is transported by a flow. In the linear approximation, the stabil-

ity matrix A describes the shearing / compression / expansion of an infinitesimal

neighborhood in an infinitesimal time step. The deformation after a finite time t

is described by the Jacobian matrix Jt, whose eigenvalues (stability multipliers)

depend on the choice of coordinates.
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Floquet multipliers and eigen-vectors are intrinsic, invariant properties of finite-

time, compact invariant solutions, such as periodic orbits and relative periodic

orbits; they are explained in chapter 5. Stability exponents [6.1] are the corre-

sponding long-time limits estimated from typical ergodic trajectories.

Finite-time Lyapunov exponents and the associated principal axes are defined

in (6.8). Oseledec Lyapunov exponents are the t → ∞ limit of these.

Commentary

Remark 6.1 Lyapunov exponents are uncool, and ChaosBook does not use them at

all. Eigenvectors / eigenvalues are suited to study of iterated forms of a matrix, such

as Jacobian matrix Jt or exponential exp(tA), and are thus a natural tool for study of

dynamics. Principal vectors are not, they are suited to study of the matrix Jt itself. The

polar (singular value) decomposition is convenient for numerical work (any matrix, square

or rectangular, can be brought to such form), as a way of estimating the effective rank of

matrix J by separating the large, significant singular values from the small, negligible

singular values.

Lorenz [6.2, 6.3, 6.4] pioneered the use of singular vectors in chaotic dynamics. We

found the Goldhirsch, Sulem and Orszag [6.1] exposition very clear, and we also enjoyed

Hoover and Hoover [6.5] pedagogical introduction to computation of Lyapunov spectra

by the method of Lagrange multipliers. Greene and Kim [6.6] discuss singular values

vs. Jacobian matrix eigenvalues. While they conclude that “singular values, rather than

eigenvalues, are the appropriate quantities to consider when studying chaotic systems,”

we beg to differ: their Fig. 3, which illustrates various semiaxes of the ellipsoid in the

case of Lorenz attractor, as well as the figures in ref. [6.7], are a persuasive argument for

not using singular values. The covariant vectors are tangent to the attractor, while the

principal axes of strain point away from it. It is the perturbations within the attractor that

describe the long-time dynamics; these perturbations lie within the subspace spanned by

the leading covariant vectors.

That is the first problem with Lyapunov exponents: stretches {σ j} are not related to

the Jacobian matrix Jt eigenvalues {Λ j} in any simple way. The eigenvectors {u( j)} of

strain tensor J⊤J that determine the orientation of the principal axes, are distinct from

the Jacobian matrix eigenvectors {e( j)}. The strain tensor J⊤J satisfies no multiplicative

semigroup property such as (4.20); unlike the Jacobian matrix (5.3), the strain tensor

J⊤rJr for the rth repeat of a prime cycle p is not given by a power of J⊤J for the single

traversal of the prime cycle p. Under time evolution the covariant vectors map forward

as e( j) → J e( j) (transport of the velocity vector (4.9) is an example). In contrast, the

principal axes have to be recomputed from the scratch for each time t.

If Lyapunov exponents are not dynamical, why are they invoked so frequently? One

reason is fear of mathematics: the monumental and therefore rarely read Oseledec [20.6,

20.7] Multiplicative Ergodic Theorem states that the limits (6.7–6.11) exist for almost all

points x0 and vectors n̂, and that there are at most d distinct Lyapunov exponents λi(x0)

as n̂ ranges over the tangent space. To intimidate the reader further we note in passing

that “moreover there is a fibration of the tangent space TxM, L1(x) ⊂ L2(x) ⊂ · · · ⊂
Lr(x) = TxM, such that if n̂ ∈ Li(x) \ Li−1(x) the limit (6.7) equals λi(x).” Oseledec proof

is important mathematics, but the method is not helpful in elucidating dynamics.

The other reason to study singular vectors is physical and practical: Lorenz [6.2, 6.3,
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6.4] was interested in the propagation of errors, i.e., how does a cloud of initial points

x(0) + δx(0), distributed as a Gaussian with covariance matrix Q(0) = 〈δx(0) δx(0)⊤〉,
evolve in time? For linearized flow with initial isotropic distribution Q(0) = ǫ1 the answer

is given by the left Cauchy-Green strain tensor,

Q(t) = 〈δx(0) J J⊤δx(0)⊤〉 = J Q(t) J⊤ = ǫ J J⊤ . (6.12)

The deep problem with Lyapunov exponents is that the intuitive definition (6.5) de-

pends on the notion of distance ‖ δx(t) ‖ between two state space points. The Euclidean (or

L2) distance is natural in the theory of 3D continuous media, but what the norm should be

for other state spaces is far from clear, especially in high dimensions and for PDEs. As we

have shown in sect. 5.3, Floquet multipliers are invariant under all local smooth nonlinear

coordinate transformations, they are intrinsic to the flow, and the Floquet eigenvectors are

independent of the definition of the norm [6.7]. In contrast, the stretches {σ j}, and the

right/left principal axes depend on the choice of the norm. Appending them to dynamics

destroys its invariance.

There is probably no name more liberally and more confusingly used in dynamical

systems literature than that of Lyapunov (AKA Liapunov). Singular values / principal

axes of strain tensor J⊤J (objects natural to the theory of deformations) and their long-

time limits can indeed be traced back to the thesis of Lyapunov [A1.6, 20.6] (English

translation [?]), and justly deserve sobriquet ‘Lyapunov’. Oseledec [20.6] refers to them

as ‘Liapunov characteristic numbers’, and Eckmann and Ruelle [6.11] as ‘characteristic

exponents’. The natural objects in dynamics are the linearized flow Jacobian matrix Jt,

and its eigenvalues and eigenvectors (stability multipliers and covariant vectors). Why

should they also be called ‘Lyapunov’? The Jacobian matrix eigenvectors {e( j)} (the co-

variant vectors) are often called ‘covariant Lyapunov vectors’, ‘Lyapunov vectors’, or ‘sta-

tionary Lyapunov basis’ [6.12] even though they are not the eigenvectors that correspond

to the Lyapunov exponents. That’s just confusing, for no good reason - the Lyapunov

paper [A1.6] is not about the linear stability Jacobian matrix J, it is about J⊤J and the as-

sociated principal axes. However, Trevisan [6.7] refers to covariant vectors as ‘Lyapunov

vectors’, and Radons [6.13] calls them ‘Lyapunov modes’, motivated by thinking of these

eigenvectors as a generalization of ‘normal modes’ of mechanical systems, whereas by

ith ‘Lyapunov mode’ Takeuchi and Chaté [6.14] mean {λ j, e
( j)}, the set of the ith stability

exponent and the associated covariant vector. Kunihiro et al. [6.15] call the eigenvalues of

stability matrix (4.3), evaluated at a given instant in time, the ‘local Lyapunov exponents’,

and they refer to the set of stability exponents (4.8) for a finite time Jacobian matrix as

the ‘intermediate Lyapunov exponent’, “averaged” over a finite time period. Then there

is the unrelated, but correctly attributed ‘Lyapunov equation’ of control theory, which is

the linearization of the ‘Lyapunov function’, and there is the ‘Lyapunov orbit’ of celestial

mechanics, entirely unrelated to any of objects discussed above.

In short: we do not recommend that you evaluate Lyapunov exponents; compute

stability exponents and the associated covariant vectors instead. Cost less and gets you

more insight. Whatever you call your exponents, please state clearly how are they being

computed. While the Lyapunov exponents are a diagnostic for chaos, we are doubtful

of their utility as means of predicting any observables of physical significance. This is

the minority position - in the literature one encounters many provocative speculations,

especially in the context of foundations of statistical mechanics (‘hydrodynamic’ modes)

and the existence of a Lyapunov spectrum in the thermodynamic limit of spatiotemporal

chaotic systems.

Remark 6.2 Matrix decompositions of the Jacobian matrix. A ‘polar decomposition’

of a matrix or linear operator is a generalization of the factorization of complex number

Lyapunov - 12aug2013 ChaosBook.org version15.9, Jun 24 2017



CHAPTER 6. LYAPUNOV EXPONENTS 122

into the polar form, z = r exp(φ). Matrix polar decomposition is explained in refs. [6.16,

6.17, 6.18, 6.19]. One can go one step further than the polar decomposition (6.2) into a

product of a rotation and a symmetric matrix by diagonalizing the symmetric matrix by

a second rotation, and thus express any matrix with real elements in the singular value

decomposition (SVD) form

J = R1DR2
⊤ , (6.13)

where D is diagonal and real, and R1, R2 are orthogonal matrices, unique up to permuta-

tions of rows and columns. The diagonal elements {σ1, σ2, . . . , σd} of D are the singular

values of J.

Though singular values decomposition provides geometrical insights into how tan-

gent dynamics acts, many popular algorithms for asymptotic stability analysis (computing

Lyapunov spectrum) employ another standard matrix decomposition, the QR scheme [6.20],

through which a nonsingular matrix J is (uniquely) written as a product of an orthogonal

and an upper triangular matrix J = QR. This can be thought as a Gram-Schmidt decom-

position of the column vectors of J. The geometric meaning of QR decomposition is that

the volume of the d-dimensional parallelepiped spanned by the column vectors of J has a

volume coinciding with the product of the diagonal elements of the triangular matrix R,

whose role is thus pivotal in algorithms computing Lyapunov spectra [6.21].

Remark 6.3 Numerical evaluation of Lyapunov exponents. There are volumes of lit-

erature on numerical computation of the Lyapunov exponents, see for example refs. [6.22,

6.11, 6.23, 6.24]. For early numerical methods to compute Lyapunov vectors, see refs. [6.25,

6.26]. The drawback of the Gram-Schmidt method is that the vectors so constructed

are orthogonal by fiat, whereas the stable / unstable eigenvectors of the Jacobian ma-

trix are in general not orthogonal. Hence the Gram-Schmidt vectors are not covariant,

i.e., the linearized dynamics does not transport them into the eigenvectors of the Jaco-

bian matrix computed further downstream. For computation of covariant vectors, see

refs. [A1.80, 6.28].

6.3 Examples

The reader is urged to study the examples collected here. To return back to the

main text, click on [click to return] pointer on the margin.

Example 6.1 Lyapunov exponent. Given a 1-dimensional map, consider observable

λ(x) = ln | f ′ (x)| and integrated observable

A(x0, t) =

n−1
∑

k=0

ln | f ′ (xk)| = ln

∣

∣

∣

∣

∣

∣

∣

n−1
∏

k=0

f
′
(xk)

∣

∣

∣

∣

∣

∣

∣

= ln

∣

∣

∣

∣

∣

∂ f n

∂x
(x0)

∣

∣

∣

∣

∣

.

The Lyapunov exponent is the average rate of the expansion

λ(x0) = lim
n→∞

1

n

n−1
∑

k=0

ln | f ′ (xk)| .

See sect. 6.2 for further details.
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Example 6.2 Singular values and geometry of deformations: Suppose we are

in three dimensions, and the Jacobian matrix J is not singular (yet another confusing

usage of word ‘singular’), so that the diagonal elements of D in (6.13) satisfy σ1 ≥ σ2 ≥
σ3 > 0. Consider how J maps the unit ball S = {x ∈ R3 | x2 = 1}. V is orthogonal

(rotation/reflection), so V⊤S is still the unit sphere: then D maps S onto ellipsoid S̃ =
{y ∈ R3 | y2

1
/σ2

1
+ y2

2
/σ2

2
+ y2

3
/σ2

3
= 1} whose principal axes directions - y coordinates -

are determined by V. Finally the ellipsoid is further rotated by the orthogonal matrix U.

The local directions of stretching and their images under J are called the right-hand and

left-hand singular vectors for J and are given by the columns in V and U respectively:

it is easy to check that Jvk = σkuk, if vk, uk are the k-th columns of V and U. click to return: p. ??

Exercises

6.1. Principal stretches. Consider dx = f (x0 + dx0) −
f (x0), and show that dx = Mdx0+ higher order terms

when ‖dx0‖ ≪ 1. (Hint: use Taylor expansion for

a vector function.) Here, ‖dx0‖ ≡
√

dx0 · dx0 is the

norm induced by the usual Euclidean dot (inner) prod-

uct. Then let dx0 = (dℓ)ei and show that ‖dx0‖ = dℓ and

‖dx‖ = σidℓ. (Christov et al. [4.27])

6.2. Eigenvalues of the Cauchy-Green strain tensor.

Show that κi = σ
2
i

using the definition of C, the polar

decomposition theorem, and the properties of eigenval-

ues. (Christov et al. [4.27])

6.3. How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent λ by

iterating some 100,000 times or so the Hénon map
[

x′

y′

]

=

[

1 − ax2 + y
bx

]

for a = 1.4, b = 0.3.

(b) Would you describe the result as a ’strange attrac-

tor’? Why?

(c) How robust is the Lyapunov exponent for the

Hénon attractor? Evaluate numerically the Lya-

punov exponent by iterating the Hénon map for

a = 1.39945219, b = 0.3. How much do you now

trust your result for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-

ates, and erasing the plotted points every 1000 it-

erates or so. Keep at it until the ’strange’ attractor

vanishes like the smile of the Chesire cat. What

replaces it? Do a few numerical experiments to

estimate the length of typical transient before the

dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-

tence of this attractor. Compute its Lyapunov ex-

ponent, compare with your numerical result from

above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-

tor’? Do you still have confidence in claims such

as the one made for the part (b) of this exercise?

6.4. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-

ponent λe of the Rössler attractor (2.27).

(b) Plot your own version of figure 6.3. Do not worry

if it looks different, as long as you understand why

your plot looks the way it does. (Remember the

nonuniform contraction/expansion of figure 4.3.)

(c) Give your best estimate of λe. The literature gives

surprisingly inaccurate estimates - see whether

you can do better.

(d) Estimate the contracting Lyapunov exponent λc.

Even though it is much smaller than λe, a glance

at the stability matrix (4.31) suggests that you can

probably get it by integrating the infinitesimal vol-

ume along a long-time trajectory, as in (4.29).
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