
Chapter 20

Cycle expansions

Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (19.9) and dyn-
amical zeta functions (19.15) are really only a shorthand notation - the ze-
ros of the individual factors arenot the zeros of the zeta function, and the

convergence of these objects is far from obvious. Now we shall give meaning to
dynamical zeta functions and spectral determinants by expanding them ascycle
expansions, which are series representations ordered by increasing topological cy-
cle length, with products in (19.9), (19.15) expanded as sums overpseudo-cycles,
products of weightstp of contributing cycles. The zeros of correctly truncated
cycle expansions yield the desired leading eigenvalues of evolution operators, and
the expectation values of observables are given by the cycleaveraging formulas
obtained from the partial derivatives of dynamical zeta functions (or spectral det-
erminants).

For reasons of pedagogy in what follows everything is first explained in terms
of dynamical zeta functions: they aid us in developing ‘shadowing’ intuition about
the geometrical meaning of cycle expansions. For actual calculations, we recom-
mend the spectral determinant cycle expansions of sects. 20.2.2 and 20.4.2. While
the shadowing is less transparent, and the weights calculation is an iterative nu-
merical algorithm, these expansions use full analytic information about the flow,
and can have better convergence properties than the dynamical zeta functions. For
example, as we shall show in chapter 23, even when a spectral determinant (19.6)
is entire and calculations are super-exponentially convergent, cycle expansion of
the corresponding dynamical zeta function (19.25) has a finite radius of conver-
gence and captures only the leading eigenvalue, at exponentially convergent rate.
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CHAPTER 20. CYCLE EXPANSIONS 401

20.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (19.15) evaluated? We start by computing
the lengths and Floquet multipliers of the shortest cycles.This always requires
numerical work, such as searches for periodic solutions viaNewton’s method;
we shall assume for the purpose of this discussion that the numerics is under chapter 13

control, and thatall short cycles up to a given (topological) length have been
found. Examples of the data required for application of periodic orbit formulas
are the lists of cycles given in exercise 13.14 and table 29.3. Sadly, it is not
enough to set a computer to blindly troll for invariant solutions, and blithely feed
those into the formulas that will be given here. The reason that this chapter is
numbered 20 and not 6, is that understanding the geometry of the non–wandering
set is a prerequisite to good estimation of dynamical averages: one has to identify
cycles that belong to a given ergodic component (whose symbolic dynamics and
shadowing is organized by its transition graph), and discard the isolated cycles
and equilibria that do not take part in the asymptotic dynamics. It is important
not to missany short cycles, as the calculation is as accurate as the shortest cycle
dropped - including cycles longer than the shortest omitteddoes not improve the
accuracy (more precisely, the calculation improves, but solittle as not to be worth
while).

Given a set of periodic orbits, we can compute their weightstp and expand the
dynamical zeta function (19.15) as a formal power series,

1/ζ =
∏

p

(1− tp) = 1−
∑′

{p1p2...pk}

(−1)k+1tp1tp2 . . . tpk (20.1)

where the prime on the sum indicates that the sum is over all distinct non-repeating
combinations of prime cycles. As we shall frequently use such sums, let us denote
by tπ = (−1)k+1tp1tp2 . . . tpk an element of the set of all distinct products of the
prime cycle weightstp. The formal power series (20.1) is now compactly written
as

1/ζ = 1−
∑′

π

tπ . (20.2)

Fork > 1, the signed productstπ are weights ofpseudo-cycles; they are sequences
of shorter cycles that shadow a cycle with the symbol sequence p1p2 . . . pk along
the segmentsp1, p2, . . ., pk, as in figure 1.12. The symbol

∑′ denotes the re-
stricted sum, for which any given prime cyclep contributes at most once to a
given pseudo-cycle weighttπ.

The pseudo-cycle weight, i.e., the product of weights (19.10) of prime cycles
comprising the pseudo-cycle,

tπ = (−1)k+1

|Λπ|
eβAπ−sTπ znπ , (20.3)
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CHAPTER 20. CYCLE EXPANSIONS 402

depends on the pseudo-cycle integrated observableAπ, the periodTπ, the stability
Λπ, remark 5.1

Λπ = Λp1Λp2 · · ·Λpk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , nπ = np1 + . . . + npk , (20.4)

and, when available, the topological lengthnπ.

20.1.1 Curvature expansions

The simplest example is the pseudo-cycle sum for a system described by a com-
plete binary symbolic dynamics. In this case the Euler product (19.15) is given
by

1/ζ = (1− t0)(1− t1)(1− t01)(1− t001)(1− t011) (20.5)

× (1− t0001)(1− t0011)(1− t0111)(1− t00001)(1− t00011)

× (1− t00101)(1− t00111)(1− t01011)(1− t01111) . . .

(see table 15.1), and the first few terms of the expansion (20.2) ordered by increas-
ing total pseudo-cycle length are:

1/ζ = 1− t0 − t1 − t01− t001− t011− t0001− t0011− t0111− . . .

+ t0t1 + t0t01+ t01t1 + t0t001+ t0t011+ t001t1 + t011t1
− t0t01t1 − . . . (20.6)

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudo-cycles, and ordered by increasing
cycle length and instability, as acycle expansion.

The next step is the key step: regroup the terms into the dominantfundamental
contributionst f and the decreasingcurvaturecorrections ˆcn, each ˆcn split into
prime cyclesp of length np=n grouped together with pseudo-cycles whose full
itineraries build up the itinerary ofp. For the binary case this regrouping is given
by

1/ζ = 1− t0 − t1 − [(t01 − t1t0)] − [(t001− t01t0) + (t011− t01t1)]

−[(t0001− t0t001) + (t0111− t011t1)

+(t0011− t001t1 − t0t011+ t0t01t1)] − . . .

= 1−
∑

f

t f −
∑

n

ĉn . (20.7)
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CHAPTER 20. CYCLE EXPANSIONS 403

All terms in this expansion up to lengthnp = 6 are given in table 20.1. We refer to
such regrouped series ascurvature expansions, because the shadowed combina-
tions [· · ·] vanish identically for piecewise-linear maps with nice partitions, such
as the ‘full tent map’ of figure 16.3.

This separation into ‘fundamental’ and ‘curvature’ parts of cycle expansions
is possibleonly for dynamical systems whose symbolic dynamics has finite gram-
mar. The fundamental cyclest0, t1 have no shorter approximations; they are the
“building blocks” of the dynamics in the sense that all longer orbits can be approx-
imately pieced together from them. The fundamental part of acycle expansion is
given by the sum of the products of all non-intersecting loops of the associated
transition graph, discussed in chapter 14. The terms grouped in brackets [· · ·] are section 15.3

section 20.5the curvature corrections; the terms grouped in parentheses (· · ·) are combinations
of longer cycles and corresponding sequences of “shadowing” pseudo-cycles, as
in figure 1.12. If all orbits are weighted equally (tp = znp), such combinations
cancel exactly, and the dynamical zeta function reduces to the topological poly-
nomial (15.27). If the flow is continuous and smooth, orbits of similar symbolic
dynamics will traverse the same neighborhoods and will havesimilar weights, and
the weights in such combinations will almost cancel. The utility of cycle expan-
sions of dynamical zeta functions and spectral determinants, in contrast to naive
averages over periodic orbits such as the trace formulas discussed in sect. 22.4,
lies precisely in this organization into nearly canceling combinations: cycle ex-
pansions are dominated by short cycles, with longer cycles giving exponentially
decaying corrections.

More often than not, good symbolic dynamics for a given flow iseither not
available, or its grammar is not finite, or the convergence ofcycle expansions
is affected by non-hyperbolic regions of state space. In those cases truncations
such as thestability cutoff of sect. 20.6 and sect. 24.3.4 might be helpful. The
idea is to truncate the cycle expansion by including only thepseudo-cycles such
that |Λp1 · · ·Λpk | ≤ Λmax, with the cutoff Λmax equal to or greater than the most
unstableΛp in the data set.

In what follows, we shall introduce two cycle averaging formulas, one based
on dynamical zeta functions and the other on spectral determinants. (Frequently
used, but inferior ‘level sums’ shall be discussed in sect. 22.4.)

20.2 Construction of cycle expansions

Due to the lack of factorization of the determinant in the denominator of the full
pseudo-cycle weight in (18.23),

det
(

1− Mp1p2

)

, det
(

1− Mp1

)

det
(

1− Mp2

)

,

the cycle expansions for the spectral determinant (19.9) are somewhat less trans-
parent than is the case for the dynamical zeta functions, so we postpone their
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CHAPTER 20. CYCLE EXPANSIONS 404

Table 20.1: The binary curvature expansion (20.7) up to length 6, listedin such a way that
the sum of terms along thepth horizontal line is the curvature ˆcp associated with a prime
cycle p, or a combination of prime cycles such as thet100101+ t100110pair.

- t0
- t1
- t10 + t1t0
- t100 + t10t0
- t101 + t10t1
- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1
- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1
- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

evaluation to sect. 20.2.2. Sect. 20.2.1 is a pedagogical warmup. In actual calcu-
lations, implementing the spectral determinant cycle expansions of sect. 20.2.2 is
recommended. Correct objects are spectral determinants, and as using the correct
object costs exactly the same as using the approximations, why settle for less?

20.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluatednumerically by first
computing the weightstp = tp(β, s) of all prime cyclesp of topological length
np ≤ N, for given fixedβ and s. Denote by the subscript (i) the ith prime cycle
computed, ordered by the topological lengthn(i) ≤ n(i+1). The dynamical zeta
function 1/ζN truncated tonp ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)[1 − t(i)z
n(i) ] , (20.8)

and truncating the expansion at each step to a finite polynomial in zn, n ≤ N. The
result is theNth order polynomial approximation

1/ζN = 1−
N

∑

n=1

cnzn . (20.9)

In other words, a cycle expansion is a Taylor expansion in thedummy variablez,
where each term in the sum is raised to the topological cycle length. If both the
number of cycles and their individual weights grow not faster than exponentially
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CHAPTER 20. CYCLE EXPANSIONS 405

with the cycle length, and we multiply the weight of each cycle p by a factorznp,
the cycle expansion converges for sufficiently small|z|. If the symbolic dynamics
grammar is finite, the truncation cuttofN has to be larger than the length of longest
cycle in the transition graph (15.15), for the salubrious effect of shadowing cance-
lations to kick in. If that is the case, further increases inN yield the exponentially
decreasing corrections ˆcn in (20.7).

If the dynamics is given by an iterated mapping, the leading zero of (20.9)
as a function ofz yields the leading eigenvalue of the appropriate evolutionoper-
ator. For continuous time flows,z is a dummy variable that we set toz = 1, and
the leading eigenvalue of the evolution operator is given bythe leading zero of
1/ζ(s, β(s)) as function ofs.

20.2.2 Evaluation of traces and spectral determinants

We commence the cycle expansion evaluation of a spectral determinant by com-
puting the trace formula (18.10) or (18.23). The weight of prime cyclep repeated
r times is

tp(z, β, r) =
erβ·Ap zr np

∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣

(discrete time) (20.10)

tp(s, β, r) =
er(β·Ap−sTp)

∣

∣

∣

∣
det

(

1− Mr
p

)

∣

∣

∣

∣

(continuous time). (20.11)

For discrete time, the trace formula (18.10) truncated to all prime cyclesp and
their repeatsr such thatnpr ≤ N,

tr
zL

1− zL

∣

∣

∣

∣

∣

N
=

N
∑

n=1

Cnzn , Cn = trLn , (20.12)

is computed as a polynomial inzby adding a cycle at the time:

tr
zL

1− zL

∣

∣

∣

∣

∣

(i)
= tr

zL
1− zL

∣

∣

∣

∣

∣

(i−1)
+ n(i)

n(i)r≤N
∑

r=1

t(i)(z, β, r) .

Forcontinuous time, we assume that the method of Poincaré sections assigns each
cycle a topological lengthnp. Than the trace formula (18.23) is also organized as
a polynomial

tr
1

s−A

∣

∣

∣

∣

∣

N
=

N
∑

n=1

Cnzn , (20.13)
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computed as:

tr
1

s−A

∣

∣

∣

∣

∣

(i)
= tr

1
s−A

∣

∣

∣

∣

∣

(i−1)
+ T(i)

n(i)r≤N
∑

r=1

t(i)(s, β, r) znpr

The periodic orbit data set (20.4) consists of the list of thecycle periodsTp, the
cycle Floquet multipliersΛp,1,Λp,2, . . . ,Λp,d, and the cycle averages of the ob-
servableAp for all prime cyclesp such thatnp ≤ N. The coefficient ofznpr is then
evaluated numerically for the given parameter values (β, s). Always compute the
leading eigenvalue of the evolution operator first, i.e., the escape rateγ = −s0, in
order to use it in calculation of averages of sect. 20.4 as a weight eγT(i) in (20.12).
Now that we have an expansion for the trace formula (18.9) as apower series, we
compute theNth order approximation to the spectral determinant (19.3),

det (1− zL)|N = 1−
N

∑

n=1

Qnzn , Qn = nth cumulant, (20.14)

as follows. The logarithmic derivative relation (19.4) yields

(

tr
zL

1− zL

)

det (1− zL) = −z
d
dz

det (1− zL)

(C1z+C2z2 + · · ·)(1− Q1z− Q2z2 − · · ·) = Q1z+ 2Q2z2 + 3Q3z3 · · ·

so thenth order term of the spectral determinant cycle (or in this case, the cumu-
lant) expansion is given recursively by the convolution trace formula expansion
coefficients

Qn =
1
n

(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (20.15)

Given the trace formula (20.12) truncated tozN, we now also have the spectral
determinant truncated tozN.

The same program can also be reused to compute the dynamical zeta function
cycle expansion (20.9), by replacing

∏

(

1− Λr
(i), j

)

in (20.12) by the product ofsection 19.3

expanding eigenvaluesΛ(i) =
∏

eΛ(i),e.

A few points concerning different cycle averaging formulas:

• The dynamical zeta functions is an approximation to spectral determinant
that yields only the leading eigenvalue of the evolution operator. The cycle
weights depend only on the product of expanding|Λi | Floquet multipliers,
so signs do no matter. For hyperbolic flows they converge exponentially
with increasing cycle lengths.
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Table 20.2: The 3-disk repeller escape rates computed from cycle expansions of the spec-
tral determinant (19.6) and the dynamical zeta function (19.15), as functions of the max-
imal cycle lengthN. The disk-disk center separation to disk radius ratio isR:a, and the
det(s − A) is an estimate of the classical escape rate computed from the spectral det-
erminant cycle expansion in the fundamental domain. For larger disk-disk separations,
the dynamics is more uniform, as illustrated by the faster convergence. Convergence of
spectral determinant det(s−A) is super-exponential, see chapter 23. For comparison, the
1/ζ(s) column lists estimates from the fundamental domain dynamical zeta function cycle
expansion (20.7), and the 1/ζ(s)3-disk column lists estimates from the full 3-disk cycle
expansion (20.35). The convergence of the fundamental domain dynamical zeta function
is significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functionhas still poorer convergence.
(P.E. Rosenqvist.)

R:a N . det(s−A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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• spectral determinants weights in (19.3) contain 1/|1 − Λi | factors, so for
them signs of Floquet multipliersΛi do matter. With finite grammar the
leading eigenvalue converges super-exponentially in cycle length.

Note that while the dynamical zeta functions weights use only the expand-
ing Floquet multipliers|Λe|, for spectral determinants the weights are of
form |1−Λr

j |, both expanding and contracting directions contribute, and the
signs of multipliers do matter. That’s why ChaosBook everywhere tracks
multipliersΛ j, rather than Floquet exponentsλ j . λ’s belong to equilibria,
periodic orbits require multipliers. That’s the way cookiecrumbles. For
very high-dimensional flows (such as unstable periodic solutions of Navier-
Stokes equations), usually only a subset of the most unstable / least con-
tracting Floquet multipliers is known. As long as the contracting Floquet
multipliers omitted from the weights in (20.12) are sufficiently strongly con-
tracting, the errors introduced by replacement|1− Λr

j | → 1 for such eigen-
values should be negligible.

• The least enlightened are the ‘level sum’ cycle averaging formulas. There
is no point in using them, except that they have to be mentioned (here in
sect. 22.4), as there is voluminous literature that uses them.

• Other formulas published in physics literature are likely to be wrong.

If the set of computed periodic orbits is incomplete, and their Floquet mul-
tipliers inaccurate, distinctions between different cycle averaging formulas are
academic, as there are not sufficiently many cycles to start worrying about what
expansion converges faster.

20.3 Periodic orbit averaging

The first cycle expansion calculation should always be the determination of the
leading eigenvalue of the evolution operator, calculated as follows. After the
prime cycles and the pseudo-cycles have been grouped into subsets of equal topo-
logical length, the dummy variable can be set equal toz = 1. With z = 1, the
expansion (20.14) constitutes the cycle expansion (19.6) for the spectral deter-
minant det(s− A) . We vary s in cycle weights, and determineαth eigenvalue
sα (17.20) by findings = sα for which (20.14) vanishes. As an example, the
convergence of a leading eigenvalue for a nice hyperbolic system is illustrated in
table 20.2 by the list of pinball escape ratesγ = −s0 estimates computed from
truncations of (20.7) and (20.14) to different maximal cycle lengths. chapter 23

The pleasant surprise, to be explained in chapter 23, is thatone can prove
that the coefficients in these cycle expansions decay exponentially or even faster,
because of the analyticity of det (s−A) or 1/ζ(s), for svalues well beyond those
for which the corresponding trace formula (18.23) diverges.
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Figure 20.1: Example scans in the complexs
plane: contour plots of the logarithm of the ab-
solute values of (left) 1/ζ(s), (right) spectral deter-
minant det (s−A) for the 3-disk system, separation
R : a = 6. TheA1 subspace is evaluated numeri-
cally. The eigenvalues of the evolution operatorL
are given by the centers of elliptic neighborhoods
of the rapidly narrowing rings. While the dynam-
ical zeta function is analytic on the Ims≥ −1 half-
plane, the spectral determinant is entire and reveals
further families of zeros. (P.E. Rosenqvist)

20.3.1 Newton algorithm for determining the evolution operator eigen-
values

Cycle expansions of spectral determinants can be used to compute a set
of leading eigenvalues of the evolution operator. A convenient way to search for
these is by plotting either the absolute magnitude ln|det (s− A)| or the phase of
spectral determinants and dynamical zeta functions as functions of the complex
variables. The eye is guided to the zeros of spectral determinants and dynamical
zeta functions by means of complexsplane contour plots, with different intervals
of the absolute value of the function under investigation assigned different col-
ors; zeros emerge as centers of elliptic neighborhoods of rapidly changing colors.
Detailed scans of the whole area of the complexs plane under investigation and
searches for the zeros of spectral determinants, figure 20.1, reveal complicated
patterns of resonances even for something as simple as the 3-disk game of pinball.
With a good starting guess (such as the location of a zero suggested by the com-
plex s scan of figure 20.1), a zero 1/ζ(s) = 0 can now be determined by standard
numerical methods, such as the iterative Newton algorithm (13.4), with themth
Newton estimate given by

sm+1 = sm −

(

ζ(sm)
∂

∂s
ζ−1(sm)

)−1

= sm−
1/ζ(sm)
〈T〉ζ

. (20.16)

The denominator〈T〉ζ is required for Newton iteration and is given by cycle ex-
pansion (20.25). We need to evaluate it anyhow, as〈T〉ζ is needed for the cycle
averaging formulas.

Our next task will be to compute long-time averages of observables. Three
situations arise, two of them equal in practice:

(i) The system is bounded, and we have all cycles up to some cutoff: always
start by testing the cycle expansion sum rules of sect. 20.3.2.

(ii) The system is unbounded, and averages have to be computed over a repeller
whose natural measure is obtained by balancing local instability with the
global escape rateγ = −s0, as in sect. 17.3.
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(iii) The system is bounded, but we only have a repelling set consisting of a sub-
set of unstable cycles embedded into the bounded strange attractor. Best one
can do is to treat this as an open system, case (iii). That assigns a stationary
natural measure to neighborhoods of the solutions used, thelocal instabili-
ties balanced by a weight that includes escape rate exp(γTp). Whether use
of this measure improves averages as one increases the stability cutoff de-
pends on whether the longer cycles explore qualitatively different regions
of state space not visited by the shorter (fundamental) cycles, or only revisit
already known regions (curvature corrections).

20.3.2 Flow conservation sum rules

If a dynamical system is bounded, so that all trajectories remain confined for all
times, the escape rate (22.8) vanishesγ = −s0 = 0, and the leading eigenvalue of
the Perron-Frobenius operator (16.10) (evolution operator with β = 0) is simply
exp(−tγ) = 1. Conservation of material flow thus implies that for bounded flows
cycle expansions of dynamical zeta functions and spectral determinants satisfy
exactflow conservationsum rules:

1/ζ(0, 0) = 1+
∑′

π

(−1)k

|Λp1 · · ·Λpk |
= 0

F(0, 0) = 1−
∞
∑

n=1

Qn(0, 0) = 0 (20.17)

obtained by settings= 0 in (20.18), (20.19) with cycle weightstp = e−sTp/|Λp| →

1/|Λp| . These sum rules depend neither on the cycle periodsTp nor on the observ-
ablea(x) under investigation, but only on the cycle stabilitiesΛp,1, Λp,2, · · ·,Λp,d.
Their significance is purely geometric; they are a measure ofhow well periodic
orbits tessellate state space, as in figure 1.11. Conservation of material flow pro-
vides a first and very useful test of the quality of finite cyclelength truncations and
is something that you should always check when constructinga cycle expansion
for a bounded flow.

20.4 Cycle formulas for dynamical averages

The eigenvalue conditions for the dynamical zeta function (20.2) and the spectral
determinant (20.14),

0 = 1−
∑′

π

tπ , tπ = tπ(β, s(β)) (20.18)

0 = 1−
∞
∑

n=1

Qn , Qn = Qn(β, s(β)) , (20.19)
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Figure 20.2: The eigenvalue condition is satisfied on
the curveF = 0 on the (β, s) plane. The expectation
value of the observable (17.12) is given by the slope of
the curve.

s

β

__

βF(  ,s(  ))=0 curveβ

d
ds
β

are implicit equations for an eigenvalues = s(β) of the form 0= F(β, s(β)). The
eigenvalues = s(β) as a function ofβ is sketched in figure 20.2; this condition
is satisfied on the curveF = 0. The cycle averaging formulas for the slope and
curvature ofs(β) are obtained as in (17.12) by taking derivatives of the eigenvalue
condition. Evaluated alongF = 0, by the chain rule the first derivative yields

0 =
d
dβ

F(β, s(β))

=
∂F
∂β
+

ds
dβ
∂F
∂s

∣

∣

∣

∣

∣

s=s(β)
=⇒

ds
dβ
= −
∂F
∂β

/ ∂F
∂s
, (20.20)

and the second derivative ofF(β, s(β)) = 0 yields

d2s

dβ2
= −















∂2F

∂β2
+ 2

ds
dβ
∂2F
∂β∂s

+

(

ds
dβ

)2
∂2F

∂s2















/ ∂F
∂s
. (20.21)

Denoting

〈A〉F = −
∂F
∂β

∣

∣

∣

∣

∣

β,s=s(β)
, 〈T〉F =

∂F
∂s

∣

∣

∣

∣

∣

β,s=s(β)
,

〈

(A− 〈A〉)2
〉

F
=
∂2F

∂β2

∣

∣

∣

∣

∣

∣

β,s=s(β)

, (20.22)

respectively, and the mean cycle expectation value ofA, the mean cycle period,
and the second derivative ofF computed forF(β, s(β)) = 0, we obtain the cycle
averaging formulas for the expectation and variance of the observable (17.12):

〈a〉 =
〈A〉F
〈T〉F

(20.23)

〈

(a− 〈a〉)2
〉

=
1
〈T〉F

〈

(A− 〈A〉)2
〉

F
. (20.24)

These formulas are the central result of periodic orbit theory. We now show that
for each choice of the functionF(β, s) in (20.2), (20.14), and (22.15), the above
quantities have explicit cycle expansions.
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20.4.1 Dynamical zeta function cycle averaging formulas

For the dynamical zeta function condition (20.18), the cycle averaging formulas
(20.20), (20.24) require one to evaluate derivatives of dynamical zeta functions at
a given eigenvalue. Substituting the cycle expansion (20.2) for the dynamical zeta
function we obtain

〈A〉ζ := −
∂

∂β

1
ζ
=

∑′
Aπtπ (20.25)

〈T〉ζ :=
∂

∂s
1
ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z
1
ζ
=

∑′
nπtπ ,

where the subscript in〈· · ·〉ζ stands for the dynamical zeta function average over
prime cycles,Aπ, Tπ, andnπ given by (20.3) are evaluated on pseudo-cycles (20.4),
and pseudo-cycle weightstπ = tπ(z, β, s(β)) are evaluated at the eigenvalues(β).
In most applicationsβ = 0, ands(β) of interest is typically the leading eigenvalue
s0 = s0(0) of the evolution generatorA.

For bounded flows the leading eigenvalue (the escape rate) vanishes,s(0) = 0,
the exponentβAπ − sTπ in (20.3) vanishes, so the cycle expansions take a simple
form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (20.26)

where analogous formulas hold for〈T〉ζ , 〈n〉ζ .

Example 20.1 Cycle expansion for the mean cycle period: For example, for the
complete binary symbolic dynamics the mean cycle period 〈T〉ζ is given by section 1.5.4

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(

T01

|Λ01|
−

T0 + T1

|Λ0Λ1|

)

(20.27)

+

(

T001

|Λ001|
−

T01 + T0

|Λ01Λ0|

)

+

(

T011

|Λ011|
−

T01+ T1

|Λ01Λ1|

)

+ . . . .

Note that the cycle expansions for averages are grouped intothe same shad-
owing combinations as the dynamical zeta function cycle expansion (20.7), with
nearby pseudo-cycles nearly canceling each other.

The cycle averaging formulas for the expectation of observable 〈a〉 follow by
substitution into (20.24). Assuming zero mean drift〈a〉 = 0, the cycle expansion
(20.14) for the variance

〈

(A− 〈A〉)2
〉

ζ
is given by

〈

A2
〉

ζ
=

∑′
(−1)k+1

(

Ap1 + Ap2 · · · + Apk

)2

|Λp1 · · ·Λpk |
. (20.28)
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20.4.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple structure,
with the shadowing apparent already by a term-by-term inspection of table 20.2.
For “nice” hyperbolic systems, shadowing ensures exponential convergence of thesection 23.5

dynamical zeta function cycle expansions. This, however, is not the best achiev-
able convergence. As will be explained in chapter 23, for nice hyperbolic systems
the spectral determinant constructed from the same cycle database is entire, and
its cycle expansion converges faster than exponentially. The fastest convergence
is attained by the spectral determinant cycle expansion (20.19) and its deriva-
tives. In this case the∂/∂s, ∂/∂β derivatives are computed recursively, by taking
derivatives of the spectral determinant cycle expansion contributions (20.12) and
(20.15).

The cycle averaging formulas are exact, and highly convergent for nice hy-
perbolic dynamical systems. An example of their utility is the cycle expansion
formula for the Lyapunov exponent of example 20.2. Further applications of cy-
cle expansions will be discussed in chapter 22.

20.4.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow in con-
tinuous time, and sometimes it might be easier to compute it in discrete time, from
a Poincaré return map. Return times (3.1) might vary wildly, and it is not at all
clear that the continuous and discrete time averages are related in any simple way.
As we shall now show, the relationship turns out to be both elegantly simple, and
totally general. exercise 20.13

The mean cycle period〈T〉ζ fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 in terms of
continuous time, and would like to also have the corresponding average〈a〉dscr
measured in discrete time, given by the number of reflectionsoff billiard walls,
the two averages are related by

〈a〉dscr= 〈a〉 〈T〉ζ / 〈n〉ζ , (20.29)

where〈n〉ζ the average of the number of bouncesnp along the cyclep is given by
is (20.25).

Example 20.2 Cycle expansion formula for Lyapunov exponents: In sect. 17.4
we defined the Lyapunov exponent for a 1-dimensional map, relating it to the leading
eigenvalue of an evolution operator, and promised to evaluate it. Now we are finally in
position to deliver on our promise.
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The cycle averaging formula (20.26) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′
(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (20.30)

For a repeller, the 1/|Λp| weights are replaced by (22.10), the normalized measure
weights exp(γnp)/|Λp|, where γ is the escape rate.

For 2-dimensional Hamiltonian flows such as our game of pinball (see exam-
ple 19.3), there is only one expanding eigenvalue and (20.30) applies as written.
However, in dimensions higher than one, a correct calculation of Lyapunov expo-
nents requires a bit of sophistication.

20.5 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 14.6 (d) is a compact encod-
ing of the transition matrix for a given subshift. It is a sparse matrix, and the
associated determinant (15.20) can be written by inspection: it is the sum of all
possible partitions of the graph into products of non-intersecting loops, with each
loop carrying a minus sign:

det (1− T) = 1− t0 − t0011− t0001− t00011+ t0t0011+ t0011t0001 (20.31)

The simplest application of this determinant is the evaluation of the topological
entropy; if we settp = znp, wherenp is the length of thep-cycle, the determinant
reduces to the topological polynomial (15.21).

The determinant (20.31) is exact for the finite graph figure 14.6 (e), as well
as for the associated finite-dimensional transfer operatorof example 17.5. For
the associated (infinite dimensional) evolution operator,it is the beginning of the
cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1− t0 − t0011− t0001+ t0001t0011

−(t00011− t0t0011+ . . . curvatures). . . (20.32)

The cycles0, 0001 and0011 are thefundamentalcycles introduced in (20.7); they
are not shadowed by any combinations of shorter cycles. All other cycles appear
together with their shadows (for example, thet00011− t0t0011 combination, see
figure 1.12) and yield exponentially small corrections for hyperbolic systems. For
cycle counting purposes, bothtab and the pseudo-cycle combinationta+b = tatb in
(20.2) have the same weightzna+nb, so all curvature combinationstab− tatb vanish
exactly, and the topological polynomial (15.27) offers a quick way of checking
the fundamental part of a cycle expansion.
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The splitting of cycles into the fundamental cycles and the curvature correc-
tions depends on balancing long cyclestab against their pseudo-trajectory shadows
tatb. If the ab cycle or either of the shadowsa, b do not to exist, such curvature
cancelation is unbalanced.

The most important lesson of the pruning of the cycle expansions is that pro-
hibition of a finite subsequence imbalances the head of a cycle expansion and
increases the number of the fundamental cycles in (20.7). Hence the pruned ex-
pansions are expected to start converging onlyafter all fundamental cycles have
been incorporated - in the last example, the cycles1, 10,10100,1011100. With-
out cycle expansions, no such crisp and clear cut definition of the fundamental set
of scales is available.

Because topological zeta functions reduce to polynomials for finite grammars,
only a few fundamental cycles exist and long cycles can be grouped into curvature
combinations. For example, the fundamental cycles in exercise 9.6 are the three
2-cycles that bounce back and forth between two disks and thetwo 3-cycles that
visit every disk. Of all cycles, the 2-cycles have the smallest Floquet exponent,
and the 3-cycles the largest. It is only after these fundamental cycles have been
included that a cycle expansion is expected to start converging smoothly, i.e., only
for n larger than the lengths of the fundamental cycles are the curvatures ˆcn (in
expansion (20.7)), a measure of the deviations between longorbits and their short
cycle approximations, expected to fall off rapidly withn.

20.6 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)

We have judiciously deployed the 3-disk pinball, with its simple grammar, to mo-
tivate the periodic orbit theory. Most dynamical systems ofinterest, however, have
infinite grammar, so at any order inz a cycle expansion may contain unmatched
terms that do not fit neatly into the almost canceling curvature corrections. Sim-
ilarly, for the intermittent systems that we shall discuss in sect. 24.3.4, curvature
corrections are not small in general, so again the cycle expansions may converge
slowly. For such systems, schemes that collect the pseudocycle terms according
to some criterion other than the topology of the flow may converge faster than
expansions based on the topological length.

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing as muchas possible. If a
long cycle is shadowed by two or more shorter cycles and the flow is smooth, the
periods and the Floquet exponents will be additive in sense that the period of the
longer cycle is approximately the sum of the shorter cycle periods. Similarly, as
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stability is multiplicative, shadowing is approximately preserved by including all
terms with pseudo-cycle stability

∣

∣

∣Λp1 · · ·Λpk

∣

∣

∣ ≤ Λmax (20.33)

and ignoring any pseudo-cycles that are less stable.

Two such schemes for ordering cycle expansions that approximately respect
shadowing are truncations by the pseudocycle period and thestability ordering
that we shall discuss here. In these schemes, a dynamical zeta function or a spec-
tral determinant is expanded. One keeps all terms for which the period, action or
stability for a combination of cycles (pseudo-cycles) is less than a given cutoff.

Settings in which stability ordering may be preferable to ordering by topo-
logical cycle length are the cases of bad grammar, of intermittency, and of partial
cycle data sets.

20.6.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of statespace generates the
“optimal” symbolic dynamics. Stability ordering does not require understanding
dynamics in such detail: if you can find the cycles, you can usestability-ordered
cycle expansions. Stability truncation is thus easier to implement for a generic
dynamical system than the curvature expansions (20.7) thatrely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near
recurrences. The long trajectory method for detecting cycles preferentially finds
the least unstable cycles, regardless of their topologicallength. Another practical
advantage of the method (in contrast to blind Newton method searches) is that it
preferentially finds cycles in a given connected ergodic component of state space,
ignoring isolated cycles or other ergodic regions elsewhere in state space.

Why should stability-ordered cycle expansions of a dynamical zeta function
converge better than the crude trace formula (22.9), to be discussed in sect. 22.2?
The argument has essentially already been laid out in sect. 15.6: in truncations
that respect shadowing, most of the pseudo-cycles appear inshadowing combi-
nations and nearly cancel, while only the relatively small subset affected by the
increasingly long pruning rules is not shadowed. The error is typically of the order
of 1/Λ, which is smaller by a factorehT than the trace formula (22.9) error, where
h is the entropy andT is the typical cycle length for cycles of stabilityΛ.

20.6.2 Smoothing

If most, but not all long cycles in a stability truncation areshadowed by
shorter cycles, we say that the shadowing is partial. The breaking of exact shad-
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owing cancellations deserves further comment. Any partialshadowing that may
be present can be (partially) restored by smoothing the stability-ordered cycle ex-
pansions by replacing the 1/Λweight for each term with the pseudo-cycle stability
Λ = Λp1 · · ·Λpk by f (Λ)/Λ. Here, f (Λ) decreases monotonically fromf (0) = 1
to f (Λmax) = 0. The lack of smoothing means we have a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudo-cycles
of stability Λ separated by∆Λ; the contributions of these pseudo-cycles are of
opposite sign. Ignoring possible weighting factors, the magnitude of the resulting
term is of order 1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing, one obtains an
extra term of the formf ′(Λ)∆Λ/Λ, which we want to minimize. A reasonable
guess might be to keepf ′(Λ)/Λ constant and as small as possible, so that

f (Λ) = 1−

(

Λ

Λmax

)2

The results of a stability-ordered expansion (20.33) should always be tested
for robustness by varying the cutoff Λmax. If this introduces significant variations,
smoothing is probably necessary.

Résum é

A cycle expansionis a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (19.15)expanded as sums
overpseudo-cycles, which are products of the prime cycle weightstp.

If a flow is hyperbolic and has the topology of the Smale horseshoe (a sub-
shift of finite type), dynamical zeta functions are holomorphic (have only poles
in the complexs plane), the spectral determinants are entire, and the spectrum of
the evolution operator is discrete. The situation is considerably more reassuring
than what practitioners of quantum chaos fear; there is no ‘abscissa of absolute
convergence’ and no ‘entropy barier’, the exponential proliferation of cycles is
no problem, spectral determinants are entire and converge everywhere, and the
topology dictates the choice of cycles to be used in cycle expansion truncations.

In this case, the basic observation is that the motion in low-dimensional dy-
namical systems is organized around a fewfundamentalcycles, with the cycle
expansion of the Euler product

1/ζ = 1−
∑

f

t f −
∑

n

ĉn,

regrouped into dominantfundamentalcontributionst f and decreasingcurvature
corrections ˆcn. The fundamental cyclest f have no shorter approximations; they
are the ‘building blocks’ of the dynamics in the sense that all longer orbits can be
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approximately pieced together from them. A typical curvature contribution to ˆcn

is thedifferenceof a long cycle{ab} and its shadowing approximation by shorter
cycles{a} and{b}, as in figure 1.12:

tab− tatb = tab(1− tatb/tab)

Orbits that follow the same symbolic dynamics, such as{ab} and a ‘pseudo-cycle’
{a}{b}, lie close to each other, have similar weights, and for increasingly long
orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy the
‘axiom A’ requirements, such as the 3-disk billiard, curvature expansions converge
very well.

Once a set of the shortest cycles has been found, and the cycleperiods, stabili-
ties, and integrated observable have been computed, the cycle averaging formulas
such as (20.25) for the dynamical zeta function

〈a〉 = 〈A〉ζ / 〈T〉ζ

〈A〉ζ = −
∂

∂β

1
ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s
1
ζ
=

∑′
Tπtπ

yield the expectation value of the observablea(x), i.e., the long time average over
the chaotic non–wandering set).

Commentary

Remark 20.1 Pseudocycle expansions. Bowen’s introduction of shadowingǫ-
pseudo-orbits [1.28] was a significant contribution to Smale’s theory. The expression
‘pseudo-orbits’ seems to have been introduced in Parry and Pollicott’s 1983 paper [20.16].
Following them, M. Berry [20.9] used the expression ’pseudo-orbits’ in his 1986 paper
on Riemann zeta and quantum chaos. Cycle and curvature expansions of dynamical zeta
functions and spectral determinants were introduced in refs. [20.10, 20.2]. Some liter-
ature [19.12] refers to pseudo-orbits as ‘composite orbits’, and to cycle expansions as
‘Dirichlet series’ (see also appendix I.5 and remark I.1).

Remark 20.2 Cumulant expansion. To statistical mechanicians, curvature expansions
are very reminiscent of cumulant expansions. Indeed, (20.15) is the standard Plemelj-
Smithies cumulant formula for the Fredholm determinant.A new aspect, not reminiscent
of statistical mechanics, is that in cycle expansions eachQn coefficient is expressed as a
sum over exponentially many cycles.

Remark 20.3 Exponential growth of the number of cycles. Going fromNn ≈ Nn

periodic points of lengthn to Mn prime cycles reduces the number of computations from
Nn to Mn ≈ Nn−1/n. The use of discrete symmetries (chapter 21) reduces the number
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of nth level terms by another factor. While reformulating theory from trace (18.28) to
cycle expansion (20.7) does not eliminate exponential growth in the number of cycles, in
practice only the shortest cycles are used, and the reduction in computational labor for
these cycles can be significant.

Remark 20.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in
table 20.1 leads to the temptation to associate curvatures to individual cycles, such as
ĉ0001 = t0001− t0t001. Such combinations tend to be numerically small (see, for example,
ref. [20.3], table 1). However, splitting ˆcn into individual cycle curvatures is not possible
in general [20.12]; the first example of such ambiguity in thebinary cycle expansion is
given by thet100101, t1001100↔ 1 symmetric pair of 6-cycles; the countertermt001t011 in
table 20.1 is shared by these two cycles.

Remark 20.5 Escape rates. A lucid introduction to escape from repellers is given by
Kadanoff and Tang [22.10]. For a review of transient chaos see refs. [22.11, 22.13]. The
ζ–function formulation is given by Ruelle [22.14] and W. Parry and M. Pollicott [22.15]
and discussed in ref. [22.16].PC Aug 28, 2008: Altmann and Tel [22.17] give a detailed
study of escape rates, with citations to more recent literature.

Remark 20.6 Stability ordering. The stability ordering was introduced by Dahlqvist
and Russberg [20.13] in a study of chaotic dynamics for the (x2y2)1/a potential. The
presentation here runs along the lines of Dettmann and Morriss [20.14] for the Lorentz
gas, which is hyperbolic but with highly pruned symbolic dynamics, and Dettmann and
Cvitanović [20.15] for a family of intermittent maps. In the applications discussed in
the above papers, stability ordering yields a considerableimprovement over topological
length ordering. In quantum chaos applications, cycle expansion cancelations are affected
by the phases of pseudo-cycles (their actions), henceperiodor action orderingrather than
stability is frequently employed.

Remark 20.7 Desymmetrized cycle expansions. The 3-disk cycle expansions
(20.35) might be useful for cross-checking purposes, but, as we shall see in chapter 21,
they are not recommended for actual computations, as the factorized zeta functions yield
much better convergence.
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Exercises

20.1. Cycle expansions. Write programs that implement
binarysymbolic dynamics cycle expansions for (a) dyn-
amical zeta functions, (b) spectral determinants. Com-
bined with the cycles computed for a 2-branch repeller
or a 3-disk system they will be useful in the problems
below.

20.2. Escape rate for a 1-dimensional repeller. (continua-
tion of exercise 19.1 - easy, but long) Consider again
the quadratic map (19.31)

f (x) = Ax(1− x)

on the unit interval. In order to be definitive, take ei-
therA = 9/2 or A = 6. Describing the itinerary of any
trajectory by the binary alphabet{0, 1} (’0’ if the iterate
is in the first half of the interval and ’1’ if it is in the
second half), we have a repeller with a complete binary
symbolic dynamics.

(a) Sketch the graph off and determine its two fixed
points0 and1, along with their stabilities.

(b) Sketch the two branches off −1. Determine all
the prime cycles up to topological length 4 using
your calculator and backwards iteration off (see
sect. 13.2.1).

(c) Determine the leading zero of the zeta function
(19.15) using the weightstp = znp/|Λp|, whereΛp

is the stability of thep-cycle.

(d) Show that forA = 9/2 the escape rate of the
repeller is 0.361509. . . using the spectral deter-
minantwith the same cycle weight. If you have
takenA = 6, show instead that the escape rate
is in 0.83149298. . ., as shown in solution 20.2.
Compare the coefficients of the spectral determin-
ant and the zeta function cycle expansions. Which
expansion converges faster?

(Per Rosenqvist)

20.3. Escape rate for the Ulam map. (Medium; repeat of
exercise 13.1) We will try to compute the escape rate for
the Ulam map (11.5)

f (x) = 4x(1− x),

using the method of cycle expansions. The answer
should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show thatΛ0 = 4,Λ1 = −2,Λ01 = −4,Λ001 = −8
andΛ011 = 8.

(b) Show that

Λǫ1...ǫn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

ζ−1 = 1− t0 − t1 − (t01 − t0t1) − · · ·

Note that the convergence as a function of the
truncation cycle length is slow. Try to fix that by
treating theΛ0 = 4 cycle separately. (continued
as exercise 20.12)

20.4. Pinball escape rate, semi-analytical. Estimate the
3-disk pinball escape rate forR : a = 6 by substituting
analytical cycle stabilities and periods (see exercise 13.7
and exercise 13.8) into the appropriate binary cycle ex-
pansion. Compare your result with the numerical esti-
mate exercise 17.3.

20.5. Pinball escape rate, from numerical cycles. Com-
pute the escape rate for the 3-disk pinball withR : a = 6
by substituting the list of numerically computed cycle
stabilities of exercise 13.5 into the binary cycle expan-
sion.

20.6. Pinball resonances in the complex plane. Plot the
logarithm of the absolute value of the dynamical zeta
function and/or the spectral determinant cycle expansion
(20.5) as contour plots in the complexs plane. Do you
find zeros other than the one corresponding to the com-
plex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

20.7. Counting the 3-disk psudocycles. (continuation of
exercise 15.12) Show that the number of terms in the
3-disk pinball curvature expansion (20.34) is given by

∏

p

(

1+ tp

)

=
1− 3z4 − 2z6

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 +
z4(6+ 12z+ 2z2)

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example,c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(20.35).
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20.8. 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (20.2) for the 3-disk pin-
ball, assuming no symmetries between disks, is given
by

1/ζ = (1− z2t12)(1− z2t13)(1− z2t23)

(1− z3t123)(1− z3t132)(1− z4t1213)

(1− z4t1232)(1− z4t1323)(1− z5t12123) · · ·

= 1− z2t12− z2t23 − z2t31 − z3(t123+ t132)

−z4[(t1213− t12t13) + (t1232− t12t23)

+(t1323− t13t23)] (20.34)

−z5[(t12123− t12t123) + · · ·] − · · ·

Show that the symmetrically arranged 3-disk pinball cy-
cle expansion of the Euler product (20.2) (see table 15.5
and figure 9.1) is given by:

1/ζ = (1− z2t12)
3(1− z3t123)

2(1− z4t1213)
3

(1− z5t12123)6(1− z6t121213)6

(1− z6t121323)3 . . . (20.35)

= 1− 3z2 t12 − 2z3 t123− 3z4 (t1213− t212)

−6z5 (t12123− t12t123)

−z6 (6 t121213+ 3 t121323+ t312 − 9 t12t1213− t2123)

−6z7 (t1212123+ t1212313+ t1213123+ t212t123

−3 t12t12123− t123t1213)

−3z8 (2 t12121213+ t12121313+ 2 t12121323

+2 t12123123+ 2 t12123213+ t12132123

+ 3 t212t1213+ t12t
2
123− 6 t12t121213

− 3 t12t121323− 4 t123t12123− t21213) − · · ·

20.9. 4–disk unfactorized dynamical zeta function cycle
expansions. For the symmetrically arranged 4-disk
pinball, the symmetry group is C4v, which is of order 8.
The degenerate cycles can have multiplicities 2, 4 or 8
(see table 15.3). Show that:

1/ζ = (1− z2t12)
4(1− z2t13)

2(1− z3t123)
8

(1− z4t1213)8(1− z4t1214)4(1− z4t1234)2

(1− z4t1243)
4(1− z5t12123)

8(1− z5t12124)
8

(1− z5t12134)8(1− z5t12143)8

(1− z5t12313)8(1− z5t12413)8 · · · . (20.36)

Show that the cycle expansion is given by

1/ζ = 1− z2(4 t12+ 2 t13) − 8z3 t123

−z4(8 t1213+ 4 t1214+ 2 t1234+ 4 t1243

−6 t212− t213 − 8 t12t13)

−8z5(t12123+ t12124+ t12134+ t12143+ t12313

+t12413− 4 t12t123− 2 t13t123)

−4z6(2S8 + S4 + t312 + 3 t212 t13 + t12t
2
13

−8 t12t1213− 4 t12t1214

−2 t12t1234− 4 t12t1243

−4 t13t1213− 2 t13t1214− t13t1234

−2 t13t1243− 7 t2123) − · · ·

where in the coefficient ofz6 ,the abbreviationsS8 and
S4 stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits with multiplicity 4,
respectively; the orbits are listed in table 15.5.

20.10. Escape rate for the R̈ossler flow. (continuation of
exercise 13.10) Try to compute the escape rate for the
Rössler flow (2.17) using the method of cycle expan-
sions. The answer should be zero, as nothing escapes.
Ideally you should already have computed the cycles
and have an approximate grammar, but failing that you
can cheat a bit and peak into exercise 13.10.

20.11. State space volume contraction, recycled. (contin-
uation of exercise 4.3) The plot of instantaneous state
space volume contraction as a function of time in exer-
cise 4.3 (d) illustrates one problem of time-averaging in
chaotic flows - the observable might vary wildly across
each recurrence to a given Poincaré section. Evaluated
on a given short cycle, the average is crisp and arbi-
trarily accurate. Recompute〈∂ · v〉 by means of cycle
expansion, study its convergence. 1/t convergence of
mindless time-averaging is now replaced by exponential
convergence in the cycle length.

20.12. Ulam map is conjugate to the tent map. (con-
tinuation of exercise 20.3, repeat of exercise 6.4 and
exercise 13.2; requires real smarts, unless you look it
up) Explain the magically simple form of cycle stabil-
ities of exercise 20.3 by constructing an explicit smooth
conjugacy (6.1)

gt(y0) = h ◦ f t ◦ h−1(y0)

that conjugates the Ulam map (11.5) into the tent map
(11.4).

20.13. Continuous vs. discrete mean return time. Show
that the expectation value〈a〉 time-averaged over con-
tinuous time flow is related to the corresponding average
〈a〉dscrmeasured in discrete time (e.g. , Poincaré section
returns) by (20.29):

〈a〉dscr= 〈a〉 〈T〉ζ / 〈n〉ζ . (20.37)

(Hint: consider the form of their cycle expansions.) The
mean discrete period〈n〉ζ averaged over cycles, and the
mean continuous time period〈T〉ζ need to be evalu-
ated only once, thereafter one can compute either〈a〉
or 〈a〉dscr, whichever is more convenient.
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