Chapter 28
Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

His cHAPTER (Which reader can safely skip on the first reading) is aboigteno
how it affects classical dynamics, and the ways it mimics quantumrdyna
ics.

Why - in a monograph on deterministic and quantum chaos t ditssussing
noise? First, in physical settings any dynamics takes @aeénst a noisy back-
ground, and whatever prediction we might have, we have tokciterobustness to
noise. Second, as we show in this chapter, to the leading oramise strength,
the semiclassical Hamilton-Jacobi formalism applies takdie stochastic flows
in toto. As classical noisy dynamics is more intuitive tharagtum dynamics,
understanding féects of noise helps demystify some of the formal machinery of
semiclassical quantization. Surprisingly, symplectiticitire emerges here not
as a deep principle of mechanics, but an artifact of the teadpproximation to
guanturfinoisy dynamics. Third, the variational principle derivestdnturns out
to be a powerful tool for determining periodic orbits, seaptler 29. And, last but
not least, upon some reflection, the whole enterprize ofacépy deterministic
trajectories by deterministic evolution operators, cheptl6 to 20, seems fatally
flowed; if we have given up infinite precision in specifyingtial conditions, why
do we alow ourselves the infinite precision in the specificatf evolution laws,
i.e., define the evolution operator by means of the Dira@datictions(y— f'(x))?

It will be comforting to learn that the deterministic evaart operators survive un-
scathed, as the leading approximation to the noisy oneilintiit of weak noise.

Another key result derived here is the evolution law (28fé5}he covariance
matrix Q, of a linearly evolved Gaussian density,

Qar1 = MaQaM; +Aa.
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To keep things simple we shall describe covariance evalutighe discrete time
dynamics context, but the results apply both to the contisuend discrete time

flows. The most important lesson, however, is that phy&d&twnian difusion

intuition -that the &ect of the noise is to spread out the trajectorp/sis wrong

In nonlinear dynamics the noise is alwadgsal, determined by balancing local
nonlinear dynamics against the memory of the noise past. section 28.5

We start by deriving the continuity equation for purely detimistic, noiseless
flow, and then incorporate noise in stagestugiion equation, Langevin equation,
Fokker-Planck equation, stochastic path integrals, Hamilacobi formulation.

28.1 Deterministic transport

(E.A. Spiegel and P. Cvitanovit)

The large body of accrued wisdom on the subject of flows cdliéd dynamics
is about physical flows of media with continuous densities ti@ other hand, the
flows in state spaces of dynamical systems frequently reeuare abstract tools.
To sharpen our intuition about those, it is helpful to owtlthe more tangible fluid
dynamical vision.

Consider first the simplest property of a fluid flow calle@terial invariant
A material invariantl (x) is a property attached to each pointhat is preserved
by the flow,1(x) = I(f'(x)); for example, at poink(t) = f'(x)) a green particle
(more formally: gpassive scalgris embedded into the fluid. AgX) is invariant,
its total time derivative vanishe$(x) = 0. Written in terms of partial derivatives
this is theconservation equatiofor the material invariant

&l +v-al =0. (28.1)

Let thedensityof representative points h€x,t). The manner in which the flow
redistributed (x) is governed by a partial fierential equation whose form is rel-
atively simple because the representative points arearaiteated nor destroyed.
This conservation property is expressed in the integréistant

[)tfdxpl :—f do fvipl ,
% oV

whereV is an arbitrary volume in the state spakg 9V is its surfacenis its out-
ward normal, and repeated indices are summed over throtigfiba divergence
theorem turns the surface integral into a volume integral,

f 0p)) + i(viph)] dx= 0,
Vv
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whered; is the partial derivative operator with respect¢oSince the integration
is over an arbitrary volume, we conclude that

di(pl) + di(plvi) = 0. (28.2)
The choicel = 1 yields thecontinuity equatiorfor the density:
O + di(pvi) = 0. (28.3)

Here we have used the language of fluid mechanics to easesthadization, but,
as we have seen in our previous derivation of the contingjtyagon (16.25), any
deterministic state space flow satisfies the continuity gguan any dimension.

Why -even though the dynamics is nonlinear- is this equdtiwar? As each
deterministic orbit is distinct and intersects no otheritoro ‘particles’ are cre-
ated or destroyed, they are non-interacting, hence déiscrim terms of linear
evolution operators possible.

28.2 Brownian diffusion

Consider tracer molecules, let us say big, laggardly greelecnles, embedded
in a denser gas of light molecules. Assume that the densityacér moleculep

compared to the background gas density is low, so we canaiegken-green col-
lisions. Each green molecule, jostled by frequent colfisiaith the background
gas, executes its own Brownian motion. The molecules atherecreated nor
destroyed, so their number within an arbitrary voluvhehanges with time only
by the current density; flow through its surfacéV (with fi its outward normal):

51fdxp= —f do 1y ji . (28.4)
\% oV
The divergence theorem turns this into the conservatiorfdaiacer density:

O + 0iji = 0. (28.5)

The tracer density is defined as the average density of a ‘material particle,” av
eraged over a subvolume large enough to contain many greehstdl many
more background) molecules, but small compared to the rsegpic observa-

tional scales. What ig? If the density is constant, on the average as many

molecules leave the material particle volume as they etso ia reasonable phe-
nomenological assumption is that taeeragecurrent densityrfot the individual
particle current densityv; in (28.3)) is driven by the density gradient

. ap
i=-D—. 28.6
ji = D% (286)
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This is theFick law, with the difusion constanD a phenomenological parameter.
Substituting this current into (28.5) yields tbgfusionor heatequation,

9 xt = b2 (28.7)
otV = Pt :

More generally, diusion is described by a space- and time-dependent symmet-

ric diffusion tensorAjj = Aji, with j; = —%Ai,-a,-p, leading to the anisotropic
diffusion equation

) = 571 (8403 p(x ) (288)

For sake of streamlining the argument we have assumed ahatditusion ind
dimensions is homogenous and iso tro pitx) = 2D 1. In practice, the dfusion
tensor is almost always aniso tro pic: for example, physscBrownian ditusion
is a flow in the 6-dimensiondlconfiguration, velocity phase space, with white
noise probability distribution exp{?/2ksT), modeling random force kicks ap-
plied only to the 3 velocity variablea In this case one thinks of filiusion codi-
cientD = kgT/2 as temperature.

28.2.1 Heat kernel

Fourier transforming the heat equation (28.7),

0 . - dk.. i

G0 = DI, p(xe) = [ FrAlkhe, (28.9)
integrating,

_ [dk, jkx-D K2t
p(xt) = f Sk 0)eR Ok

and Fourier transforming back we obtain an exact solutich@heat equation in
terms of an initial Dirac delta density distributiga(x, 0) = 6(X — Xo),

1 _(x-x?

— e , 28.10
(4nD)%2 (28.10)

p(x 1) = Lep(Xt;%0,0) =

in the spirit of the quantum free particle propagation ofts88.2.2. The average
distance covered in timeobeys the dfusion formula

((x- x0)2>' = f dxp(x, t)(x — Xo)% = 2dDt. (28.11)

The classical Einstein formula describes 3-dimensionaWwBian motion; here
the difusion takes place in the dynamical state space of dimeuision
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28.2.2 Random walks

So far we have considered the evolution of the density obtrawlecules. One
can alternatively consider @dimensional random walk of an individual tracer
molecule kicked by a stochastic term,

dx -,
il (28.12)

A way to make sense @f(t) is to first construct the probability distribution for
additive noise£ at short but finite time step&r, with t,,.1 = t, + 67, and the
particle x, = X(t,) at timet,, executing a random walk.;1 = Xn + &(tn) , Wherex

is ad-dimensional state vector, ang; is its jth component at tima. The natural
choice is that probability that the trajectory reachgs is given by a normalized
Gaussian

1

1
V(2r67)ddetA [ 20t

& = Xne1 — Xn, Characterized by zero mean and th#diion tensor (covariance
matrix),

1
Lep(Xns1, thet; Xn, th) = (_Elzfn)] . (28.13)

() =0, (&t €] (t) = 67A] 6, (28.14)

where(- - -) stands for ensemble average over many realizations of tise,rend
the superfix” indicates a transpose. As the time discretizatoris arbitrary,
the difusing cloud of noisy trajectories should be described bysaibution that
keeps its form aér — 0. Indeed, the semigroup property of a Gaussian kernel,

Lep(X X, 17) = deLFp(xt; X, ) Lep(X, U X 17), (28.15)

ensures that the distribution keeps its form under suocesiiffusive steps.
Lep(%,1; %0, 0) describes the fusion at any time, including the integer time in-
crements{t,} = {67, 267,---,ndt,---}, and thus provides a bridge between the
continuous and discrete time formulations of noisy evoluti

Example 28.1 Random walk in one dimension The white noise & = Xni1 — %n
for a 1-dimensional diffusion process is a normally distributed random variable, with

standard normal (i.e., Gaussian) probability distribution function,

(x=x)?
Tapit-tv)|°

Lep(X.t; X, 1)

1
ex|
VArD(t -t P

of mean 0, variance 2D(t-t'), and standard deviation \2D(t — '), uncorrelated in time:

(Xn+1 = Xn) = 0, ((Xm+1 = Xm)(Xne1 = %n)) = 2D 67 Smn. (28.17)
section 28.4
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28.3 Noisy trajectories. Continuoustime

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory hav-
ing substance, while its path integral image exists mainly
in the eye of the beholder.

—L. S. Schulman
(P. Cvitanovi¢ and D. Lippolis)

So far we have considered tracer molecule dynamics whichrislyp Brownian,
with no deterministic “drift.” Consider next d-dimensional deterministic flow
X = V(x) perturbed by a stochastic tegtt),

dx »
o = V09 +€0). (28.18)

where the deterministic velocity fiek(x) is called ‘drift’ in the stochastic litera-
ture, andZ(t) is additive noise, uncorrelated in time. We shall referdoations
of this type ad.angevin equationsThe more general case of a tenagk) which
is a state space position dependent but time independerttecei@ated along the
same lines. In this case the stochastic flow (28.18) is wrdte

dx=v)dt+ () dé(t),  (éném)=16m, A=co'. (28.19)

o(X) is called the ‘diftusion matrix’, and the noise is referred to as ‘multiplicati
Explicit time dependence in(x, t) would take us into world of non-autonomous,
externally driven flows, beyond the comfort zone of ChaodBarg.

As in (28.12), a way to make sense of (28.18) is to first consthe proba-
bility distribution for additive nois& at a short but finite timér. In time 67 the
deterministic trajectory advances W,) 67. Asdt is arbitrary, it is desirable that
the difusing cloud of noisy trajectories is given by a distributitvat keeps its
form asét — 0. This holds if the noise is Brownian, i.e., the probabititat the
trajectory reachegn,1 is given by a normalized Gaussian (28.13),

1 1 1
Lep(Xns1,07; X, 0) = N o —E(g;A—ngn)} . (28.20)

Hereé&, = 6xn — V(Xn) 67, the deviation of the noisy trajectory from the deter-
ministic one, can be viewed either in terms of velocities/(x)} (continuous time
formulation), or finite time map§, — Xni1, %0 — 97 (Xy)} (discrete time formu-
lation),

6% = X1 = Xn = %067, FUT(X0) = Xn = V(%) 6T, (28.21)
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where
{X0, X1, + 5 Xn, -+, X} = {X(0), X(67), - - -, X(n6T), - - -, X()} (28.22)

is a sequence & + 1 pointsx, = X(tn) along the noisy trajectory, separated by
time incrementsr = t/k.

The phenomenological Fick law current (28.6) is now a sumaaf compo-
nents, the material particle deterministic dvifk) and the weak noise term

9p

ji:ViP_DaXi,

~vp- 380300 | (28.23)

with the full, anisotropic and space-dependent versiorcatdd in [--]. Substi-
tuting this j into (28.5) yields thé-okker-Planck equation

o+ oo =D Fp. | = 301 (3y99;ptx) | (28.24)

The left hand sidedop/dt = o + 9 - (ov), is deterministic, with the continuity
equation (28.3) recovered in the weak noise libit— 0. The right hand side
describes the éiusive transport in or out of the material particle volumethié
density is lower than in the immediate neighborhood, thelloarvature is posi-
tive, 9% > 0, and the density grows. Conversely, for negative cureatiffusion
lowers the local density, thus smoothing the variability ofVhere is the density
going globally?

If the system is bound, the probability density vanishéBaantly fast outside
the central regiornp(x,t) — 0 as|x| — oo, and the total probability is conserved

dep(X,'[) =1.

Any initial density p(x,0) is smoothed by dliusion and with time tends to the
natural measure, the invariant density

po(¥) = lim p(x.1), (28.25)

an eigenfunctiom(x,t) = e pg(x) of the time-independent Fokker-Planck equa-
tion

(0vi —D 6% +5,)pa =0, (28.26)

with vanishing eigenvalugy = 0. Provided the noiseless classical flow is hyper-
bolic, in the vanishing noise limit the leading eigenfunatiof the Fokker-Planck
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equation tends to natural measure (16.17) of the corregpgpagterministic flow,
the leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of prdibgbirom the
region under study, the leading eigenvalue is contractng; 0, and the density
of the system tends to zero. In this case the leading eigemglof the time-
independent Fokker-Planck equation (28.26) can be irgtrgrby saying that a
finite density can be maintained by pumping back probabititp the system at
a constant rate = —s. The value ofy for which any initial probability density
converges to a finite stationary equilibrium density isezhltheescape rate In
the noiseless limit this coincides with the determinisscape rate (17.27).

The distribution (28.13) describes how an initial densityarticles concen-
trated in a Dirac delta function a4, spreads in time&r. In the Fokker-Planck
description individual noisy Langevin trajectories (2B.are replaced by the evo-
lution of the density of noisy trajectories. The finite timekiker-Planck evolution
p(xt) = [L'FP o p] (x, 0) of an initial densityp(xo, 0) is obtained by a sequence of
consecutive short-time steps (28.13)

=
Lep(X 1 %0,0) = f[dx] EXP{—M Z[Xm-l - féT(Xn)]z} . (28.27)
n=0

wheret = ké7, and the Gaussian normalization factor in (28.13) is alesbrbto
intermediate integrations by defining

k-1
d
[0 = N—’ﬂ
n=0 "
Nn = (2r61)¥[detA(x,)]Y?  (anisotropic difusion tenson)
= (4Ds7)¥? (isotropic difusion A(x) =2D1). (28.28)

As D — 0, the distribution tends to the noiseless, deterministra®delta func-
tion Perron-Frobenius operator (16.10). The stochastw (&8.18) can now be
understood as the continuous tinge, — O limit, with the velocity noiseg(t) a
Gaussian random variable of zero mean and covariance matrix

(Bm)=0,  (A&WE&))=aijo-1). (28.29)

It is worth noting that the continuous time flow no&g) in (28.18) and (28.29) is

dimensionally a velocity]/[t], asLp(Xn+1, 67; %0, 0) is @ probability density for

velocity &, while the discrete time noisg in (28.13), (28.14) is dimensionally a
length [X], asp(x, t) is a probability density for positior. The important point is

that the same €liusion tenson(x) describes the éliusion both in the configuration
space and the velocity space.
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The continuous time limit of (28.27)r = t/k — 0, defines formally the
Fokker-Planck evolution operator

t
Lep(X,t; Xo, 0):f[dx] exp{féﬁ[X(T)fv(X(T))]ZdT} (28.30)

as a stochastic path (or Wiener) integral for a noisy flow, tiedassociated con-
tinuous time Fokker-Planck (or forward Kolmogorov) eqaat{28.24) describes
the time evolution of a density of noisy trajectories. Weéawroduced noise
phenomenologically, and used the weak noise assumptioataming only the
first derivative ofp in formulating the Fick law (28.6) and including noise addi-
tively in (28.23). Thest — 0 limit and the proper definition of(z) are delicate
issues of no import for the applications studied here. Athdlory of stochastic
ODEs is much subtler, but this will do for our purposes.

The exponent

~ a2 [t = PO =~ 25 [0 ~ )P (2831)
can be interpreted as a cost function which penalizes deniaf the noisy trajec-
tory 6x from its deterministic prediction sz, or, in the continuous time limit, the
deviation of the noisy trajectory tangextrom the deterministic velocity fielsl.
Its minimization is one of the most important tools of theioytl control theory,
with velocity X(r) along a trial path varied with aim of minimizing its distanto
the targew/(x(7)).

28.4 Noisy maps. Discretetime

(P. Cvitanovit and D. Lippolis)

For pedagogical reasons we shall often find it convenienbisider a noisylis-
crete timedynamical system

Xne1 = F(Xn) +én, (28.32)

wherex is ad-dimensional state vector, ang|; is its jth component at time.

In the Fokker-Planck description individual noisy traggés are replaced by the
evolution of the density of noisy trajectories, with the= xn.1— f(X,) probability
distribution of zero mean andftlision tensor, and the time increment in (28.14)
settost = 1,

(6n)=0.  (€niém;) = 2 (%) Srm. (28.33)
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As we shall show, in nonlinear dynamics the noiseeserisotropic angor ho-
mogeneous. Even if the infinitesimal time step noise (28ct¥priance matrix
in (28.19) were independent of the state space poskjdhis cannot be true of
A(X) for the discrete time flow (28.32) obtained by the Poins®éion reduction
method of sect. 3.1, as the return times (3.1) and the no@eradated along the
corresponding trajectory segments depend on the startimgdté section point.
Indeed, as we shall argue in sect. 28.5, in nonlinear dyrsaficoise is local
As long as the noise distribution &tis autonomous (not explicitly dependent on
time) the stochastic flow (28.32) can be writtenx@s; = X, + o(Xn) &n, Where

A = oo, ando(x) is the multiplicative noise diusion matrix defined in (28.19).

The action of discrete one-time stBpkker-Planck evolution operatan the
density distributiorp at timek,

pea®) = [Leppd) = f dx Lep(y, X))

1 1 —
Lepl) = g @I, (28.34)

is centered on the deterministic stéfx) and smeared out fiusively by noise.
Were ditusion uniform and isotropicA(x) = 2D 1, the Fokker-Planck evolution
operator would be proportional to e((p{y - f(x)}z/zA), i.e., the penalty for stray-
ing from the deterministic path is just a quadratic errorction. Thekth iterate
of L‘;P(xk; Xo) = Lgp(Xt; X0, 0) is ad-dimensional path integral over tike- 1
intermediate noisy trajectory points,

1

LK% %0) = f (1] &3 Enloa= 10T iy s 1) (28.35)

where the Gaussian normalization factor in (28.34) is diebinto intermediate
integrations by defining

k-1
[ = | ‘L—)ﬂ Np = /(27)ddetA(x,). (28.36)
n=1 "

We shall also need to determine thi&eet of noise accumulated along the
trajectory pointpreceding x As the noise is additive forward in time, one cannot
simply invert the Fokker-Planck evolution operator; imstethe past is described
by theadjoint Fokker-Planck evolution operator

Pead = [Lppd() = f [dy] €301 RO 5) . (28.37)

which transports a density concentrated around the giijtto a density con-
centrated around the previous poinand adds noise to it. In the deterministic,
vanishing noise limit this is the Koopman operator (F.1).
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The Fokker-Planck evolution operator (28.34) is non-hgamiand non-unitary.
For example, if the deterministic flow is contracting, théeunal measure (the lead-
ing right eigenvector of the evolution operator) will be centrated and peaked,
but then the corresponding left eigenvector has to be broddlat, as backward
in time the deterministic flow is expanding. We shall dengtgbthe right eigen-
vectors of £, and byp,, its left eigenvectors, i.e., the right eigenvectors of the
adjoint operatorLf .

28.5 All nonlinear noiseislocal

| ain’t gonna work for Maggie’s pa no more
No, | ain’'t gonna work for Maggie’s pa no more
Well, he puts his cigar
Out in your face just for kicks
— Bob Dylan,Maggie’s Farm

(P. Cvitanovit and D. Lippolis)

Our main goal in this section is to convince the reader thatlfiusive dynamics
of nonlinear flows isundamentally gferent from Brownian motigrwith the flow
inducing a local, history dependent noise. In order to agdisim this, we gener-
alize here the notion of invariant deterministic recurrgoiutions, such as fixed
points and periodic orbits, to noisy flows. While a Langevimectory (28.32)
can never return exactly to the initial point and thus carewatr be periodic, in
the Fokker-Planck formulation (28.35) a recurrent motian be defined as one
where a peaked distribution returns to the initial neighbod after timen. Re-
currence so defined not only coincides with the classicabnatf a recurrent orbit
in the vanishing noise limit, but it also enables us to deexact formulas for how
this local, history dependent noise is to be computed.

As the functionxn.1 — f(Xn) is @ nonlinear function, in general the path inte-
gral (28.35) can only be evaluated numerically. In the \@ni noise limit the
Gaussian kernel sharpens into the Disafunction, and the Fokker-Planck evo-
lution operator reduces to the deterministic Perron-Fnalseoperator (16.10).
For weak noise the Fokker-Planck evolution operator carvhkiated perturba-
tively as an asymptotic series in powers of thffudiion constant, centered on the
deterministic trajectory. Here we retain only the lineanten this series, which
has a particulary simple dynamics given by a covarianceixatolution formula
(see (28.45) below) that we now derive.

We shift local coordinates labeled at time to the deterministic trajectory
{..., X1, X0, X1, X2,...,} centered coordinate frame= X, + z,, Taylor expand

f(X) = fa(za) = Xa+1 + MaZa + - - -, and approximate the noisy map (28.32) by its
linearization,

Zai1 = MaZa + &a, Mij(X) = 01i/0x;, (28.38)
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with the deterministic trajectory points at = zy.1 = 0, andM; = M(X,) the

one time step Jacobian matrix. The corresponding linedfrakker-Planck evo-
lution operator (28.34) action on densjty(z,) = p(Xa + Za, @) is given in the local
coordinates by

pari(Zast) = f A2 L20 (2001, 22) pa(22) (28.39)

by the linearization (28.38) centered on the determintssijectory

L,a:p(2a+1,2a) — l _%(Za+l—MaZa)TA_la(za+l—MaZa)_ (28.40)

pd

The superscriptd’ in L2, distinguishes the local, linearized Fokker-Planck evo-
lution operator coordinate franm = x — X, centered on the deterministic trajec-
tory point x5 from the full global evolution operator (28.35), in globalardinate
systemx.

The kernel of the linearized Fokker-Planck evolution opmr428.40) is a
Gaussian. As a convolution of a Gaussian with a Gaussianais @yGaussian,
we investigate the action of the linearized Fokker-Planaigion operator on a
normalized, cigar-shaped Gaussian density distribution

1 i1

pad) = €W Ca=(20)V2(detQa)?, (28.41)
a

and the action of the linearized adjoint Fokker-Planck etioh operator on den-
sity

)= g R Co= (n)92(derG)?, (28.42)
a

also centered on the deterministic trajectory, with diripbsitive [dxd] covari-
ance matrice), Q. Label ‘a’ plays a double role, angh + 1, a} stands both for
the {next, initial} space partition and for the times the trajectory lands ise¢he
partitions.  The linearized Fokker-Planck evolution operg28.40) maps the
Gaussiama(z,) into the Gaussian

puala)) = o [[da)e el Senmadda]  gpay
a

one time step later. Likewise, linearizing the adjoint FekkRlanck evolution
operator (28.37) around theg trajectory point yields:

1 1

1 ~3[(Zar1~Maza) +1—Ma T T Zar
Fa@) = = f [dzy,q] @ 2t M) ag GanMaz) 4 Bag Sl g 44
a+l
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Completing the squares, integrating and substitutingd@grespectively (28.42)
we obtain the formula for covariance matrix evolution fordian time,

Qas1 = MaQaM; +Aa. (28.45)
In the adjoint case, the evolution of tkgis given by
Ma@aM; = Qa+1 +Aa. (28.46)

The two covariance matricesfEér, as the adjoint evolutiof, is computed by
going backwards along the trajectory. Theswariance evolutiorrules are the
basis of all that follows.

Think of the initial covariance matrix (28.41) as an errortrixadescribing
the precision of the initial state, a cigar-shaped proligidistribution pa(za). In
one time step this density is deterministically advecteti@eformed into density
with covarianceMQMT, and then the noisa is added: the two kinds of inde-
pendent uncertainties add up as sums of squares, henceviréanoe evolution
law (28.45), resulting in the Gaussian ellipsoid whose sdind orientation are
given by the singular values and singular vectors (4.22hefcbvariance matrix.
After n time steps, the variand®; is built up from the deterministically propa-
gatedMIQ,_nMAT initial distribution, and the sum of noise kicks at interiren
times,MKA,_«MXT, also propagated deterministically.

The pleasant surprise is that the evaluation of this noigeimes no Fokker-
Planck PDE formalism. The width of a Gaussian packet cetitenea trajectory
is fully specified by a deterministic computation that iseally a pre-computed
byproduct of the periodic orbit computations; the deteistio orbit and its linear
stability. We have attached labed’ ‘to Ay = A(xy) in (28.45) to account for
the noise distributions that are inhomogeneous, stateespgendent, but time
independent multiplicative noise.

28.6 Weak noise: Hamiltonian formulation

All imperfection is easier to tolerate if served up in small
doses.
— Wislawa Szymborska

(G. Vattay and P. Cvitanovic)

In the spirit of the WKB approximation (to be fully developedchapter 32), we
shall now study the evolution of the probability distrilartiby rewriting it as

p(xt) = eBRXD (28.47)
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The time evolution oRis given by
AR+ VIR + (OR)? = DAV + DO°R.

Consider now the weak noise limit and drop the terms propaetitoD. The
remaining equation

R+ H(XIR) =0

is known as the Hamilton-Jacobi equation . The functocen be interpreted as
the Hamilton’s principal function, corresponding to thenkionian

H(X p) = pUX) + p*/2,
with the Hamilton’s equations of motion

X = dpH=v+p
p = —0H=-ATp, (28.48)

whereA is the stability matrix (4.3)

o 0%
Aij(x) = ax;
The noise Lagrangian is then

L(x %) =X%-p-H= %[X—v(x)]z . (28.49)

We have come the full circle - the Lagrangian is the exponériuo assumed
Gaussian distribution (28.31) for noigé = [X — v(x)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two poimgsand x. Which noisy
path is the most probable path that connects them in tthiEhe probability of a
given pathP is given by the probability of the noise sequed¢® which generates
the path. This probability is proportional to the producttiod noise probability
functions (28.31) along the path, and the total probabibtyreachingx from X
in timet is given by the sum over all paths, or the stochastic patigiatéwWiener
integral)

{)?

Vor) = (0m "
Pcx0) ~ ;Fj]p@(r,),ar,)—f]jdg,(m) e

. %;exp(—% I tdrfz(r)), (28.50)
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whereédt; = 7j — 7, and the normalization constant is
1 . oTj d/2
= =lim (—) .
Z ITI 27D

The most probable path is the one maximizing the integradénthe exponential.
If we express the noise (28.18) as

&) = X(1) - v(x(1)).

the probability is maximized by the variational principle

t t
min j; de[X(r) - v(x(x))]? = min fo L(x(r), X(x))dr .

By the standard arguments, for a givenx’ andt the probability is maximized by
a solution of Hamilton’s equations (28.48) that connecésttio pointsxg — X
in time t. The solution is a bit boringx = v, p = 0, and lives in the initial,
d-dimensional state space, so not much is to be made of thigsing appearance
of Hamiltonians.

Résum é

When a deterministic trajectory is smeared out under thaenfte of Gaussian
noise of strengttD, the deterministic dynamics is recovered in the weak noise
limit D — 0. The dfect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Symplectic structure emerges here not as a deep principteeohanics, but
an artifact of the leading approximation to quanfooisy dynamics, not respected
by higher order corrections. The same is true of semiclakgicantum dynamics;
higher corrections do not respect canonical invariance.

Commentary

Remark 28.1 A brief history of noise. ~ The theory of stochastic processes is a vast
subject, starting with the Laplace 1810 memoir [28.42]nsjag over centuries, and over
disciplines ranging from pure mathematics to impure finanthe presentation given
here is based on the Cvitanovi¢ and Lippolis 2012 Maribotuees [28.1]. The mate-
rial reviewed is standard [28.2, 28.3, 28.43], but needeatder to set the notation for
what is new here, the role that local Fokker-Planck opesgitay in defining stochastic
neighborhoods of periodic orbits. We enjoyed reading vampen classic [28.2], espe-
cially his railings against those who blunder carelesdly monlinear landscapes. Having

noise - 29dec2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 28. NOISE 588

committed this careless chapter to print, we shall no doehtast to a special place on
the long list of van Kampen'’s sinners (and not for the firstetjrither). A more special-
ized monograph like Risken’s [28.3] will do just as well. 8than’s monograph [28.12]
contains a very readable summary of Kac’s [28.13] expasitibWiener’s integral over
stochastic paths. The standard Langevin equation [28s48]stochastic equation for a
Brownian particle, in which one replaces the Newton'’s eiguor force by two counter-
balancing forces: random acceleratig@(i3 which tend to smear out a particle trajectory,
and a damping term which drives the velocity to zero. In tlistextD is Einstein dif-
fusion constant, and (28.11) is the Einsteiffuion formula [28.41]. Here we denote
by ‘Langevin equation’ a more general family of stochastitedential equations (28.18)
with additive or multiplicative [28.47, 28.48] weak noidgoisy discrete timedynamical
systems are discussed in refs. [28.60, 28.61, 28.62].

In probabilist literature [28.58] the fierential operator V- (vV(X)o(x, t)) + D V2p(x, t)
is called ‘Fokker-Planck operator;’ here we reserve thett#fokker-Planck evolution
operator’ for the finite time, ‘Green function’ integral apéor (28.30), i.e., the stochastic
path (Wiener) integral [28.53, 28.54, 28.3] for a noisy flaith the associated continuous
time Fokker-Planck [28.2, 28.3, 28.55] (or forward Kolmeoagw) equation (28.24).

The cost function (28.31) appears to have been first intredby Wiener as the ex-
act solution for a purely diusive Wiener-Lévy process in one dimension, see (28.16).
Onsager and Machlup [28.19, 28.24] use it in their variaigrinciple to study ther-
modynamic fluctuations in a neighborhood of single, lingattractive equilibrium point
(i.e., without any dynamics). It plays important role in thgtimal control theory [28.63,
28.64]. Gaussians are often rediscovered, so Onsagerkiyasbminal paper, which
studies the same attractive linear fixed point, is in literatoften credited for being the
first to introduce a variational method -the “principle o&$t dissipation™ based on the
Lagrangian of form (28.49). They, in turn, credit Raylei@8[20] with introducing the
least dissipation principle in hydrodynamics. OnsageciMap paper deals only with a
finite set of linearly damped thermodynamic variables, apidwith a nonlinear flow or
unstable periodic orbits.

Gaspard [28.23] derives a trace formula for the Fokker-¢Kaquation associated
with Ito stochastic dierential equations describing noisy time-continuous inealr dy-
namical systems. In the weak-noise limit, the trace fornputvides estimations of the
eigenvalues of the Fokker-Planck operator on the basisdPtilicott-Ruelle resonances
of the noiseless deterministic system, which is assumea: todm-bifurcating. At first
order in the noise amplitude, thefect of noise on a periodic orbit is given in terms
of the period and the derivative of the period with respedh®® pseudo-energy of the
Onsager-Machlup-Freidlin-Wentzell scheme [28.24]. Tyeainical ‘action’ Lagrangian
in the exponent of (28.30), and the associated symplectioilttmian were first writ-
ten down in 1970’s by Freidlin and Wentzell [28.24], whosenialation of the ‘large
deviation principle’ was inspired by the Feynman quanturth frgtegral [28.49]. Feyn-
man, in turn, followed Dirac [28.50] who was the first to digeothat in the short-time
limit the quantum propagator (imaginary time, quantumisgbf the Wiener stochastic
distribution (28.16)) is exact. Gaspard [28.23] thus referthe ‘pseudo-energy of the
Onsager-Machlup-Freidlin-Wentzell scheme.” M. Ronchd28.51, 28.52] refers to the
Fokker-Planck exponent in (28.30) as the ‘Wiener-Onsadgchlup Lagrangian,’ con-
structs weak noise saddle-point expansion and writesgaahequations for the higher
order codficients. In our exposition the setting is more general: welsfluctuations
over a state space-varying velocity fieigk).
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Remark 28.2 Weak noise perturbation theory. DasBuch omits any discussion of
the Martin-Siggia-Rose [28.69] type weak noise correctidtor an overview of possible
ways for improvement of diagrammatic summation in noisydfigsleories, se€haotic
Field Theory: a Sketclf28.70]. The details are in the three papers on trace formu-
las for stochastic evolution operators (see also ref. [8.5Weak noise perturbation
theory [16.9], smooth conjugation method [16.10], and lenatrix representation ap-
proach [16.11]. Such corrections have not been evaluatiedehgrobably because one
is so unsure about nature of the noise itself tittorder correction is beyond the point.
Doing continuous time flows requires the same kind of coiwest with diagrams stand-
ing for integrals rather than sums, though no one ever triedkly stochastic flows in
continuous time.

Remark 28.3 Covariance evolution. In quantum mechanics the linearized evolu-
tion operator corresponding to the linearized Fokker-Ekavolution operator (28.40) is
known as the Van Vleck propagator, the basic block in the ssasisical periodic orbit
guantization [30.2], see chapter 3Q.covariance matrix composition rule (28.45) or its
continuous time version is called ‘covariance evolutidar @xample, in ref. [28.65]), but
it goes all the way back to Lyapunov’s 1892 thesis [28.66]thie Kalman filter litera-
ture [28.67, 28.68] it is called ‘prediction’.

Remark 28.4 Operator ordering. According to L. Arnold [28.43] review of the orig-
inal literature, the derivations are much more delicate tvat is presented here: the
noise iscoloredrather than Dirac delta function in time. He refers only te linear case
as the ‘Langevin equation’. Th&r — 0 limit and the proper definition of(7) are deli-
cate issues [28.44, 28.45, 28.43, 28.46] of no import foralications of stochasticity
studied here: 1to and Stratanovich operator orderingeissuise in the order beyond the
leading approximation considered here.
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Exercises

28.1.

28.2.

28.3.

exerNoise - 170ct2007

Whoordered r?  Derive the Gaussian integral

L f B dx e
V21 J-oo
assuming only that you know to integrate the exponen-
tial functione™. Hint, hint: x? is a radius-squared of
something.x is related to the area or circumference of
something.

Y

= = va, a>0.

D-dimensional Gaussian integrals. Show that the
Gaussian integral iD-dimensions is given by

fd%e’%”’T'M’l‘”’*""J = |detM|? e{285)

1
(2n)72
whereM is a real positive definited[x d] matrix, i.e.,

a matrix with strictly positive eigenvaluex, J are D-
dimensional vectors, and is the transpose of.

Convolution of Gaussians. Show that the Fourier
transform of convolution

(a9 = [ &y f0c-y)am)

of two Gaussians
f=e T u g =t E
factorizes as

[f «gl(x) = f dk F(KG(K)EX, (28.52

1
(2n)d
where

F = (Zzlr)df dix f(x)e ™ = |deta /%’

GK = ﬁf d*xg()e ™ = [detapl" %!
Hence
[fegl(0) = ﬁ\demldemll”zfddpe%‘
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