Chapter 29

Relaxation for cyclists

YCLES, I.€., solutions of the periodic orbit condition (13.1)
T = f{(x), T>0 (29.1)

are prerequisite to chapters 18 and 19 evaluation of spettiassical evo-
lution operators.Chapter 13tered an introductory, hands-on guide to ex-
traction of periodic orbits by means of the Newton-Raphsethod. Here
we take a very dferent tack, drawing inspiration from variational prineglof
classical mechanics, and path integrals of quantum mechani

In sect. 13.2.1 we converted orbits unstable forward in tim orbits stable
backwards in time. Indeed, all methods for finding unstaptdes are based on
the idea of constructing a new dynamical system such th#te position of the
cycle is the same for the original system and the transforomed (i) the unstable
cycle in the original system is a stable cycle of the tramafet system.

The Newton-Raphson method for determining a fixed pwirfor a mapx’ =
f(x) is an example. The method replaces iterationf ©f) by iteration of the
Newton-Raphson map (13.5)

1
X =609 =%~ gy =g) (109 (29.2)

1

A fixed pointx. for a mapf(x) is also a fixed point o§(x), indeed a superstable
fixed point sincedg;(x.)/0x; = 0. This makes the convergence to the fixed point
super-exponential.

We also learned in chapter 13 that methods that start witkaliguesses for
a number of points along a cycle are considerably more robodtsafer than
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searches based on direct solution of the fixed-point camd{29.1). The relax-
ation (or variational) methods that we shall now descrile this multipoint ap-
proach to its logical extreme, and start by a guess of not apiewts along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the dgsinéaldic orbit
looks like globally, and then use variational methods twelthe initial guess
toward the exact solution. Sacrificing computer memory fidbustness of the
method, we replace a guess thapaint is on the periodic orbit by a guess of
the entire orbit And, sacrificing speed for safety, in sect. 29.1 we replhee t
Newton-Raphsoiteration by a fictitious timeflow that minimizes a cost function
computed as deviation of the approximate flow from the truer #dong a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and itsnbplic dy-
namics, or have already found a set of short cycles, you niighable to con-
struct an initial approximation to a longer cycteas a sequence dfl points
(&0, 59, 9y with the periodic boundary conditiomy;; = %. Suppose
you have an iterative method for improving your guess; &ftégrations the cost
function

N

F29) = (39, - 1(x))° (29.3)

or some other more cleverly constructed function (for étzdsnechanics - action)
is a measure of the deviation of tkiin approximate cycle from the true cycle. This
observation motivates variational approaches to deténgicycles.

We give here three examples of such methods, two for map@aébr bil-
liards. In sect. 29.1 we start out by converting a problemradifig an unstable
fixed point of a map into a problem of constructing &etliential flow for which
the desired fixed point is an attracting equilibrium poiraivéhg differential equa-
tions can be time intensive, so in sect. 29.2 we replace sowls thy discrete iter-
ations. In sect. 29.3 we show that fdbalimensional billiard flows variation dd
coordinates (wher® is the number of Hamiltonian degrees of freedontfisaes
to determine cycles in the fulll-dimensional phase space.

29.1 Fictitious time relaxation

(0. Biham, C. Chandre and P. Cvitanovit)

The relaxation (or gradient) algorithm for finding cycledased on the observa-
tion that a trajectory of a map such as the Henon map (3.17),

X:1 = 1-ad+by
Viel = X, (29.4)
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Figure 29.1: “Potential” Vi(x) (29.7) for a typical V&
point along an initial guess trajectory. For = +1

the flow is toward the local maximum ®£(x), and for \.
o = -1 toward the local minimum. A large devia-
tion of x’s is needed to destabilize a trajectory passing
through such local extremum ¥f(x), hence the basin
of attraction is expected to be large.

is a stationary solution of the relaxation dynamics defingthle flow

%:vi, i=1...,n (29.5)
dr

for any vector fieldy; = vi(x) which vanishes on the trajectory. Herés a “ficti-
tious time” variable, unrelated to the dynamical time (iis #xample, the discrete
time of map iteration). As the simplest example, take be the deviation of an
approximate trajectory from the exact 2-step recurrenoa fof the Henon map
(3.18)

Vi = %ip1 — 1+ ax - bx_g. (29.6)

For fixed xi_1, Xi+1 there are two values of satisfyingv; = 0. These solutions
are the two extremal points of a local “potential” functioro(sum on)

W= SV VI = X1~ b - D)+ S5 (29.7)

Assuming that the two extremal points are real, one is a logaimum of V;(x)
and the other is a local maximum. Now here is the idea; re2@&) by

X v i=1...n (29.8)
dr

whereo; = +1.

The modified flow will be in the direction of the extremal pogiven by the
local maximum ofV;(x) if oj = +1 is chosen, or in the direction of the one corre-
sponding to the local minimum if we take = —1. This is not quite what happens
in solving (29.8) - allx; andV;(x) change at each integration step - but this is the
observation that motivates the method. THeedential equations (29.8) then drive
an approximate initial guess toward the exact trajectorgkétch of the landscape
in which x; converges towards the proper fixed point is given in figurd 29s
the “potential” function (29.7) is not bounded for a laigg, the flow diverges for
initial guesses which are too distant from the true trajgctélowever, the basin
of attraction of initial guesses that converge to a giverlecignevertheless very
large, with the spread in acceptable initial guesses fordi@9.1 of order 1, in
contrast to the exponential precision required of initiaegses by the Newton-
Raphson method.
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Figure 29.2: The repeller for the Hénon map at= -7 -
18,b=03.

Example 29.1 Hénon map cycles. Our aim in this calculation is to find all periodic

orbits of period n for the Hénon map (29.4), in principle at most 2" orbits. We start by
choosing an initial guess trajectory (X1, Xz, - - -, Xn) and impose the periodic boundary
condition X,+1 = X1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is x; = 0 for all i. In order to find a given orbit one sets
oi = —1 for all iterates i which are local minima of V;(X), and o = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 15.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |x| is not
too large compared to 1/ +/a. Figure 29.1 gives some indication of a typical basin of
attraction of the method (see also figure 29.3).

The calculation is carried out by solving the set of n ordinary differential equa-
tions (29.8) using a simple Runge-Kutta method with a relatively large step size (h =
0.1) until V| becomes smaller than a given value & (in a typical calculation & ~ 1077).
Empirically, in the case that an orbit corresponding to the desired itinerary does not ex-
ist, the initial guess escapes to infinity since the “potential” Vi(X) grows without bound.

exercise 29.3

Applied to the Hénon map at the Hénon's parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 100Q All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 29.1. The number of unstable periodic
orbits for periods n < 28 is given in table 29.2. Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 15.1, we see that the pruning is quite
extensive, with the number of periodic points of period n growing as €>645" = (1.592)'
rather than as 2".

As another example we plot all unstable periodic points up to period n = 14 for
a =18, b=03infigure 29.2. Comparing this repelling set with the strange attractor
for the Hénon's parameters figure 3.6, we note the existence of gaps in the set, cut out

by the preimages of the escaping regions. remark 29.2

In practice, the relaxation flow (29.8) finds (almost) all periodic orbits which
exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the abélenon map ex-

ample is that instead of searching for an unstable periodit of a map, one
searches for a stable attractor of a vector field. More glpensider ad-
dimensional mapx’ = f(x) with a hyperbolic fixed poink.. Any fixed pointx. is
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Table 29.1: All prime cycles up to period 10 for the Henon map= 1.4 andb = 0.3.

The columns list the periodp, the itinerary (defined in remark 29.4), a periodic point

(Yp Xp), and the cycle Lyapunov exponety = In|Ap|/np. While most of the cycles have Figure 29.3: Typical trajectories of the vector field 0

Ap ~ 0.5, several significantly do not. Ti@periodic point is very unstable, isolated and (29.9) for the stabilization of a hyperbolic fixed

transient fixed point, with no other cycles returning clasét.t At period 13 one finds a point of the Ikeda map (29.11) located aty) ~ >

pair of cycles with exceptionally low Lyapunov exponentieTycles are close for most (0.532750.24689). The circle indicates the positior

of the trajectory, dfering only in the one symbol corresponding to two periodint f’;ig}?xzzedofnc:'::'la'joéelzﬂa;ﬁﬁ::;:'; anfi‘:g?ﬁzgzg

straddle the (partition) fold of the attractor. As the systie not hyperbolic, there is no tracior P ge. larg -

known lower bound on cycle Lyapunov exponents, and the H&rgirange “attractor” ' o X 1
might some day turn out to be nothing but a transient on thetwayperiodic attractor of

some long period.
by construction an equilibrium point of the fictitious timewi

n P (Yo, %p) A
- . 62 dx
1 (0.63135447 | 0.63135447) 0.65427061 e f(¥) - x (29.9)
2 01 (0.97580005 , -0.47580005) 0.55098676 T
4 0111 -0.70676677 ,0.63819399) 0.53908457
6 010111 -0. 41515894’ 1.07011813 0.55610982 If all eigenvalues of the Jacobian mat = Df(x,) have real parts smaller
011111 -0.80421990, 0.44190995 0.55245341 g ) o ) p
7 0011101 -1.04667757, -0.17877958 0.40998559 than unity, therx, is a stable equilibrium point of the flow.
0011111 -1.08728604 , -0.28539206 0.46539757
0101111 -0.34267842,1.14123046 0.41283650 . .
0111111 -0.88050537 | 0.26827759 0.51090634 If some of the eigenvalues have real parts larger than uhigy one needs to
8 888%%%(1)% ]1_ 533%421 8 gg;ﬁilgé 85:31}83(25151 modify the vector field so that the corresponding directiohthe flow are turned
00111101 :114931330 :048368863 047834615 into stable directions in a neighborhood of the fixed pOinttHe Splrlt of (298),
00111111 -1.14078564 , -0.44837319 0.49353764 modify the flow by
01010111 -0.52309999, 0.93830866 0.54805453
01011111 -0.38817041, 1.09945313 0.55972495
01111111 -0.83680827, 0.36978609 0.56236493 dx
9 000111101 -1.27793296 , -0.90626780 0.38732115 — =C(f(x)-x), (29.10)
000111111 -1.27771933, -0.90378859 0.39621864 dr
001111101 -1.10392601, -0.34524675 0.51112950
001111111 -1.11352304 , -0.36427104 0.51757012 ) ) ) ) o ) -
010111111 -0.36894919, 1.1180321057 0.54264571 whereC is a [dxd] invertible matrix. The aim is to turi, into a stable equilib-
011111111 -0.85789748 , 0.32147653 0.56016658 i i i i
10 0001111101 (-1.26640530', -0.8668483 0.47738235 rium point qf the flow py an ap_proprlgte choice®©f It can be shown _th.’:_lt a set
0001111111 -1.26782752 , -0.86878943 0.47745508 of permutation/ reflection matrices with one and only one non-vanishingyentr
0011111101 -1.12796804 , -0.41787432 0.52544529 -di i d i
0011111111 115760083 040742737 023063573 il‘per row or gqlumn (fo'd d|me_nS|0nal syst_ems, there at@ sgch matncgs)
0101010111 -0.48815908 | 0.98458725 0.54989554 suffices to stabilize any fixed point. In practice, one choosesticpkar matrix
gigﬂ)%ﬂi -8-23‘71228%, ggégggg%g g-gjgggggz C, and the flow is integrated. For each choiceCofone or more hyperbolic fixed
0101111111 :01379477301 110801373 056915950 points of the map may turn into stable equilibria of the flow.
0111011111 -0.69555680, 0.66088560 0.54443884
0111111111 ( -0.84660200, 0.34750875 ) 0.57591048
13 1110011101000 (-1.2085766485,-0.6729999948) 0.14RB2 . i ; oot
1110011101001 (-1.0598110494 . -0.2056310390) 0.21(7251 Exqmp_le 29.2 Ikeda map: We illustrate the method with the determination of the
periodic orbits of the Ikeda map:
Table 29.2: The number of unstable periodic orbits of the Henon mamferl.4,b = 0.3, X =1+ a(xcosw - ysinw)
of all periodsn < 28. M, is the number of prime cycles of length andN, is the total y' = a(xsinw + y cosw) (29.11)
number of periodic points of periau(including repeats of shorter prime cycles). where w=b— )
1+X2+Yy?
witha = 0.9, b = 0.4, c = 6. The fixed point X, is located at (x,y) ~ (0.532750.24689
Mn Np
with eigenvalues of the Jacobian matrix (A1, Az) ~ (—2.3897,—-0.3389) so the flow is
2902 69952 already stabilized with C = 1. Figure 29.3 depicts the flow of the vector field around the
4498 112452 fixed point x..
6806 177376
%gg%g iggggg In order to determine X,, one needs to integrate the vector field (29.9) forward

in time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.
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Figure 29.4: Typical trajectories of the vector
field (29.10) for a hyperbolic fixed poin(y) ~
(~0.13529 -0.37559) of {3, wheref is the lkeda
map (29.11). The circle indicates the position of
the fixed point. For the vector field corresponding X
to (@) C = 1, x. is a hyperbolic equilibrium point °
of the flow, while for p) C = (5 %), x. is an at- 038 038
tracting equilibrium point.

-0.36 -0.36

(a) 02 “01 (b) 02

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial
C matrices, different from the identity. Consider for example the hyperbolic fixed point
(x,y) = (-0.13529 -0.37559)of the third iterate f3 of the Ikeda map. The flow of the
vector field for C = 1, Figure 29.4 (a), indicates a hyperbolic equilibrium point, while for
C= (é f’l) the flow of the vector field, figure 29.4 (b) indicates that X, is an attracting

equilibrium point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searébecycles is
straightforward. In order to determine a prime cygle= (x1, X2, ..., X,) of a
d-dimensional map< = f(x), we modify the multipoint shooting method of
sect. 13.3, and consider the-dimensional vector field

dx =C(f(¥-x), (29.12)
dr

where f(x) = (f(X), f(x0), f(x2),..., f(X,-1)), andC is an invertible fdx nd]
matrix. For the Hénon map, it is Bicient to consider a set of' 2liagonal matrices
with eigenvaluest1. Risking a bit of confusion, we denote by f(X) both the
d-dimensional vectors in (29.10), amd-dimensional vectors in (29.12), as the
structure of the equations is the same.

29.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteration (29.2) ig thaequires very
precise initial guesses. For example, titk iterate of a unimodal map has as
many as 2 periodic points crammed into the unit interval, so deteation of all
cycles of lengthn requires that the initial guess for each one of them has to be
accurate to roughly2. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie id-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation tri€k8Rof manually
turning instability into stability by a sign change, we nayvbandon the Newton-
Raphson method altogetheir) @bandon the continuous fictitious time flow (29.9)
with its time-consuming integration, replacing it by a mgwith a larger basin
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of attraction (not restricted to a linear neighborhood ef filxed point). The idea
is to construct a very simple mayp a linear transformation of the originé| for
which the fixed point is stable. We replace the Jacobian mptgfactor in (29.2)
(whose inversion can be time-consuming) by a constant xatefactor

X =g(X) = x+ ArC(f(X) — ), (29.13)

whereAr is a positive real number, ar@is a [dxd] permutation and reflection
matrix with one and only one non-vanishing entty per row or column. A fixed
point of f is also a fixed point of. SinceC is invertible, the inverse is also true.

This construction is motivated by the observation that foabAr — dr the
map (29.13) is the Euler method for integrating the modified/f(29.10), with
the integration stepr.

The argument why a suitable choice of mat@xan lead to the stabilization
of an unstable periodic orbit is similar to the one used toivat the construction
of the modified vector field in sect. 29.1. Indeed, the flow §2% the simplest
example of this method, with the infinitesimal fictitious &rimcrementAr — dr,
the infinitesimal coordinate correctiox £ X') — dx, and the fixn] diagonal
matrixC — o = +1.

For a given fixed point off (x) we again chose & such that the flow in the
expanding directions of(x.) is turned into a contracting flow. The aim is to
stabilizex. by a suitable choice &. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing theim& (in general
different for each unstable fixed point) and varying initial dbads for the map
g. For example, for 2-dimensional dissipative maps it canHmve that the 3 remark 29.3
matrices

e<{loz (o 2o}

suffice to stabilize all kinds of possible hyperbolic fixed points

If At is chosen dfliciently small, the magnitude of the eigenvalues of the
fixed pointx, in the transformed system are smaller than one, and one lwisle s
fixed point. HoweverAr should not be chosen too small: Since the convergence
is geometrical with a ratio + aAr (where the value of constant depends on
the stability of the fixed point in the original system), shnat can slow down
the speed of convergence. The critical valueAef which just siffices to make
the fixed point stable, can be reaff ’'om the quadratic equations relating the
stability coeficients of the original system and those of the transformstesy. In
practice, one can find the optimat by iterating the dynamical system stabilized
with a givenC andAr. In general, all starting points converge on the attractor
providedAr is small enough. If this is not the case, the trajectory eitieerges
(if At is far too large) or it oscillates in a small section of theestpace (ifAt is
close to its stabilizing value).
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The search for the fixed points is now straightforward: Atstgrpoint cho-
sen in the global neighborhood of the fixed point iteratechwiite transformed
dynamical systeng converges to the fixed point due to its stability. Numerical
investigations show that the domain of attraction of a $itaul fixed point is a
rather extended connected area, by no means confined toaa fiegghborhood.
At times the basin of attraction encompasses the compktespace of the attrac-
tor, so one can be sure to be within the attracting basin ofea fpoint regardless
of where on the on the attractor on picks the initial conditio

The step sizégy(x)— x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points \&ithigh precision,
one therefore needs a large number of iterations for thedi@jy which is already
in the linear neighborhood of the fixed point. To speed up tevergence of the
final part of the approach to a fixed point we recommend a caatibim of the
above approach with the Newton-Raphson method (29.2).

The fixed points of theth iteratef™ are periodic points of a cycle of period
n. If we consider the map

X =g(X) = x+ ArC(f"(X) — %), (29.14)

the iterates ofj converge to a fixed point provided that is suficiently small
andC is a [dxd] constant matrix chosen such that it stabilizes the flow. nAs
grows, At has to be chosen smaller and smaller. In the case of the Ikega m
example 29.2 the method works well for< 20. As in (29.12), the multipoint
shooting method is the method of preference for determitinger cycles. Con-
siderx = (x1, X, .. ., X,) and thend-dimensional map

X =0 = (FOn). f(xa). ... f(Xn-1)).

Determining cycles with period for the d-dimensionalf is equivalent to deter-
mining fixed points of the multipoinin-dimensionalf. The idea is to construct a
matrix C such that the fixed point of becomes stable for the map:

X = X+ AtC(f(X) — ),

whereC is now a hdxnd] permutatiofreflection matrix with only one non-zero
matrix element:1 per row or column. For any given mati®, a certain fraction

of the cycles becomes stable and can be found by iteratingahsformed map
which is now and dimensional map.

From a practical point of view, the main advantage of thishmodtcompared to
the Newton-Raphson method is twofoldl the Jacobian matrix of the flow need
not be computed, so there is no large matrix to invert, sifyiplj considerably
the implementation, andi) empirical basins of attractions for individu@l are
much larger than for the Newton-Raphson method. The priagésluction in the
speed of convergence.
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Table 29.3: All prime cycles up to 6 bounces for the 3-disk fundamentahem, center-
to-center separatioR = 6, disk radiusa = 1. The columns list the cycle itinerary, its
expanding eigenvalug,, and the length of the orbit (if the velociil this is the same as
its period or the action). Note that the two 6 cyc1011 and)01101 are degenerate
due to the time reversal symmetry, but are not related by &styete spatial symmetry.
(Computed by P.E. Rosenqvist.)

p A T
0 9.898979485566  4.000000000000
1 -1.177145519638101  4.267949192431
01 -1.240948019924107  8.316529485168
001 -1.24054255704410° 12.321746616182
011 1.449545074956.0° 12.580807741032
0001  -1.2295706861960" 16.322276474382
0011  1.44599759190410* 16.585242906081
0111  -1.7079019008940' 16.849071859224
00001  -1.2173383870510° 20.322330025739
00011  1.4328209515440° 20.585689671758
00101  1.5392579074300° 20.638238386018
00111 -1.7041071554330° 20.853571517227
01011  -1.79901947943G0° 20.897369388186
01111  2.010247347433C° 21.116994322373
000001 -1.2050629238%a0° 24.322335435738
000011 1.4185216228%40° 24.585734788507
000101 1.5255974482%10° 24.638760250323
000111 -1.6886249342510° 24.854025100071
001011 -1.7963549397830° 24.902167001066
001101 -1.7963549397830° 24.902167001066
001111 2.0057331062%80° 25.121488488111
010111 2.1196150153630° 25.165628236279
011111 -2.3663782548010° 25.384945785676
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29.3 Least action method

(P. Dahlgvist)

The methods of sects. 29.1 and 29.2 are somewatidtoc as for general
flows and iterated maps there is no fundamental principlaiidegus in choosing
the cost function, such as (29.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maujeleast
action principle. You yawn your way through it in every mewgita course—but as
we shall now see, it is a very hands-on numerical method fdirfgcycles.

Indeed, the simplest and numerically most robust methodédtermining cy-
cles of planar billiards is given by the principle of leastiag, or equivalently,
by extremizing the length of an approximate orbit that sisitgiven sequence of
disks. In contrast to the multipoint shooting method of s&8t3 which requires
variation of 21 phase-space points, extremization of a cycle length reswiaria-
tion of only n bounce positions;.

The problem is to find the extremum values of cycle lenigtf wheres =
(s1,-..,S), that is find the roots ofiL(s) = 0. Expand to first order

OiL(s0 + 09) = 0iL(s0) + ZaiajL(so)ésj +...
]
exercise 29.1

and useM;ij(s0)) = 0idjL(sp) in the n-dimensional Newton-Raphson iteration
scheme of sect. 13.2.2

S5 Z(ﬁ) L (29.15)

ij

The extremization is achieved by recursive implementatibthe above algo-
rithm, with proviso that if the dynamics is pruned, one alss ko check that the

final extremal length orbit does not penetrate a billiardiwal exercise 29.2
exercise 13.13

As an example, the short periods and stabilities of 3-diskesycomputed this
way are listed table 29.3.

Résum é

Unlike the Newton-Raphson method, variational methodsemgrobust. As each
step around a cycle is short, they do naffsufrom exponential instabilities, and
with rather coarse initial guesses one can determine cp€laditrary length.
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Commentary

Remark 29.1 Piecewise linear maps.  The Lozi map (3.19) is linear, and 100,000’s
of cycles can be easily computed by [2x2] matrix multiplioatand inversion.

Remark 29.2 Relaxation method.  The relaxation (or gradient) algorithm is one of
the methods for solving extremal problems [29.13]. The meéttiescribed above was
introduced by Biham and Wenzel [29.1], who have also geizexdit (in the case of the
Hénon map) to determination afl 2" cycles of perioch, real or complex [29.2]. The
applicability and reliability of the method is discussedigtail by Grassberger, Kantz and
Moening [29.5], who give examples of the ways in which the hodtfails: (a) it might
reach a limit cycle rather than a equilibrium saddle poima{tan be remedied by the com-
plex Biham-Wenzel algorithm [29.2]) (b) fierent symbol sequences can converge to the
same cycle (i.e., more refined initial conditions might bedetl). Furthermore, Hansen
(ref. [29.7] and chapter 4. of ref. [12.22]) has pointed dwttthe method cannot find
certain cycles for specific values of the Hénon map parasite practice, the relaxation
method for determining periodic orbits of maps appears tefileetive almost always, but
not always. It is much slower than the multipoint shootingmod of sect. 13.3, but also
much quicker to program, as it does not require evaluaticgstaifility matrices and their
inversion. If the complete set of cycles is required, thehoéthas to be supplemented by
other methods.

Remark 29.3 Hybrid Newton-Raphson/relaxation methods.  The method discussed
in sect. 29.2 was introduced by Schmelckerl [29.9]. The method was extended to
flows by means of the Poincaré surface of section techniguefi [29.10]. It is also
possible to combine the Newton-Raphson method and (29a1®)ei construction of a
transformed map [29.14]. In this approach, each step ofténation scheme is a linear
superposition of a step of the stability transformed systerd a step of the Newton-
Raphson algorithm. Far from the linear neighborhood theyiteis dominantly on the
globally acting stability transformation algorithm. Céo® the fixed point, the steps of
the iteration are dominated by the Newton-Raphson proesdur

Remark 29.4 Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repellex §uficiently large), such as the one given in figure 29.2, the
signso € {1,-1} are in a 1-to-1 correspondence with the Smale horshesholeasigm
dynamicss € {0, 1}:

_:{ 0 ifO’i=—1, X <0

1 ifoi=+1, x>0 (29.16)

For arbitrary parameter values with a finite subshift syrtbdynamics or with arbitrar-
ily complicated pruning, the relation of sign sequenges o, - - -, o} to the itineraries
{s1, S, "+, S} can be much subtler; this is discussed in ref. [29.5].

Remark 29.5 Ikeda map. lkeda map (29.11) was introduced in ref. [29.12] is a model
which exhibits complex dynamics observed in nonlinearagptiing cavities.
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Remark 29.6 Relaxation for continuous time flows. For ad-dimensional flow

X = v(x), the method described above can be extended by considefwincaré sur-
face of section. The Poincaré section yields a rhagith dimensiond-1, and the above
discrete iterative maps procedures can be carried out. Aodehat keeps the trial or-
bit continuous throughout the calculation is the Newtorcdes a variational method for
finding periodic orbits of continuous time flows, is descdtie refs. [29.15, 29.16].

Remark 29.7 Stability ordering. The parametenr in (29.13) is a key quantity
here. It is related to the stability of the desired cycle ia thansformed system: The
more unstable a fixed point is, the smalter has to be to stabilize it. With increasing
cycle periods, the unstable eigenvalue of the Jacobiarmatreases and thereforer

has to be reduced to achieve stabilization of all fixed poidtsmany cases the least

unstable cycles of a given periadare of physically most important [29.11]. In thisection 20.6

contextAr operates as a stability filter. It allows the selective dizdtion of only those
cycles which posses Lyapunov exponents smaller than afEugiie. If one starts the
search for cycles within a given periodvith a valueAr ~ O(107), and gradually lowers
At one obtains the sequence of all unstable orbits of arderted with increasing values
of their Lyapunov exponents. For the specific choic&€dhe relation betweeAr and
the stability coéficients of the fixed points of the original system is strictlpmotonous.
Transformed dynamical systems with otlf@s do not obey such a strict behavior but
show a rough ordering of the sequence of Floquet multiptiétise fixed points stabilized
in the course of decreasing values for. As explained in sect. 20.6, stability ordered
cycles are needed to order cycle expansions of dynamicailtitjea of chaotic systems
for which a symbolic dynamics is not known. For such systeansordering of cycles
with respect to their stability has been proposed [20.14,2@®0.13], and shown to yield
good results in practical applications.

Remark 29.8 Action extremization method. The action extremization (sect. 29.3) as a
numerical method for finding cycles has been introducedgeddently by many people.
We have learned it from G. Russberg, and from M. Sieber’s ar8tdiner’s hyperbola
billiard computations [29.17, 29.18]. The convergence iatreally impressive, for the
Sinai billiard some 5000 cycles are computed within CPU sdsavith rather bad initial
guesses.

Variational methods are the key ingredient of the Aubry-Matheory of area-preserving
twist maps (known in the condensed matter literature astiekiel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dyieal systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubrgatfler theorem [29.20]
on existence of quasi-periodic solutions are variatioftalvas quickly realized that the
variational methods can also yield reliable, high precisiomputations of long periodic
orbits of twist map models in 2 or more dimensions, neede&fArM. renormalization
studies [29.19].

A fictitious time gradient flow similar to the one discussedehia sect. 29.1 was in-
troduced by Anegent [29.21] for twist maps, and used by G2%22] in his proof of
the Aubry-Mather theorem. Mathematical bounds on the regaf stability of K.A.M.
tori are notoriously restrictive compared to the numerindications, and de la Llave,
Falcolini and Tompaidis [29.23, 29.24] have found the geatlflow formulation advanta-
geous both in studies of the analyticity domains of the K.Ashbility, as well as proving
the Aubry-Mather theorem for extended systems (for a pegiagbintroduction, see the
lattice dynamics section of ref. [29.25]).
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All of the twist-maps work is based on extremizing the digeynamics version of
the actionS (in this context sometimes called a “generating functiorfgwever, in their
investigations in the complex plane, Falcolini and de laself29.23] do find it useful to
minimize insteadss, analogous to our cost function (29.3).
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Exercises

29.1.

29.2.

Evaluation of billiard cycles by minimization*.

Given a symbol sequence, you can construct a guess tra-

jectory by taking a point on the boundary of each disk

in the sequence, and connecting them by straight lines.

If this were a rubber band wrapped through 3 rings, it
would shrink into the physical trajectory, which mini-
mizes the action (in this case, the length) of the trajec-
tory.

Write a program to find the periodic orbits for your bil-
liard simulator. Use the least action principle to ex-
tremize the length of the periodic orbit, and reproduce

the periods and stabilities of 3-disk cycles, table 29.3q 3.

(One such method is given in sect. 29.3.) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
[fTp(X) — X|?

Tracking cycles adiabatically’. Once a cycle has been
found, orbits for diferent system parameters values may
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