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7.1 Hamiltonian flows

(P. Cvitanovic and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by antiltonian appendix B

H(q, p) together with the Hamilton's equations of motion remark 2.1
Chapter 7
. OH oH
= = -2 7.1
4 api n aq; (7.1

Hamiltonian dynamics

with thed = 2D phase-spaceoordinatesx split into the configuration space
coordinates and the conjugate momenta of a Hamiltoniaesyetith D degrees
of freedom (dof):

Conservative mechanical systems have equations of mo- x=(9,p), g=(q,92....0p), p = (P, P2.--..PD)- (7.2)
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite fiierent from those within The equations of motion (7.1) for a time-independ@xgof Hamiltonian can be
the class of all smooth vector fields: the system always written compactly as
has afirst integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in p
their energy level. T 9
— John Guckenheimer X = wiHig. Hi( X H). 73

wherex = (g,p) € M is a phase-space point, and the a derivative-oi{th

. ) ; ; o respect t; is denoted by comma-index notatio
Rossler flow of figure 2.6 is of concern only to chemists omixdlical

engineers or the weathermen; physicists do Hamiltoniamuyes, right?
Now, that's full of chaos, too! While it is easier to visuaiaperiodic dynam- w= ( 0 1 ) (7.4)
ics when a flow is contracting onto a lower-dimensional ating set, there are -0 '
plenty examples of chaotic flows that do preserve the fulliggatic invariance of
Hamiltonian dynamics. The whole story started with Poiatarestricted 3-body
problem, a realization that chaos rules also in general-temiltonian) flows
came much later. The energy, or the value of the time-independent Hamiltofimction at the
state space point= (g, p) is constant along the trajectoryt),

Y ou MIGHT THINK that the strangeness of contracting flows, flows such as the

is an antisymmetricdxd] matrix, andl is the [Dx D] unit matrix.

Here we briefly review parts of classical dynamics that wed néled later
on; symplectic invariance, canonical transformations, stability of Hamiltonian

flows. If your eventual destination are applications suclttaos in quantum EH(q(t),p(t)) = ﬂqi (t) + @pi ®

andor semiconductor systems, read this chapter. If you workearoscience dt a0 ap

or fluid dynamics, skip this chapter, continue reading wit billiard dynamics _ OHOH GHIH -0 (7.5)
of chapter 8 which requires no incantations of symplectizspar loxodromic oq op;i - dpi 0 ’
quartets.

so the trajectories lie on surfaces of constant energigved setof the Hamilto-
nian{(qg, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the

fast track:
W whole story.
chapter 8, p. 145

127 newton - 18jan2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 7. HAMILTONIAN DYNAMICS 129

Figure 7.1: Phase plane of the unforced, undampe
Duffing oscillator. The trajectories lie on level sets o
the Hamiltonian (7.6).

Figure 7.2: A typical collinear helium trajectory in §
the [r1, r2] plane; the trajectory enters along theaxis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case alongrthe
axis. In this example the energy is setHo= E = -1,

4

and the trajectory is bounded by the kinetic energy o
line. v
rJ
Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
form,
2 2 4
P~ 9 g
H . B I 7.
@p=%-5+5 (7.6)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (7.1) are

a=p. p=9-¢. (7.7

For 1-dof systems, the ‘surfaces’ of constant energy (7.5) are curves that foliate the
phase plane (g, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1.

Thus all 1-dof systems arategrable in the sense that the entire phase plane
is foliated by curves of constant energy, either periodijsathe case for the
harmonic oscillator (a ‘bound state’), or open (a ‘scatigiirajectory’). Add one example 6.1
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org we
shall apply the periodic orbit theory to the quantization of helium. In particular, we will
study collinear helium, a doubly charged nucleus with two electrons arranged on a line,
an electron on each side of the nucleus. The Hamiltonian for this system is

1 1 2 2 1
H=pl+Ipi-—-= .
2Pt 5P r rz+r1+rz

(7.8)
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Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation foliates by 3-dimensional constant energy hypersurfaces. In order to vi-
sualize it, we often project the dynamics onto the 2-dimensional configuration plane,
the (r1,12), ri > O quadrant, figure 7.2. It looks messy, and, indeed, it will turn out to
be no less chaotic than a pinball bouncing between three disks. As always, a Poincaré
section will be more informative than this rather arbitrary projection of the flow. The
difference is that in such projection we see the flow from an arbitrary perspective, with
trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic
coordinates, a pair along the marginal stability time and energy directions, and the rest
transverse, revealing the phase-space structure of the flow.

Note an important property of Hamiltonian flows: if the Hatmil equations
(7.1) are rewritten in the 2 phase-space form = vi(x), the divergence of the
velocity fieldv vanishes, namely the flow is incompressitiley = divi = wiH jj =
0. The symplectic invariance requirements are actuallyenstiingent than just
the phase-space volume conservation, as we shall see 7 sct

Throughout ChaosBook we reserve the term ‘phase space’ mailtdaian
flows. A ‘state space’ is the stage on which any flow takes plé@kase space’
is a special but important case, a state space with symplgtcticture, preserved
by the flow. For us the distinction is necessary, as ChaosBowérs dissipative,
mechanical, stochastic and quantum systems, all as ong Fepply.

7.2 Symplectic group

Either you're used to this sfiu.. or you have to get used
toit.
—Maciej Zworski

A matrix transformatiorg is calledsymplectic
T.0 =
g wy=w, (7.9)
if it preserves thesymplectic bilinear form(|x) = X" wx, whereg' denotes the
transpose of), andw is a non-singular [P x 2D] antisymmetric matrix which
satisfies remark 7.3

o =-w, W?=-1. (7.10)

While these are defining requirements for any symplectindsir form,w is often
conventionally taken to be of form (7.4).

Example 7.3 Symplectic form for D = 2: For two degrees of freedom the phase
space is 4-dimensional, X = (01, 02, P1, P2) , and the symplectic 2-form is

0 0 10
0 0 01
w=| 3 o ol (7.11)
0 -1 00
newton - 18jan2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 7. HAMILTONIAN DYNAMICS 131

The symplectic bilinear form (xP|x®)y is the sum over the areas of the parallelepipeds

spanned pairwise by components of the two vectors,

D@y = (DT x@ = (q(ll)p(lz) _ q(lz)p(ll)) 4 (q(zl)p(zz) _ q(zz) p(zl)). (7.12)

It is this sum over oriented areas (not the Euclidean distance between the two vectors,

[X® — X)) that is preserved by the symplectic transformations.

If gis symplectic, so is its inversg™!, and if g; and g, are symplectic, so
is their productg,g;. Symplectic matrices form a Lie group called thymplec-
tic group Sp(d). Use of the symplectic group necessitates a few remarkstabo
Lie groups in general, a topic that we study in more depth eptér 10. AlLie
groupis a group whose elemengéy) depend smoothly on a finite numbirof
parameterg,. In calculations one has to write these matrices in a spdwfis,
and for infinitesimal transformations they take form (reépdandices are summed
throughout this chapter, and the dot product refers to a stenlde algebra gen-
erators):

g6p) =1+66-T, 6peRN, |69l <1, (7.13)

where{T1,T2---, Tn}, the generatorsof infinitesimal transformations, are a set
of N linearly independentdxd] matrices which act linearly on the¢dimensional
phase spac#1. The infinitesimal statement of symplectic invariancedets by
substituting (7.13) into (7.9) and keeping the terms lineakp,

Tiw+wTla=0. (7.14)

This is the defining property for infinitesimal generatorsspmplectictransfor-
mations. Matrices that satisfy (7.14) are sometimes céli@dhiltonian matrices
A linear combination of Hamiltonian matrices is a Hamiltamimatrix, so Hamil-
tonian matrices form a linear vector space, siggplectic Lie algebra gd). By

the antisymmetry ofo,

(Ta)" = wT,. (7.15)

is a symmetric matrix. Its number of independent elementssgthe dimen-
sion (the number of independent continuous parametergea$ytmplectic group
Sp().

N = d(d + 1)/2 = D(2D + 1). (7.16)

The lowest-dimensional symplectic group Sp(2), of dimen&i = 3, is isomor-
phic to SU(2) and SO(3). The first interesting case is Sp(3)setdimension is
N = 10.
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Itis easily checked that the exponential of a Hamiltoniarrixa
g=¢eT (7.17)

is a symplectic matrix; Ligroupelements are related to the lagyebraelements
by exponentiation.

7.3 Stability of Hamiltonian flows

Hamiltonian flows @&er an illustration of the ways in which an invariance of equa-
tions of motion can fiect the dynamics. In the case at hand, shmplectic in-
variancewill reduce the number of independent Floquet multiplieysalfactor of
2o0r4.

7.3.1 Canonical transformations

The evolution ofJ! (4.6) is determined by the stability matm (4.9):

dEtJ‘(x) = A(X)J3(X), Aij(%) = wik Hgj(x), (7.18)

where the symmetric matrix of second derivatives of the Haman, Hy, =
OkdnH, is called theHessian matrix From (7.18) and the symmetry &f y, it
follows that for Hamiltonian flows (7.3)

Alw+wA=0. (7.19)

This is the defining property (7.14) for infinitesimal gertera of symplectic(or
canonical) transformations.

Consider now a smooth nonlinear coordinate change fgrm hi(x) (see
sect. 6.1 for a discussion), and define a ‘Kamiltonian’ fiorcK(x) = H(h(x)).
Under which conditions dods generate a Hamiltonian flow? In what follows we

will use the notatiord; = 9/dyj, s,j = dhi/dx;. By employing the chain rule we
have that

Kj = His;) (7.20)

(Here, as elsewhere in this book, a repeated index impliesrstion.) By virtue
of (7.1),0/H = —wmYym, SO that, again by employing the chain rule, we obtain

wij0iK = —wij SjjwimSnn¥n (7.21)
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Figure 7.3: Stability exponents of a Hamiltonian equi-
librium point, 2-dof.

@

generic center degenerate center
The right hand side simplifies tq (yielding Hamiltonian structure) only if

—Wij §,jWimSmn = Gin (7.22)
or, in compact notation,

—w(@h)Tw@h) = 1 (7.23)

which is equivalent to the requirement (7.9) thhtis symplectic. h is then called

a canonical transformation We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonicalsfiamationh is very example 6.1
cleverly chosen, the flow in new coordinates might be comalulg simpler than

the original flow. Second, Hamiltonian flows themselves apeime example of
canonical transformations.

Dream student Henriette Roux: “I hate thessg,. Can't you use a more sensible
notation?” A: “Be my guest.”

Example 7.4 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.19) that & (JTwJ) = 0, and since at the initial time J°(xo) = 1, Jacobian matrix
is a symplectic transformation (7.9). This equality is valid for all times, so a Hamilto-
nian flow f'(X) is a canonical transformation, with the linearization dxf'(X) a symplectic
transformation (7.9): For notational brevity here we have suppressed the dependence
on time and the initial point, J = J'(Xo). By elementary properties of determinants it fol-
lows from (7.9) that Hamiltonian flows are phase-space volume preserving, |detJ| = 1.
The initial condition (4.9) for J is J° = 1, so one always has

detd = +1. (7.24)

7.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointx, the stability matrixA is constant. lIts eigenvalues
describe the linear stability of the equilibrium poir.is the matrix (7.19) with
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real matrix elements, so its eigenvalues (the Floquet exitsrof (4.25)) are either
real or come in complex pairs. In the case of Hamiltonian flan®Illows from

(7.19) that the characteristic polynomial Afor an equilibriumx, satisfies section 4.3.1
exercise 7.4
exercise 7.5

detA—11) = det@ Y(A-11)w) = det(wAw - 1)

det AT + A1) = det(A+ 11). (7.25)

That is, the symplectic invariance implies in addition tHat is an eigenvalue,
then—4, 4* and—2* are also eigenvalues. Distinct symmetry classes of thaulog
exponents of an equilibrium point in a 2-dof system are digpd in figure 7.3.
It is worth noting that while the linear stability of equitie in a Hamiltonian
system always respects this symmetry, the nonlinear gyabédn be completely
different.

7.4 Symplectic maps

So far we have considered only the continuous time Hamdtofliows. As dis-

cussed in sect. 4.3 for finite time evolution mappings, argkit. 4.5 the iterated
discrete time mappings, the stability of maps is charazadriby eigenvalues of
their Jacobian matrices, or ‘multipliers. A multipliex = A(Xo,t) associated to
a trajectory is an eigenvalue of the Jacobian mairiAs J is symplectic, (7.9)

implies that

Jlt=—wiw, (7.26)
so the characteristic polynomial is reflexive, namely its$is

det@ - Al)

det@" — Al) = det(-wITw - Al)
det@ - Al) = det@ V) det - AJ)
AP det@ - A1) (7.27)

Hence ifA is an eigenvalue od, so are 1A, A* and JA*. Real eigenvalues
always come paired a§, 1/A. The Liouville conservation of phase-space vol-
umes (7.24) is an immediate consequence of this pairing @igehvalues. The
complex eigenvalues come in paiks A*, |A| = 1, or in loxodromic quartets,
1/A, A* and YA*. These possibilities are illustrated in figure 7.4.

Example 7.5 Hamiltonian H énon map, reversibility: By (4.49) the Hénon
map (3.17) for b = -1 value is the simplest 2-dimensional orientation preserving area-
preserving map, often studied to better understand topology and symmetries of Poincaré
sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.18) by a and

newton - 18jan2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 7. HAMILTONIAN DYNAMICS 1

w

5

complex saddle saddl

R
NP
1
LS

e—center

@@

1
\a/

degenerate saddle

AR VAR
P A

i
NP,

Figure 7.4: Stability of a symplectic map ii*.

generic center degenerate center

absorb the a factor into x in order to bring the Hénon map for the b = —1 parameter

value into the form

Xs1+ X1 =a-x, i=1..np, (7.28)
The 2-dimensional Hénon map for b = —1 parameter value
_ 2
X1 = A—X;—Yn
Ynir = Xn. (7.29)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, Y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee

that all roots of 0 = f"(X) — x (periodic points) are real. exercise 8.6
Example 7.6 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (5.6) depend only on tr M
1 t

A2 =3 (rM' = J(r M =2)(tr Mt + 2)) . (7.30)
Greene’s residue criterion states that the orbit is (i) elliptic if the stability residue [tr M| —
2 < 0, with complex eigenvalues Ay = €, Ao = A} = e IfjtrM'| =2 > 0, 1 is real,
and the trajectory is either

(ii) hyperbolic Ar=et, Ay=e or (7.31)

(iii) inverse hyperbolic A1 =—-et, Ap=-e't. (7.32)
Example 7.7 Standard map. Given a smooth function g(x), the map

Xne1 = Xnt Yt

Yorr = Yo+ 90%) (7.33)
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Figure 7.5: Phase portrait for the standard map

for (@) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. ()= 0.3,
k = 0.85 andk = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times.

@+ &

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.44) is

1 /
woov = [1( 15859 1) (7:34)

The map preserves areas, detM = 1, and one can easily check that M is symplectic.
In particular, one can consider X on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder S; x R (S; stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.33) mod1 the map can be reduced on the 2-torus S.

The standard map corresponds to the choice g(x) = k/2x sin(2rx). Whenk = 0,
Yn+1 = Yn = Yo, SO that angular momentum is conserved, and the angle x rotates with
uniform velocity

X1 = Xn+Yo = Xo+(N+1)yo  mod1.

The choice of yy determines the nature of the motion (in the sense of sect. 2.1.1): for
Yo = 0 we have that every point on the yo = 0 line is stationary, for yo = p/q the motion
is periodic, and for irrational yo any choice of xo leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter K is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when K is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamilto-
nian systems.

Note that the map (7.33) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

HOY:D = 27 + G(9au() (7.39)

where 6; denotes the periodic delta function

oo

sit) = Y ot-m) (7.36)
and
G'(X) = -g(x). (7.37)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
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periodic orbits. A family of periodic orbits of period Q already present in the k = 0 dynamics, the three points are mapped to three new point$wané still infinites-
rotation maps can be labeled by its winding number P/Q The Greene residue describes imally close to one another. The meaning of the above exipressthat the area
the stability of a P/Q-cycle: of the parallelepiped spanned by the three final points isdee as that spanned
1 by the initial points. The integral (Stokes theorem) varsid this infinitesimal
Reiq = i (2-trMpyq) - (7.38) area invariance states that for Hamiltonian flows the sui ofiented areas/;

bounded byD loopsQV;, one per eachy, p;) plane, is conserved:
If Rejq € (0, 1) the orbit is elliptic, for Rpyq > 1 the orbit is hyperbolic orbits, and for
Rep/q < 0 inverse hyperbolic.
For k = 0 all points on the yo = P/Q line are periodic with period Q, winding L dpadg= 9§W p-dq = invariant. (7.41)
number P/Q and marginal stability Rpjo = 0. As soon as k > 0O, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half

hyperbolic.  If we further vary k in such a way that the residue of the elliptic Q-cycle One can Show that_ also t_he 4,-6;, 2D phase-space V9|Umes are prGS_erved- The
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher phase space is2dimensional, but as there aiecoordinate combinations con-
period are generated. served by the flow, morally a Hamiltonian flow 3-dimensional. Hence for

Hamiltonian flows the key notion of dimensionality 5 the number of the de-
grees of freedom (dof), rather than the phase-space dioreiity d = 2D.

7.5 Poincag invariants Dream student Henriette Roux: “Would it kill you to draw sopietures here?”
' A: “Be my guest.”

Let C be a region in phase space avifD) its volume. Denoting the flow of the ) _
Hamiltonian system by {(x), the volume ofC after a timet is V(t) = f(C), and ” in deP‘hl-
using (7.24) we derive thiiouville theorem appendix B.4, p. 798

V(i) = ffl(c)dx:fc

fcdet @dx = deX =V(0), (7.39) Physicists do Lagrangians and Hamiltonians. Many know ofwwold other
than the perfect world of quantum mechanics and quantumtfielory in which
the energy and much else is conserved. From the dynamical pbiiew, a
Hamiltonian flow is just a flow, but a flow with a symmetry: thalstity matrix
Ajj = wik Hj(x) of a Hamiltonian flowx = wijH j(X) satisfiesATw + wA = 0. Its
integral along the trajectory, the linearization of the fldwhat we call the *‘Jaco-
bian matrix,’ is symplectic, and a Hamiltonian flow is thussamenical transforma-
tion in the sense that the Hamiltonian time evolutior= f!(x) is a transformation
whose linearization (Jacobian matriX)= 9x'/dx preserves the symplectic form,

try P 7
detafaix) dx Résum é

Hamiltonian flows preserve phase-space volumes.

The symplectic structure of Hamilton’s equations buys ustmonore than
the ‘incompressibility, or the phase-space volume core@n. Consider the
symplectic product of two infinitesimal vectors

(0X0%) = oX wdk = 6pi6G; — 60O Py JTwJ = w . This implies thai are in the symplectic algebs(2D), and that the
b ) 2D-dimensional Hamiltonian phase-space flow presebresiented infinitesimal
= Z {oriented area in theg, pi) plang . (7.40) volumes, or Poincaré invariants. The Liouville phaseespeolume conservation
i=1 is one consequence of this invariance.
Timet later we have While symplectic invariance enforcés| = 1 for complex eigenvalue pairs

and precludes existence of attracting equilibria and leydfes typical of dissipa-
tive flows, for hyperbolic equilibria and periodic orbits| > 1, and the pairing
requirement only enforces a particular value on thié tontracting direction.
Hence the description of chaotic dynamics as a sequencaldleseisitations is

(6X16%) = 6X" ITwIs%k = 6X" woX.

This has the following geometrical meaning. Imagine tharehis a reference the same for the Hamiltonian and dissipative systems. Yahtfind symplec-
phase-space point. Take two other points infinitesimathge] with the vectoréx ticity beautiful. Once you understand that every time yoveha symmetry, you chapter 10
andsX describing their displacements relative to the refereraiatp Under the should use it, you might curse the day [7.26] you learned yossanplectic’.
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Commentary

In theory there is no dierence between theory and prac-
tice. In practice there is.
—Yogi Berra

Remark 7.1 Hamiltonian dynamics, sources. If you are reading this book, in theory
you already know everything that is in this chapter. In pr&cyou do not. Try this:
Put your right hand on your heart and say: “I understand whyregprefers symplectic
geometry.” Honest?

Where does the skew-symmetriccome from? Newtorf = malaw for a motion in
a potential isng = —dV . Rewrite this as a pair of first order ODEg= p/m, p = -4V,
define the total energyl(q, p) = p?/2m+ V(q) , and voila, the equation of motion take on
the symplectic form (7.3). What makes this important is tiet that the evolution in time
(and more generally any canonical transformation) presetivis symplectic structure, as
shown in sect. 7.3.1. Another way to put it: a gradient flow ~9V(x) contracts a state
space volume into a fixed point. When that happ#&f{g) is a 'Lyapunov function’, and
the equilibriumx = 0 is ‘Lyapunov asymptotically stable’. In contrast, the sign in the
symplectic action ond, p) coordinatesp = -4V induces a rotation, and conservation of
phase-space areas: for a symplectic flow there can be no ealantraction.

Out there there are centuries of accumulated literature amiltbn, Lagrange, Ja-
cobi etc. formulation of mechanics, some of it excellent.cémtext of what we will
need here, we make a very subjective recommendation—-wgeghjeading Percival and
Richards [7.3] and Ozorio de Almeida [7.4]. Exposition ofts&.2 follows Dragt [7.15].
There are two conventions in literature for what the integrgrument of Sp( -) stands
for: either SpD) or Sp() (used, for example, in refs. [7.15, 7.17]), wh&e-= dof, and
d = 2D. As explained in Chapter 13 of ref. [7.17], symplectic grewe the ‘nega-
tive dimensional,d — —d sisters of the orthogonal groups, so only the second natatio
makes sense in the grander scheme of things. Mathemattzare/en make sense of the
d =odd-dimensional case, see Proctor [7.18, 7.19], by drapjhie requirement thas is
non-degenerate, and defining a symplectic groupMBg) acting on a vector spacel as
a subgroup o61(M) which preserves a skew-symmetric bilinear faoof maximal pos-
sible rank.The odd symplectic groups S+ 1) are not semisimple. If you care about
group theory for its own sake (the dynamical systems symymettuction techniques of
chapter 10 are still too primitive to be applicable to Quamttield Theory), chapter 14
of ref. [7.17] is fun, too.

Referring to the Sml) Lie algebra elements as ‘Hamiltonian matrices’ as one some
times does [7.15, 7.20] conflicts with what is meant by a ‘Hemian matrix’ in quantum
mechanics: the quantum Hamiltonian sandwiched betweeongeaken from any com-
plete set of quantum states. We are not sure where this namescivom; Dragt cites
refs. [7.21, 7.22], and chapter 17 of his own book in progf@sks]. Fulton and Har-
ris [7.21] use it. Certainly Van Loan [7.23] uses in 1981, dadssky in 1972. Might go
all the way back to Sylvester?

Dream student Henriette Roux wants to know: “Dynamics exgjadHamiltonian plus a
bracket. Why don’t you just say it?” A: “It is true that in therinel vision of atomic

mechanicians the world is Hamiltonian. But it is much morendimus than that. This
chapter starts with Newton 1687: force equals acceleratiod we always replace a
higher order time derivative with a set of first order equasiolf there are constraints, or
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fully relativistic Quantum Field Theory is your thing, theal of choice is to recast New-
ton equations as a Lagrangian 1788 variational princiglgou still live in material but
non-relativistic world and have not gotten beyond Heisepli®25, you will find Hamil-
ton’s 1827 principal function handy. The question is not thleethe world is Hamiltonian
- itis not - but why it is so often profitably formulated this ywdor Maupertuis 1744 vari-
ational principle was a proof of God’s existence; for Lagrawho made it mathematics,
itwas just a trick. Our sect. 33.1.1 “Semiclassical evaluitis an attempt to get inside 17
year old Hamilton’s head, but it is quite certain that he did get to it the way we think
about it today. He got to the ‘Hamiltonian’ by studying ogtievhere the symplectic struc-
ture emerges as the leading WKB approximation to wave ggtigher order corrections
destroy it again. In dynamical systems theory, the demssiti¢rajectories are transported
by Liouville evolution operators, as explained here in s&6t6. Evolution in time is a
one-parameter Lie group, and Lie groups act on functionsiteSimally by derivatives.
If the evolution preserves additional symmetries, thesevalives have to respect them,
and so ‘brackets’ emerge as a statement of symplectic awveeiof the flow. Dynamics
with a symplectic structure are just a special case of howadyes moves densities of
trajectories around. Newton is deep, Poisson bracketeahmology and thus they ap-
pear naturally only by the time we get to chapter 16. Any riveas of necessity linear,
and putting Poisson ahead of Newton [7.1] would be a disserai you, the student. But
if you insist: Dragt and Habib [7.24, 7.15fer a concise discussion of symplectic Lie
operators and their relation to Poisson brackets. ”

Remark 7.2 Symplectic. The term symplectic —~Greek for twining or plaiting together
was introduced into mathematics by Hermann Weyl. ‘Candnlzeeage is church-
doctrinal: Greek ‘kanon,’ referring to a reed used for measient, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign ofv, the symplectic invariant
in (7.3), is set by the convention that the Hamilton’s prpatifunction (for energy con-
serving flows) is given bR(q, q', t) = Lq pidg — Et. With this sign convention the action
along a classical path is minimal, and the kinetic energyfoéa particle is positive. Any
finite-dimensional symplectic vector space ha3aboux basisuch thatw takes form
(7.9). Dragt [7.15] convention for phase-space variatsessiin (7.2). He calls the dy-
namical trajectoryg — X(Xo,t) the ‘transfer map, something that we will avoid here, as
it conflicts with the well established use of ‘transfer mags’ in statistical mechanics.

Remark 7.4 Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired as, 1/A, and complex eigenvalues come eitheAinA* pairs,|A| = 1, or

A, 1/A, A*, 1/A* loxodromic quartets. As most maps studied in introductanylimear
dynamics are @, you have perhaps never seen a loxodromic quartet. Howy ldcel we to
run into such things in higher dimensions? According to & eatensive study of periodic
orbits of a driven billiard with a four dimensional phase epecarried in ref. [7.28], the
three kinds of eigenvalues occur with about the same likelih

Remark 7.5 Standard map.  Standard maps model free rotors under the influence of
short periodic pulses, as can be physically implementedng&tance, by pulsed optical
lattices in cold atoms physics. On the theoretical sidedgted maps illustrate a number
of important features: smak values provide an example 6fAM perturbative regime
(see ref. [7.11]), while largdcs illustrate deterministic chaotic transport [7.9, 7.18)d
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the transition to global chaos presents remarkable uraligrdeatures [7.5, 7.12, 7.7].
The quantum counterpart of this model has been widely ifgegstd, as the first example
where phenomena like quantum dynamical localization haenlbserved [7.13]. Sta-
bility residue was introduced by Greene [7.12]. For somedsamm experience of the
standard map, download Meiss simulation code [7.14].

newton - 18jan2012 ChaosBook.org version14, Dec 31 2012

EXERCISES

142

Exercises

7.1. Complex nonlinear Schiddinger equation. Con-
sider the complex nonlinear Schrddinger equation in one
spatial dimension [7.26]:

2
i‘g—‘f + % +BBl¢l2 =0, B#0.

(a) Show that the functiop : R — C defining the
traveling wave solutiog(x, t) = y(x—ct) forc > 0
satisfies a second-order complefeliential equa-
tion equivalent to a Hamiltonian systemiir rel-
ative to the noncanonical symplectic form whose
matrix is given by

(b

=

Analyze the equilibria of the resulting Ha-
miltonian system irk* and determine their linear
stability properties.

Lety(s) = €°5/2a(s) for a real functiona(s) and
determine a second order equationd(s). Show

(c

N

that the resulting equation is Hamiltonian and has’->-

heteroclinic orbits fop < 0. Find them.

Find ‘soliton’ solutions for the complex nonlinear
Schrodinger equation.

d

=

(Luz V. Vela-Arevalo)

7.2. Symplectic vs. Hamiltonian matrices. In the
language of group theory, symplectic matrices form the
symplectic Liegroup Sp(d), while the Hamiltonian ma-
trices form the symplectic Lialgebra sgd), or the al-
gebra of generators of infinitesimal symplectic transfor-

7.4.

(a) LetA be af x r invertible matrix. Show th
the map¢ : R — R given by @,p) +
(Ag, (A"1)Tp) is a canonical transformation.

(b) If Ris arotation ink3, show that the may( p) —
(Rg,Rp) is a canonical transformation.

(Luz V. Vela-Arevalo

Determinants of symplectic matrices. ~ Show the
the determinant of a symplectic matrix+d., by goin
through the following steps:

(a) use (7.27) to prove that for eigenvalue pairs
member has the same multiplicity (the same |
for quartet members),

(b) prove that thgoint multiplicity of 1 = +1 is evel

(c) show that the multiplicities of = 1 andA = -1
cannot be both odd. (Hint: write

P(D) = (1= 1™+ 1*'QW)
and show thaQ(1) = 0).

Cherry’s example. What follows refs. [7.25, 7.27]
mostly a reading exercise, about a Hamiltonian s
thatislinearly stablebutnonlinearly unstableConside
the Hamiltonian system ah* given by

1 1

H = 5(2+ p)) - (6 + p5) + 5Pa(P - 6) -

(a) Show that this system has an equilibrium a
origin, which is linearly stable. (The lineari:
system consists of two uncoupled oscillators
frequencies in ratios 2:1).

mations. This exercise illustrates the relation between (b) Convince yourselfthat the following is a family
the two: solutions parameterize by a constant
(a) Show that if a constant matrid satisfy the
Hamiltonian matrix condition (7.14), thed(t) = G=- \/zcost - T)’ p = 225 2(-
exptA), t € R, satisfies the symplectic condition Ct-7 t-7
(7.9), i.e.,J(t) is a symplectic matrix. 1= ﬁs'”(t -7 P2 = sin2¢-
(b) Show that if matriced , satisfy the Hamiltonian t-7 t—1
matrix condition (7.14), then(¢) = exp@ - T). These solutions clearly blow up in finite tir
¢ € RN, satisfies the symplectic condition (7.9), however they start at = 0 at a distancev3/
i.e.,g(¢) is a symplectic matrix. from the origin, so by choosing large, we cz
(A few hints: (i) expand exg), A= ¢-T, as a power find solutions starting arbitrarily close to the
series inA. Or, (ii) use the linearized evolution equation g'nty?t going to infinity in a finite time, so !
(7.18).) origin isnonlinearly unstable
7.3. When is a linear transformation canonical? (Luz V. Vela-Arevalo
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