Chapter 20

Cycle expansions

Recycle... It's the Law!
—Poster, New York City Department of Sanitation

amical zeta functions (19.15) are really only a shorthartdtiom - the ze-

ros of the individual factors aneot the zeros of the zeta function, and the
convergence of these objects is far from obvious. Now we gingd meaning to
dynamical zeta functions and spectral determinants byrelipg them asycle
expansionswhich are series representations ordered by increashuiogical cy-
cle length, with products in (19.9), (19.15) expanded asssowerpseudo-cycles
products of weights, of contributing cycles. The zeros of correctly truncated
cycle expansions yield the desired leading eigenvaluegabdfitton operators, and
the expectation values of observables are given by the eyeeging formulas
obtained from the partial derivatives of dynamical zetectioms (or spectral det-
erminants).

THE EuLER PRODUCT representations of spectral determinants (19.9) and dyn-

For reasons of pedagogy in what follows everything is firpl@xed in terms
of dynamical zeta functions: they aid us in developing ‘siveidg’ intuition about
the geometrical meaning of cycle expansions. For actuallzlons, we recom-
mend the spectral determinant cycle expansions of sec&22dhd 20.4.2. While
the shadowing is less transparent, and the weights cdtmulet an iterative nu-
merical algorithm, these expansions use full analyticrimfation about the flow,
and can have better convergence properties than the dyalareta functions. For
example, as we shall show in chapter 23, even when a speeteahtnant (19.6)
is entire and calculations are super-exponentially caamd; cycle expansion of
the corresponding dynamical zeta function (19.25) has tefradius of conver-
gence and captures only the leading eigenvalue, at expalhebnvergent rate.
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CHAPTER 20. CYCLE EXPANSIONS 401

20.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (19.15) evaluate@Zaft by computing
the lengths and Floquet multipliers of the shortest cyclelsis always requires
numerical work, such as searches for periodic solutionsNaaton’s method,;
we shall assume for the purpose of this discussion that theerias is under chapter 13
control, and thatll short cycles up to a given (topological) length have been
found. Examples of the data required for application ofguid orbit formulas
are the lists of cycles given in exercise 13.14 and table.2%&dly, it is not
enough to set a computer to blindly troll for invariant sauas, and blithely feed
those into the formulas that will be given here. The reasa tihis chapter is
numbered 20 and not 6, is that understanding the geomethe afdn—wandering
set is a prerequisite to good estimation of dynamical aesragne has to identify
cycles that belong to a given ergodic component (whose sliendbgnamics and
shadowing is organized by its transition graph), and dis¢he isolated cycles
and equilibria that do not take part in the asymptotic dymramilt is important
not to missany short cycles, as the calculation is as accurate as thteshoycle
dropped - including cycles longer than the shortest omiti@es not improve the
accuracy (more precisely, the calculation improves, blitts® as not to be worth
while).

Given a set of periodic orbits, we can compute their weigh&sd expand the
dynamical zeta function (19.15) as a formal power series,

yi=[]a-t=1- > DUt .ty (20.1)
p

{P1P2... P}

where the prime on the sum indicates that the sum is overstihdt non-repeating
combinations of prime cycles. As we shall frequently usésuons, let us denote
byt, = (—1)"+1tpltIOZ ...tp an element of the set of all distinct products of the
prime cycle weights,. The formal power series (20.1) is now compactly written
as

1Y =1- Z t,. (20.2)

Fork > 1, the signed products are weights opseudo-cycleghey are sequences
of shorter cycles that shadow a cycle with the symbol sequping; . .. px along
the segments, pPo,..., Pk, as in figure 1.12. The symbdl’ denotes the re-
stricted sum, for which any given prime cycfecontributes at most once to a
given pseudo-cycle weighy.

The pseudo-cycle weight, i.e., the product of weights (@PdE prime cycles
comprising the pseudo-cycle,

t, = (—1)'<+1m eHhSTr Zn | (20.3)
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CHAPTER 20. CYCLE EXPANSIONS 402

depends on the pseudo-cycle integrated observghlihe periodT,, the stability
Ax, remark 5.1

Aﬂ AplAPZApk’ T”:Tpl++Tpk

and, when available, the topological length

20.1.1 Curvature expansions

The simplest example is the pseudo-cycle sum for a systeonilded by a com-
plete binary symbolic dynamics. In this case the Euler pcodi9.15) is given

by

1/ = (1-1o)(1—t1)(1 - to1)(1 — toor)(1 — to11) (20.5)
X (1 = tooo) (1 - too11)(1 — to110)(1 — toooon (1 — tooo11)
X (1 = too100)(1 — too112)(1 — to101)(1 — to1111) - - -

(see table 15.1), and the first few terms of the expansio2)2ddered by increas-
ing total pseudo-cycle length are:

1/¢ = 1-tg—1ty—1to1—too1— to11 — tooo1 — toor1 — tor11—- ..
+ foty + tolos + to1ts + totooa + toto11 + fooats + to1als
—totoatr — ... (206)

We refer to such series representation of a dynamical zetifun or a spectral
determinant, expanded as a sum over pseudo-cycles, anearole increasing
cycle length and instability, as@cle expansion

The next step is the key step: regroup the terms into the dortfummdamental
contributionst; and the decreasingurvature correctionscy, eachc, split into
prime cyclesp of length n,=n grouped together with pseudo-cycles whose full
itineraries build up the itinerary gb. For the binary case this regrouping is given

by

1/¢

1-1to—t1 —[(tor — t1to)] — [(too1 — to1to) + (tor1 — tost1)]
—[(tooo1 — totoo) + (tor11 — to11ta)

+(too11 — tooits — totor1 + totoaty)] — . ..

=1—Zu—2q. (20.7)
f n
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CHAPTER 20. CYCLE EXPANSIONS 403

All terms in this expansion up to lengtl = 6 are given in table 20.1. We refer to
such regrouped series asrvature expansionsecause the shadowed combina-
tions [ - -] vanish identically for piecewise-linear maps with nicetjieons, such
as the ‘full tent map’ of figure 16.3.

This separation into ‘fundamental’ and ‘curvature’ patycle expansions
is possibleonly for dynamical systems whose symbolic dynamics has finitmgra
mar. The fundamental cycldg, t; have no shorter approximations; they are the
“building blocks” of the dynamics in the sense that all longebits can be approx-
imately pieced together from them. The fundamental part@fcée expansion is
given by the sum of the products of all non-intersecting foopthe associated
transition graph, discussed in chapter 14. The terms gobumplerackets |- -] are section 15.3
the curvature corrections; the terms grouped in parershesgare combinations section 20.5
of longer cycles and corresponding sequences of “shadéwseudo-cycles, as
in figure 1.12. If all orbits are weighted equalliy (= Z'*), such combinations
cancel exactly, and the dynamical zeta function reducekeddpological poly-
nomial (15.27). If the flow is continuous and smooth, orbitsimilar symbolic
dynamics will traverse the same neighborhoods and will sawdar weights, and
the weights in such combinations will almost cancel. Thhtyf cycle expan-
sions of dynamical zeta functions and spectral determsnamtcontrast to naive
averages over periodic orbits such as the trace formulasistisd in sect. 22.4,
lies precisely in this organization into nearly cancelirggnbinations: cycle ex-
pansions are dominated by short cycles, with longer cydléagyexponentially
decaying corrections.

More often than not, good symbolic dynamics for a given flowither not
available, or its grammar is not finite, or the convergenceyaie expansions
is afected by non-hyperbolic regions of state space. In thosesdagncations
such as thestability cutgf of sect. 20.6 and sect. 24.3.4 might be helpful. The
idea is to truncate the cycle expansion by including onlypgbeudo-cycles such
that|Ap, - - Ap] < Amax With the cutdf Amax equal to or greater than the most
unstableA in the data set.

In what follows, we shall introduce two cycle averaging foitas, one based
on dynamical zeta functions and the other on spectral detants. (Frequently
used, but inferior ‘level sums’ shall be discussed in sez42

20.2 Construction of cycle expansions

Due to the lack of factorization of the determinant in thealamator of the full
pseudo-cycle weight in (18.23),

det(1 - Mp,p,) # det(1— My, ) det(1 - Mp,) ,

the cycle expansions for the spectral determinant (199%amewhat less trans-
parent than is the case for the dynamical zeta functions, es@agtpone their

recycle - 19nov2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 20. CYCLE EXPANSIONS 404

Table 20.1: The binary curvature expansion (20.7) up to length 6, listexich a way that
the sum of terms along thath horizontal line is the curvatuig associated with a prime
cycle p, or a combination of prime cycles such as thgi01+ ti00110pAalr.

- tO

- tl

- 110 + {1l

-T100 + T10l0

-tion + tioly

- T1000 + 10000

-t1000  +ti00l2 + t101fo - tatioto

- ti011 + t101t1

-Ti0000  + T100dlo

-t10001  +ticoffo  +tioodts - folzoots

-ti0010  + t1oot10

-ti0101  + tioatio

-ti0011  +lipido  +tioits - fotaoalz

-ti0121 +tioaals

- T100000 + l1000d0

-t100001 + tio00oito + tioood1 - totiooots

-ti00010 +tio01do + tioootio - totiootio

-t100011 +ti001fo  + tioooitr - fotzooits

-t100101 - tioo110 +ticoid1r  + tr011d0
+ tioliop1  + tzoot101 - toliotio1 - tatiotioo

-t101120 +tio1adr  + tioratio - tatioatio

-t100111  +tioo1fs  +tip11ato - fotzoidts

-t101121  + tip121a

evaluation to sect. 20.2.2. Sect. 20.2.1 is a pedagogicahwa In actual calcu-
lations, implementing the spectral determinant cycle exjumns of sect. 20.2.2 is
recommended. Correct objects are spectral determinardsasausing the correct
object costs exactly the same as using the approximatidmgsettle for less?

20.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluabederically by first
computing the weights, = tp(3, s) of all prime cyclesp of topological length
np < N, for given fixeds ands. Denote by the subscript)(theith prime cycle
computed, ordered by the topological lengify < ni.1). The dynamical zeta

function 1/{y truncated tan, < N cycles is computed recursively, by multiplying
1/&4) = 1/¢i-1l1 - 1201, (20.8)

and truncating the expansion at each step to a finite polyalamz”, n < N. The
result is theNth order polynomial approximation

N
Yin=1-) 2", (20.9)
n=1

In other words, a cycle expansion is a Taylor expansion irdtiremy variablez,
where each term in the sum is raised to the topological cerigth. If both the
number of cycles and their individual weights grow not fasit@n exponentially
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CHAPTER 20. CYCLE EXPANSIONS 405

with the cycle length, and we multiply the weight of each eygby a factorz™,
the cycle expansion converges fofistiently small|Z. If the symbolic dynamics
grammar is finite, the truncation cutthfhas to be larger than the length of longest
cycle in the transition graph (15.15), for the salubrioffec of shadowing cance-
lations to kick in. If that is the case, further increasesliyield the exponentially
decreasing correctiorg in (20.7).

If the dynamics is given by an iterated mapping, the leadiexgp of (20.9)
as a function ot yields the leading eigenvalue of the appropriate evolutiper-
ator. For continuous time flowg,is a dummy variable that we set zo= 1, and
the leading eigenvalue of the evolution operator is giverthgyleading zero of
1/¢(s,B(9)) as function ofs.

20.2.2 Evaluation of traces and spectral determinants

We commence the cycle expansion evaluation of a spectratrdetant by com-
puting the trace formula (18.10) or (18.23). The weight afner cyclep repeated
r times is

B-A n
to(zB.r) = & (discrete time) (20.10)
det(1 - M)
(B-Ap—sTp)
W(sA) = —— " (continuous time) (20.11)
det(1 - mj)

For discrete timethe trace formula (18.10) truncated to all prime cygeand
their repeats such thanpr < N,

= ann N Cn = tan N (2012)

is computed as a polynomial rby adding a cycle at the time:

nir<N

tr

zL 2L
= fr— _ y ‘
1—15’0) rl—zL‘(i_l) + g Y AT

r=1

Forcontinuous timgwe assume that the method of Poincaré sections assigms eac
cycle a topological length,. Than the trace formula (18.23) is also organized as
a polynomial

= Y G2, (20.13)
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CHAPTER 20. CYCLE EXPANSIONS 406

computed as:

nir<N

+To D tplspnz?

r=1

1‘ 1
tr

- r—|
S— Al S—Al-1)

The periodic orbit data set (20.4) consists of the list ofdpele periodsTp, the
cycle Floquet multipliersAp 1, Ap2, ..., Apd, and the cycle averages of the ob-
servableA, for all prime cyclesp such than, < N. The codicient ofz™" is then
evaluated numerically for the given parameter valykes)( Always compute the
leading eigenvalue of the evolution operator first, i.es, éscape ratg = —5, in
order to use it in calculation of averages of sect. 20.4 asighive’T® in (20.12).
Now that we have an expansion for the trace formula (18.9)mm\eer series, we
compute theNth order approximation to the spectral determinant (19.3),

N
det(1-z0)ly =1- > QnZ', Q= nth cumulant (20.14)
n=1

as follows. The logarithmic derivative relation (19.4) g

2L d
(tr . ZL) det(1-z£) = —zd—zdet (1-zL)

(C1z+CoZZ + - )1 - Quz— Q7 — ) = Quz+ 2Q7 + 3Q3Z - --

so thenth order term of the spectral determinant cycle (or in thie¢déhe cumu-
lant) expansion is given recursively by the convolutiorcérdormula expansion
codticients

Q=3 (Cr-CraQi-CiQus).  Qi=Ci. (20.15)

Given the trace formula (20.12) truncatedz, we now also have the spectral
determinant truncated @'

The same program can also be reused to compute the dynamtiadlinction
cycle expansion (20.9), by replacirg (1— A[i)’ j) in (20.12) by the product ofsection 19.3
expanding eigenvaluesj = [leAg)e-

A few points concerning dlierent cycle averaging formulas:

e The dynamical zeta functions is an approximation to spedgterminant
that yields only the leading eigenvalue of the evolutionrafi. The cycle
weights depend only on the product of expandifig Floquet multipliers,
so signs do no matter. For hyperbolic flows they converge rexpibally
with increasing cycle lengths.
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Table 20.2: The 3-disk repeller escape rates computed from cycle eigrassf the spec-
tral determinant (19.6) and the dynamical zeta functionl&p as functions of the max-
imal cycle lengthN. The disk-disk center separation to disk radius ratiB:& and the
det(s — A) is an estimate of the classical escape rate computed frensghactral det-
erminant cycle expansion in the fundamental domain. Faeladisk-disk separations,
the dynamics is more uniform, as illustrated by the fasteweogence. Convergence of
spectral determinant det¢ A) is super-exponential, see chapter 23. For comparison, the
1/£(s) column lists estimates from the fundamental domain dyoahaieta function cycle
expansion (20.7), and the J(s)3_gisk column lists estimates from the full 3-disk cycle
expansion (20.35). The convergence of the fundamental mhoalyaamical zeta function
is significantly slower than the convergence of the corredpay spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functias still poorer convergence.
(P.E. Rosenqvist.)

Ra

2

dets - A) 1/4(s) 1/£(9)3-disk
0.39 0.407
0.4105 0.41028 0.435
0.410338 0.410336  0.4049
0.4103384074 0.4103383 0.40945
0.4103384077696 0.4103384 0.410367
0.410338407769346482 0.4103383 0.410338
0.4103384077693464892 0.4103396
0.410338407769346489338468
0.4103384077693464893384613074
0.4103384077693464893384613078192
041
0.72
0.675
0.67797
0.677921
0.6779227
0.6779226894
0.6779226896002
0.677922689599532
0.67792268959953606

=Y
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CHAPTER 20. CYCLE EXPANSIONS 408

e spectral determinants weights in (19.3) contajifiLl + A;| factors, so for
them signs of Floquet multipliera; do matter. With finite grammar the
leading eigenvalue converges super-exponentially inecharigth.

Note that while the dynamical zeta functions weights usg treé expand-
ing Floquet multipliers/A¢|, for spectral determinants the weights are of
form|1- AEI, both expanding and contracting directions contribute, tae
signs of multipliers do matter. That's why ChaosBook evdrgve tracks
multipliers Aj, rather than Floguet exponentg. A’'s belong to equilibria,
periodic orbits require multipliers. That's the way cookieimbles. For
very high-dimensional flows (such as unstable periodictemia of Navier-
Stokes equations), usually only a subset of the most umstdbast con-
tracting Floguet multipliers is known. As long as the codtireg Floquet
multipliers omitted from the weights in (20.12) ardfstiently strongly con-
tracting, the errors introduced by replacemjdnt AG| — 1 for such eigen-
values should be negligible.

e The least enlightened are the ‘level sum’ cycle averagimmiédas. There
iS no point in using them, except that they have to be mentiofieere in
sect. 22.4), as there is voluminous literature that uses.the

e Other formulas published in physics literature are likelyoé wrong.

If the set of computed periodic orbits is incomplete, andrtRéoquet mul-
tipliers inaccurate, distinctions betweerffdrent cycle averaging formulas are
academic, as there are noffstiently many cycles to start worrying about what
expansion converges faster.

20.3 Periodic orbit averaging

The first cycle expansion calculation should always be therdenation of the

leading eigenvalue of the evolution operator, calculatedoflows. After the

prime cycles and the pseudo-cycles have been grouped insetsuof equal topo-

logical length, the dummy variable can be set equat to 1. Withz = 1, the
expansion (20.14) constitutes the cycle expansion (196}he spectral deter-

minant deté — A) . We varysin cycle weights, and determingth eigenvalue

S, (17.20) by findings = s, for which (20.14) vanishes. As an example, the
convergence of a leading eigenvalue for a nice hyperbo§tesy is illustrated in

table 20.2 by the list of pinball escape ratess —s estimates computed from
truncations of (20.7) and (20.14) tofi@rent maximal cycle lengths. chapter 23

The pleasant surprise, to be explained in chapter 23, isaifkatcan prove
that the cofficients in these cycle expansions decay exponentially or faster,
because of the analyticity of det{ A) or 1/(s), for svalues well beyond those
for which the corresponding trace formula (18.23) diverges
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Figure 20.1: Example scans in the complex
plane: contour plots of the logarithm of the ab-
solute values of (left) &(s), (right) spectral deter-
minant det 6—A) for the 3-disk system, separation
R : a = 6. TheA; subspace is evaluated numeri-
cally. The eigenvalues of the evolution operafor
are given by the centers of elliptic neighborhood:
of the rapidly narrowing rings. While the dynam-
ical zeta function is analytic on the Is®> -1 half-
plane, the spectral determinant is entire and revea
further families of zeros. (P.E. Rosenqvist)

409
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20.3.1 Newton algorithm for determining the evolution opeator eigen-

values

J Cycle expansions of spectral determinants can be used tputera set
of leading eigenvalues of the evolution operator. A corsenivay to search for
these is by plotting either the absolute magnitudielén(s — A)| or the phase of
spectral determinants and dynamical zeta functions agifunscof the complex
variables. The eye is guided to the zeros of spectral determinants amahaical
zeta functions by means of compleplane contour plots, with €ferent intervals
of the absolute value of the function under investigatiosicagd diferent col-
ors; zeros emerge as centers of elliptic neighborhoodspadlyachanging colors.
Detailed scans of the whole area of the compgtane under investigation and
searches for the zeros of spectral determinants, figure B&/&al complicated
patterns of resonances even for something as simple asdis& §ame of pinball.
With a good starting guess (such as the location of a zeroestgg by the com-
plex sscan of figure 20.1), a zerg4(s) = 0 can now be determined by standard
numerical methods, such as the iterative Newton algorith®y4), with themth

Newton estimate given by

_ PRV
st = 5o (2l M)

(20.16)

The denominato(T), is required for Newton iteration and is given by cycle ex-
pansion (20.25). We need to evaluate it anyhow s is needed for the cycle

averaging formulas.

Our next task will be to compute long-time averages of ote@es. Three

situations arise, two of them equal in practice:

(i) The system is bounded, and we have all cycles up to sonuoéfcalways
start by testing the cycle expansion sum rules of sect. 20.3.

(i) The system is unbounded, and averages have to be cochpue a repeller
whose natural measure is obtained by balancing local iitisgalvith the

global escape rate = —s, as in sect. 17.3.
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CHAPTER 20. CYCLE EXPANSIONS 410

(iii) The system is bounded, but we only have a repelling sasisting of a sub-
set of unstable cycles embedded into the bounded stramgetatt Best one
can do is to treat this as an open system, case (iii). Thajrasaistationary
natural measure to neighborhoods of the solutions usedipthkinstabili-
ties balanced by a weight that includes escape ratey&xp(Whether use
of this measure improves averages as one increases thigystakloft de-
pends on whether the longer cycles explore qualitativeffedint regions
of state space not visited by the shorter (fundamentallesydr only revisit
already known regions (curvature corrections).

20.3.2 Flow conservation sum rules

If a dynamical system is bounded, so that all trajectoriesaia confined for all
times, the escape rate (22.8) vanishes —sy = 0, and the leading eigenvalue of
the Perron-Frobenius operator (16.10) (evolution openaith 8 = 0) is simply
exp(ty) = 1. Conservation of material flow thus implies that for bouhélews
cycle expansions of dynamical zeta functions and specttrichinants satisfy
exactflow conservatiorsum rules:

( 1)
1+Z IA T Ap] =0

1- Z Qn(0,0)= 0 (20.17)
n=1

1/£(0,0)

F(0,0)

obtained by setting = 0in (20.18), (20.19) with cycle weightg = e‘STp/|Ap| —
1/IApl . These sum rules depend neither on the cycle pefiiga®r on the observ-
ablea(x) under investigation, but only on the cycle stabilitieg:, Ap2, - - -, Apg.
Their significance is purely geometric; they are a measuteowf well periodic
orbits tessellate state space, as in figure 1.11. Consanvaftimaterial flow pro-
vides a first and very useful test of the quality of finite cylelegth truncations and
is something that you should always check when construetingcle expansion
for a bounded flow.

20.4 Cycle formulas for dynamical averages

The eigenvalue conditions for the dynamical zeta functRihZ) and the spectral
determinant (20.14),

0 = 1-2’@,, t; = t:(8, S(B)) (20.18)
0 = 1->Qu,  Qn=Qu(sB), (20.19)

n=1
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BA

F(B.s())=0 curve

Figure 20.2: The eigenvalue condition is satisfied on
the curveF = 0 on the B, s) plane. The expectation

value of the observable (17.12) is given by the slope of dS \
the curve. aB -

\.

are implicit equations for an eigenvalse= s(8) of the form 0= F(8, s(8)). The
eigenvalues = s(B) as a function of3 is sketched in figure 20.2; this condition
is satisfied on the curvé = 0. The cycle averaging formulas for the slope and
curvature ofg(8) are obtained as in (17.12) by taking derivatives of theraigkie
condition. Evaluated along = 0, by the chain rule the first derivative yields

d
0 = @F(ﬂ,s(ﬂ))
oF ds oF ds oF | oF
_ OF dsoF ds_ _oF joF 20.20
o8 9B asLs@ — @B oplos’ (20.20)
and the second derivative B3, S(8)) = 0 yields
2 2 2 2 2
Ps_ [FF dsPF _(ds) | joF 0021
a2~ |9 " “dpapos  \ag) o= |! s
Denoting
oF oF
W = -2 o M=
- OB . s=s(p) P 9slpssp)
) o%F
(A=), = -5 : (20.22)
B lp.s=s(p)

respectively, and the mean cycle expectation valuA,adhe mean cycle period,
and the second derivative &f computed for- (8, s(8)) = 0, we obtain the cycle
averaging formulas for the expectation and variance of bsevable (17.12):

L @
@ = (20.23)
(@-@P) = = (A-0P), . (20.24)

These formulas are the central result of periodic orbit the@e now show that
for each choice of the functioR (B, ) in (20.2), (20.14), and (22.15), the above
quantities have explicit cycle expansions.
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CHAPTER 20. CYCLE EXPANSIONS 412
20.4.1 Dynamical zeta function cycle averaging formulas

For the dynamical zeta function condition (20.18), the eyaleraging formulas
(20.20), (20.24) require one to evaluate derivatives ofatlyical zeta functions at
a given eigenvalue. Substituting the cycle expansion jZ6rzhe dynamical zeta
function we obtain

a1 ,
(A, = % D7 Adty (20.25)

8 1 4 a 1 ’
Mg = g7 = 2, Tabes (ei= 2% = ) ek,

where the subscript it - ), stands for the dynamical zeta function average over
prime cyclesA,, T,, andn, given by (20.3) are evaluated on pseudo-cycles (20.4),
and pseudo-cycle weights = t,(z 8, S(8)) are evaluated at the eigenvalg@).

In most applicationg = 0, ands(B) of interest is typically the leading eigenvalue
So = S(0) of the evolution generator.

For bounded flows the leading eigenvalue (the escape rateshes s(0) = 0,
the exponenBA,, — sT, in (20.3) vanishes, so the cycle expansions take a simple
form

Ap1+Ap2"'+Apk

’
(A= ) (-1t : (20.26)
‘ Zn: |Ap, - Apl
where analogous formulas hold f6F),, (n),.
Example 20.1 Cycle expansion for the mean cycle period: For example, for the
complete binary symbolic dynamics the mean cycle period (T), is given by section 1.5.4
To T Tor To+T1
My = —+—+(—— ) 20.27
¢ Aol 1A1l " \lAoil oAl (20.27)
( Toor  Toi+ To) N ( Tour  Toi+ Tl) N
[Acoal  |Ao1Adol Aol |AoaAal ) T

Note that the cycle expansions for averages are groupedhiateame shad-
owing combinations as the dynamical zeta function cycleaagn (20.7), with
nearby pseudo-cycles nearly canceling each other.

The cycle averaging formulas for the expectation of obd#es) follow by
substitution into (20.24). Assuming zero mean di@t = 0, the cycle expansion
(20.14) for the varianc§(A - (A))2>( is given by

, ) A ..
<A2>§ — Z (_1)k 1 |Ap1 — .Apkl . (2028)
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20.4.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a p&tlgisimple structure,
with the shadowing apparent already by a term-by-term ictspe of table 20.2.
For “nice” hyperbolic systems, shadowing ensures expdalaztnvergence of thesection 23.5
dynamical zeta function cycle expansions. This, howegenot the best achiev-
able convergence. As will be explained in chapter 23, foe higperbolic systems
the spectral determinant constructed from the same cytébdse is entire, and
its cycle expansion converges faster than exponentialie fastest convergence
is attained by the spectral determinant cycle expansiorl@0and its deriva-
tives. In this case th&/ds, d/9B derivatives are computed recursively, by taking
derivatives of the spectral determinant cycle expansiaonritmtions (20.12) and
(20.15).

The cycle averaging formulas are exact, and highly converfp nice hy-
perbolic dynamical systems. An example of their utility e tcycle expansion
formula for the Lyapunov exponent of example 20.2. Furthpgliaations of cy-
cle expansions will be discussed in chapter 22.

20.4.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation vatrga flow in con-

tinuous time, and sometimes it might be easier to computedisicrete time, from

a Poincaré return map. Return times (3.1) might vary wjldhd it is not at all

clear that the continuous and discrete time averages atedgh any simple way.

As we shall now show, the relationship turns out to be botaeidy simple, and

totally general. exercise 20.13

The mean cycle periodT), fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or tregavast return time.
For example, if we have evaluated a billiard expectatiouegh) in terms of
continuous time, and would like to also have the correspundiveragea)qscr
measured in discrete time, given by the number of reflectashbilliard walls,
the two averages are related by

(@dscr = (@ (T)y /()¢ , (20.29)

where(n), the average of the number of bounecgsalong the cyclep is given by
is (20.25).

Example 20.2 Cycle expansion formula for Lyapunov exponents: In sect. 17.4
we defined the Lyapunov exponent for a 1-dimensional map, relating it to the leading
eigenvalue of an evolution operator, and promised to evaluate it. Now we are finally in
position to deliver on our promise.
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The cycle averaging formula (20.26) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

, log|Ap, | + -+ log|A
AziZ(—l)"” 91| 9lAnd (20.30)
(n), |Apy - Apyl

For a repeller, the 1/|Ap| weights are replaced by (22.10), the normalized measure
weights exp(yny)/IAl, where vy is the escape rate.

For 2-dimensional Hamiltonian flows such as our game of pirfbae exam-
ple 19.3), there is only one expanding eigenvalue and (2@gplies as written.
However, in dimensions higher than one, a correct cal@araif Lyapunov expo-
nents requires a bit of sophistication.

20.5 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 14.6 (slai compact encod-
ing of the transition matrix for a given subshift. It is a spamatrix, and the
associated determinant (15.20) can be written by inspecttas the sum of all
possible partitions of the graph into products of non-seeting loops, with each
loop carrying a minus sign:

det(1-T) = 1 —to — too11 — tooo1 — tooo11 + totoo11 + too11tooor (20.31)

The simplest application of this determinant is the evabmaof the topological
entropy; if we set, = z", wheren,, is the length of thep-cycle, the determinant
reduces to the topological polynomial (15.21).

The determinant (20.31) is exact for the finite graph figure {d), as well
as for the associated finite-dimensional transfer opem@t@xample 17.5. For
the associated (infinite dimensional) evolution operatads, the beginning of the
cycle expansion of the corresponding dynamical zeta fancti

1/¢ = 1-to—too11— tooo1+ toooitoo11
—(t00011— totoo11+ - - - CUI’V&tUI’ES). . (2032)

The cycled, 0001 andd011 are théundamentatycles introduced in (20.7); they
are not shadowed by any combinations of shorter cycles. tAirocycles appear
together with their shadows (for example, tiggy11 — totoo11 COMbination, see
figure 1.12) and yield exponentially small corrections fgpérbolic systems. For
cycle counting purposes, botk, and the pseudo-cycle combinatitny = tatp In
(20.2) have the same weight*™, so all curvature combinatiorig, — taty vanish
exactly, and the topological polynomial (15.27fers a quick way of checking
the fundamental part of a cycle expansion.

recycle - 19nov2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 20. CYCLE EXPANSIONS 415

The splitting of cycles into the fundamental cycles and thevature correc-
tions depends on balancing long cydgsagainst their pseudo-trajectory shadows
tatp. If the ab cycle or either of the shadov b do not to exist, such curvature
cancelation is unbalanced.

The most important lesson of the pruning of the cycle exanssis that pro-
hibition of a finite subsequence imbalances the head of & agbansion and
increases the number of the fundamental cycles in (20.7hcéléhe pruned ex-
pansions are expected to start converging afigr all fundamental cycles have
been incorporated - in the last example, the cyélel), 10100,1011100. With-
out cycle expansions, no such crisp and clear cut definifitineofundamental set
of scales is available.

Because topological zeta functions reduce to polynomaalfiriite grammars,
only a few fundamental cycles exist and long cycles can begd into curvature
combinations. For example, the fundamental cycles in ese@.6 are the three
2-cycles that bounce back and forth between two disks anthih@&-cycles that
visit every disk. Of all cycles, the 2-cycles have the snsalldoquet exponent,
and the 3-cycles the largest. It is only after these fundaaheycles have been
included that a cycle expansion is expected to start comgggnoothly, i.e., only
for n larger than the lengths of the fundamental cycles are theatunescy, (in
expansion (20.7)), a measure of the deviations betweenddnts and their short
cycle approximations, expected to fait capidly withn.

20.6 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins
(C.P. Dettmann and P. Cvitanovit)

We have judiciously deployed the 3-disk pinball, with itsipie grammar, to mo-
tivate the periodic orbit theory. Most dynamical systemimtirest, however, have
infinite grammar, so at any order ma cycle expansion may contain unmatched
terms that do not fit neatly into the almost canceling cumaatorrections. Sim-
ilarly, for the intermittent systems that we shall discusséct. 24.3.4, curvature
corrections are not small in general, so again the cycleresipas may converge
slowly. For such systems, schemes that collect the pseal@otsrms according
to some criterion other than the topology of the flow may cogwdaster than
expansions based on the topological length.

All chaotic systems exhibit some degree of shadowing, armbd ¢runcation
criterion should do its best to respect the shadowing as msgbossible. If a
long cycle is shadowed by two or more shorter cycles and theiiemooth, the
periods and the Floquet exponents will be additive in selmgethe period of the
longer cycle is approximately the sum of the shorter cycléops. Similarly, as
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stability is multiplicative, shadowing is approximatelyeperved by including all
terms with pseudo-cycle stability

|Ap, -+ Ap | < Amax (20.33)

and ignoring any pseudo-cycles that are less stable.

Two such schemes for ordering cycle expansions that appedgly respect
shadowing are truncations by the pseudocycle period andt#idity ordering
that we shall discuss here. In these schemes, a dynamiediuretion or a spec-
tral determinant is expanded. One keeps all terms for witielperiod, action or
stability for a combination of cycles (pseudo-cycles) ssléhan a given cutb

Settings in which stability ordering may be preferable talesing by topo-
logical cycle length are the cases of bad grammatr, of intezndy, and of partial
cycle data sets.

20.6.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of stapace generates the
“optimal” symbolic dynamics. Stability ordering does nefjuire understanding
dynamics in such detail: if you can find the cycles, you canstahbility-ordered
cycle expansions. Stability truncation is thus easier tplément for a generic
dynamical system than the curvature expansions (20.7}dhaon finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a longctmaje for near
recurrences. The long trajectory method for detectingesygbreferentially finds
the least unstable cycles, regardless of their topolodgeajth. Another practical
advantage of the method (in contrast to blind Newton metteadches) is that it
preferentially finds cycles in a given connected ergodic moment of state space,
ignoring isolated cycles or other ergodic regions elsew/estate space.

Why should stability-ordered cycle expansions of a dynairzeta function
converge better than the crude trace formula (22.9), to$=mudsed in sect. 22.2?
The argument has essentially already been laid out in sBd: In truncations
that respect shadowing, most of the pseudo-cycles appesdraitiowing combi-
nations and nearly cancel, while only the relatively smabset &ected by the
increasingly long pruning rules is not shadowed. The estypically of the order
of 1/A, which is smaller by a facta@" than the trace formula (22.9) error, where
his the entropy and is the typical cycle length for cycles of stability.

20.6.2 Smoothing

,
J If most, but not all long cycles in a stability truncation ateadowed by
shorter cycles, we say that the shadowing is partial. Thakiimg of exact shad-
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owing cancellations deserves further comment. Any pastiadowing that may
be present can be (partially) restored by smoothing thelisgatrdered cycle ex-
pansions by replacing the A weight for each term with the pseudo-cycle stability
A = Ap, -+ Ap, by T(A)/A. Here, f(A) decreases monotonically frofi{0) = 1

to f(Amax) = 0. The lack of smoothing means we have a step function.

Atypical “shadowing error” induced by the cuifés due to two pseudo-cycles
of stability A separated byA; the contributions of these pseudo-cycles are of
opposite sign. Ignoring possible weighting factors, thgnitaide of the resulting
term is of order 1A — 1/(A + AA) ~ AA/A2. With smoothing, one obtains an
extra term of the formf’(A)AA/A, which we want to minimize. A reasonable
guess might be to keefd(A)/A constant and as small as possible, so that

f(A) = 1—(L)2

Amax

The results of a stability-ordered expansion (20.33) shailiays be tested
for robustness by varying the ctité\mayx. If this introduces significant variations,
smoothing is probably necessary.

Résum é

A cycle expansiotis a series representation of a dynamical zeta functione tra
formula or a spectral determinant, with products in (19.Xpanded as sums
overpseudo-cyclgsvhich are products of the prime cycle weighis

If a flow is hyperbolic and has the topology of the Smale hdrseqa sub-
shift of finite type), dynamical zeta functions are holontacp(have only poles
in the complexs plane), the spectral determinants are entire, and therspeci
the evolution operator is discrete. The situation is carsidly more reassuring
than what practitioners of quantum chaos fear; there is hsciasa of absolute
convergence’ and no ‘entropy barier’, the exponential ifg@tion of cycles is
no problem, spectral determinants are entire and convergigywehere, and the
topology dictates the choice of cycles to be used in cyclaesijon truncations.

In this case, the basic observation is that the motion indawensional dy-
namical systems is organized around a fewdamentalcycles, with the cycle
expansion of the Euler product

1/§=1—th—zén,
f n

regrouped into dominarfundamentalcontributionst; and decreasingurvature
correctionsc,. The fundamental cycles have no shorter approximations; they
are the ‘building blocks’ of the dynamics in the sense thidbalger orbits can be
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approximately pieced together from them. A typical curvatcontribution tocy
is thedifferenceof a long cycle{ab} and its shadowing approximation by shorter
cycles{a} and{b}, as in figure 1.12:

tap — tatp = tab(:L - tatb/ tab)

Orbits that follow the same symbolic dynamics, suclieds and a ‘pseudo-cycle’
{a}{b}, lie close to each other, have similar weights, and for asirggly long
orbits the curvature corrections falf@apidly. Indeed, for systems that satisfy the
‘axiom A requirements, such as the 3-disk billiard, cutratexpansions converge
very well.

Once a set of the shortest cycles has been found, and thepeyadels, stabili-
ties, and integrated observable have been computed, tleeamaraging formulas
such as (20.25) for the dynamical zeta function

@ = (A /(T

(9 1 4 a l ’
W = =gz = ) A D=5z = ) Tl

yield the expectation value of the observas(g), i.e., the long time average over
the chaotic non—wandering set).

Commentary

Remark 20.1 Pseudocycle expansions. Bowen'’s introduction of shadowingr
pseudo-orbits [1.28] was a significant contribution to S¥isatheory. The expression
‘pseudo-orbits’ seems to have been introduced in Parry atidétt's 1983 paper [20.16].
Following them, M. Berry [20.9] used the expression 'psewodoits’ in his 1986 paper
on Riemann zeta and quantum chaos. Cycle and curvaturesigparf dynamical zeta
functions and spectral determinants were introduced i\ [80.10, 20.2]. Some liter-
ature [19.12] refers to pseudo-orbits as ‘composite Grhatsd to cycle expansions as
‘Dirichlet series’ (see also appendix I.5 and remark 1.1).

Remark 20.2 Cumulant expansion. To statistical mechanicians, curvature expansions
are very reminiscent of cumulant expansions. Indeed, 80slthe standard Plemelj-
Smithies cumulant formula for the Fredholm determinantefvraspect, not reminiscent
of statistical mechanics, is that in cycle expansions &chosdficient is expressed as a
sum over exponentially many cycles.

Remark 20.3 Exponential growth of the number of cycles. Going fromN, ~ N"
periodic points of lengtim to M,, prime cycles reduces the number of computations from
N, to M, ~ N™1/n. The use of discrete symmetries (chapter 21) reduces théeum
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of nth level terms by another factor. While reformulating thetrom trace (18.28) to
cycle expansion (20.7) does not eliminate exponential framvthe number of cycles, in
practice only the shortest cycles are used, and the reduictioomputational labor for
these cycles can be significant.

Remark 20.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in
table 20.1 leads to the temptation to associate curvatarésiividual cycles, such as
€oo01 = tooo1 — totoo1. Such combinations tend to be numerically small (see, fangie,
ref. [20.3], table 1). However, splitting, into individual cycle curvatures is not possible
in general [20.12]; the first example of such ambiguity in ltii@ary cycle expansion is
given by thetioo101 t1001100 <> 1 symmetric pair of 6-cycles; the countertetgwtois in
table 20.1 is shared by these two cycles.

Remark 20.5 Escape rates. A lucid introduction to escape from repellers is given by
Kadandf and Tang [22.10]. For a review of transient chaos see re?s1]2 22.13]. The
/—function formulation is given by Ruelle [22.14] and W. Baand M. Pollicott [22.15]
and discussed in ref. [22.18PC Aug 28, 2008: Altmann and Tel [22.17] give a detailed
study of escape rates, with citations to more recent litieeat

Remark 20.6 Stability ordering.  The stability ordering was introduced by Dahlgvist
and Russberg [20.13] in a study of chaotic dynamics for tfg?f*/2 potential. The
presentation here runs along the lines of Dettmann and Bof2i0.14] for the Lorentz
gas, which is hyperbolic but with highly pruned symbolic dymics, and Dettmann and
Cvitanovit [20.15] for a family of intermittent maps. Indghapplications discussed in
the above papers, stability ordering yields a considerafgovement over topological
length ordering. In quantum chaos applications, cycle egjoam cancelations aréfacted
by the phases of pseudo-cycles (their actions), hpadedor action orderingrather than
stability is frequently employed.

Remark 20.7 Desymmetrized cycle expansions. The 3-disk cycle expansions
(20.35) might be useful for cross-checking purposes, mutya shall see in chapter 21,
they are not recommended for actual computations, as therized zeta functions yield

much better convergence.
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Exercises

20.1.

20.2.

20.3.

Cycle expansions.  Write programs that implement (b) Show that

binary symbolic dynamics cycle expansions for (a) dyn-

amical zeta functions, (b) spectral determinants. Com- Aepey = £2"

bined Wi_th the cycles computed for a 2_-branch repeller and determine a rule for the sign.

or a 3-disk system they will be useful in the problems . ]

below. (c) (hard) Compute the dynamical zeta function for
this system

Escape rate for a 1-dimensional repeller. (continua-
tion of exercise 19.1 - easy, but long) Consider again r=1-1tg -ty — (tog — tots) — - - -
the quadratic map (19.31)

Note that the convergence as a function of the
f(X) = AX(1-x) truncation cycle length is slow. Try to fix that by
treating theAg = 4 cycle separately. (continued

on the unit interval. In order to be definitive, take ei- as exercise 20.12)

therA = 9/2 or A = 6. Describing the itinerary of any
trajectory by the binary alphab, 1} (‘0" if the iterate 0 4. pinball escape rate, semi-analytical.  Estimate the

second half), we have a repeller with a complete binary  analytical cycle stabilities and periods (see exercisé 13.
symbolic dynamics. and exercise 13.8) into the appropriate binary cycle ex-

pansion. Compare your result with the numerical esti-

(a) Sketch the graph df and determine its two fixed mate exercise 17.3.

pointsO and1, along with their stabilities.

(b) Sketch the two branches d¢f!. Determine all 20.5. Pinball escape rate, from numerical cycles. Com-
the prime cycles up to topological length 4 using pute the escape rate for the 3-disk pinball witha = 6
your calculator and backwards iteration ofsee by substituting the list of numerically computed cycle
sect. 13.2.1). stabilities of exercise 13.5 into the binary cycle expan-

(c) Determine the leading zero of the zeta function ~ Sion.
(19.15) using the weighty = Z%/|Ap|, whereA,
is the stability of thep-cycle.

20.6. Pinball resonances in the complex plane. Plot the
logarithm of the absolute value of the dynamical zeta

(d) Show that forA = 9/2 the escape rate of the function andor the spectral determinant cycle expansion
repeller is 0361509... using the spectral deter- (20.5) as contour plots in the complexplane. Do you
minantwith the same cycle weight. If you have find zeros other than the one corresponding to the com-
takenA = 6, show instead that the escape rate  plex one? Do you see evidence for a finite radius of
is in 0.83149298. ., as shown in solution 20.2. convergence for either cycle expansion?

Compare the cd@cients of the spectral determin-

ant and the zeta function cycle expansions. Whic#0.7. Counting the 3-disk psudocycles. (continuation of
expansion converges faster? exercise 15.12) Show that the number of terms in the

3-disk pinball curvature expansion (20.34) is given by
(Per Rosenqvist)

Escape rate for the Ulam map. (Medium; repeat of ]_[ (1 + tp) — 1- 32: - 22
exercise 13.1) We will try to compute the escape rate for p 1-32-22
the Ulam map (11.5)
= 1+ 322 + 223 + w
f(x) = 4x(1 - x), 1-32-228
= 1+432+22+62+127

using the method of cycle expansions. The answer

7
should be zero, as nothing escapes. +207° + 487 + 847 + 1848 + ...

(@) Compute a few of the stabilities for this map. This means that, for example; has a total of 20 terms,
Show thatAg = 4,A1 = -2, A1 = —4, Agor = -8 in agreement with the explicit 3-disk cycle expansion
andA011 = 8. (2035)
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20.8. 3—disk unfactorized zeta cycle expansions. Check

that the curvature expansion (20.2) for the 3-disk pin-
ball, assuming no symmetries between disks, is given

by

(1 - Zt12)(1 - Zt13)(1 - Ztaa)

(1- 2tz (1 - 2tiz)(1 - Zt1219)

(1 - Zt1232)(1 - 2tz (1 - 2Pti2109 -+
1- 2ty — Zyg — Ztar — (trzs + t13)
~ZY(t1213— tazt13) + (tr232— taotes)
+(t1323— t13t23)]

—2[(t12123— taotipg) + -] — -

1/¢

(20.34)

20.10.

Show that the symmetrically arranged 3-disk pinball cy-
cle expansion of the Euler product (20.2) (see table 15.5

and figure 9.1) is given by:

1/¢ = (1- Zt12)°%(1 - Zt129)*(1 - Zt1219)°
(1 - 2t12129°(1 - Pt121219°
(1-Pt121329°. ..

1-3Zt1p— 22 t13— 37 (t1213— t2,)
—62° (t12123— ti2t123)

20.11.

(20.35)

~2° (6t121213+ 3ti21303+ 5, — Ytiotiniz — t4,)

7 2
—62" (t1212123+ t1212313+ t1213103+ 151123
—3t1ot12123— t123t1213)

~32 (2t12121213+ 12121313+ 2t12121323

+2 112123103+ 2112123213+ 12132123
2 2
+ 3t],t1013+ tiot]yg — 6l1ot101013
2
— 3tiot121303— 4tioatio123— tp19) — <+

20.9. 4—disk unfactorized dynamical zeta function cycle
expansions.
pinball, the symmetry group iss which is of order 8.

20.12.

For the symmetrically arranged 4-disk

The degenerate cycles can have multiplicities 2, 4 or 8

(see table 15.3). Show that:

1/¢ (1-Zt)*(1 - Z2ti5)*(1 - Zti2g)°
(1 - Zt1219%(1 - Z't1219*(1 - ZPt1230)?

(1 - Z't1249*(1 - 2t12129°(1 - Pt12129)°

(1 - 2t12139%(1 - Zt12149°

20.13.

(1 - Pt12319%(1 - Zt12419®- - . (20.36)

Show that the cycle expansion is given by

1/¢

1- 22(4 t1o+ 2t13) -87 1123
~Z(8t1213+ 4t1o1a+ 2t1o3a+ Ati2a3

—613, — t75 — 8ty2t13)

—82(t12123+ ti2124+ t1o134+ t1o143+ t12313

+t10413— 4 t1ot123 — 2t13t103)
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—426(2 Sg + 84 + tiz + 3'[%2 13+ t12t%3
—-811ot1013— 41tyot1014
—2110t1034 — 4 t12t1243

—4t13t1213— 2t13t1014 — t13tioas
—2tigtioaz— Tt — -+

where in the cofiicient of 22 ,the abbreviationSg and

S, stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits with multiplicity 4,
respectively; the orbits are listed in table 15.5.

Escape rate for the Rossler flow.  (continuation of
exercise 13.10) Try to compute the escape rate for the
Rossler flow (2.17) using the method of cycle expan-
sions. The answer should be zero, as nothing escapes
Ideally you should already have computed the cycles
and have an approximate grammar, but failing that you
can cheat a bit and peak into exercise 13.10.

State space volume contraction, recycled. (contin-
uation of exercise 4.3) The plot of instantaneous state
space volume contraction as a function of time in exer-
cise 4.3(d) illustrates one problem of time-averaging in
chaotic flows - the observable might vary wildly across
each recurrence to a given Poincaré section. Evaluatec
on a given short cycle, the average is crisp and arbi-
trarily accurate. Recomput@ - v) by means of cycle
expansion, study its convergence/t tonvergence of
mindless time-averaging is now replaced by exponential
convergence in the cycle length.

Ulam map is conjugate to the tent map. (con-
tinuation of exercise 20.3, repeat of exercise 6.4 and
exercise 13.2; requires real smarts, unless you look it
up) Explain the magically simple form of cycle stabil-
ities of exercise 20.3 by constructing an explicit smooth
conjugacy (6.1)

9'(yo) = ho f' o h™X(yo)

that conjugates the Ulam map (11.5) into the tent map
(11.4).

Continuous vs. discrete mean return time.  Show
that the expectation valu@) time-averaged over con-
tinuous time flow is related to the corresponding average
(a)gscrmeasured in discrete time (e.g. , Poincaré section
returns) by (20.29):

<a>dscr: (&) <T>g / <n>g . (20-37)
(Hint: consider the form of their cycle expansions.) The
mean discrete periogh), averaged over cycles, and the
mean continuous time period’), need to be evalu-
ated only once, thereafter one can compute eithgr
or (a)gscr Whichever is more convenient.

ChaosBook.org version14, Dec 31 2012



REFERENCES 422

References

[20.1] P. CvitanovicPhys. Rev. Let61, 2729 (1988).

[20.2] R. Artuso, E. Aurell and P. Cvitanovi¢, “Recyclinfjsirange sets I: Cycle
expansions,Nonlinearity 3, 325 (1990).

[20.3] R. Artuso, E. Aurell and P. Cvitanovi¢, “Recycling sirange sets Il: Ap-
plications,”Nonlinearity 3, 361 (1990).

[20.4] S. Grossmann and S. ThomZeNaturforsch32 g 1353 (1977); reprinted
in ref. [20.5].

[20.5] Universality in ChaosP. Cvitanovi€, ed., (Adam Hilger, Bristol 1989).
[20.6] F. Christiansen, P. Cvitanovi¢ and H.H. RughPhysA 23, L713 (1990).

[20.7] J. Plemelj, “Zur Theorie der Fredholmschen Funldigteichung,”"Monat.
Math. Phys15, 93 (1909).

[20.8] F. Smithies, “The Fredholm theory of integral eqoas,” Duke Math.8,
107 (1941).

[20.9] M.V. Berry, inQuantum Chaos and Statistical Nuclear Physied. T.H.
Seligman and H. Nishiokd,ecture Notes in Physi&63 1 (Springer, Berlin,
1986).

[20.10] P. Cvitanovit, “Invariant measurements of steusgts in terms of cy-
cles,”Phys. Rev. Let61, 2729 (1988).

[20.11] B. Eckhardt and G. RussbeRfys. RevkE 47, 1578 (1993).

[20.12] E. Aurell, ‘Convergence of Dynamical Zeta Functgnl. Stat. Physs8,
967 (1990).

[20.13] P. Dahlgvist and G. Russberg, “Periodic orbit qizmion of bound
chaotic systems,J. Phys.A 24, 4763 (1991); P. Dahlqvisl. Phys.A 27,
763 (1994).

[20.14] C. P. Dettmann and G. P. Morrig¥ys. Rev. LetZ8, 4201 (1997).

[20.15] C. P. Dettmann and P. Cvitanovi¢, “Cycle expansifar intermittent dif-
fusion,” Phys. Rev. (56, 6687 (1997);arXiv:chao-dyn/9708011.

[20.16] W. Parry and M. PollicotAnn. Math.118 573 (1983).

refsRecycle - 17aug99 ChaosBook.org version14, Dec 31 2012



