
Chapter 7

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite different from those within
the class of all smooth vector fields: the system always
has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

Y ou might think that the strangeness of contracting flows, flows such as the
Rössler flow of figure 2.6 is of concern only to chemists or biomedical
engineers or the weathermen; physicists do Hamiltonian dynamics, right?

Now, that’s full of chaos, too! While it is easier to visualize aperiodic dynam-
ics when a flow is contracting onto a lower-dimensional attracting set, there are
plenty examples of chaotic flows that do preserve the full symplectic invariance of
Hamiltonian dynamics. The whole story started with Poincaré’s restricted 3-body
problem, a realization that chaos rules also in general (non-Hamiltonian) flows
came much later.

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamiltonian
flows. If your eventual destination are applications such aschaos in quantum
and/or semiconductor systems, read this chapter. If you work in neuroscience
or fluid dynamics, skip this chapter, continue reading with the billiard dynamics
of chapter 8 which requires no incantations of symplectic pairs or loxodromic
quartets.

fast track:

chapter 8, p. 145
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7.1 Hamiltonian flows

(P. Cvitanović and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamiltonian appendix B

H(q, p) together with the Hamilton’s equations of motion remark 2.1

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (7.1)

with the d = 2D phase-spacecoordinatesx split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system withD degrees
of freedom (dof):

x = (q, p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (7.2)

The equations of motion (7.1) for a time-independent,D-dof Hamiltonian can be
written compactly as

ẋi = ωi j H, j(x) , H, j(x) =
∂

∂x j
H(x) , (7.3)

where x = (q, p) ∈ M is a phase-space point, and the a derivative of (·) with
respect tox j is denoted by comma-index notation (·), j,

ω =

(

0 I
−I 0

)

, (7.4)

is an antisymmetric [d×d] matrix, andI is the [D×D] unit matrix.

The energy, or the value of the time-independent Hamiltonian function at the
state space pointx = (q, p) is constant along the trajectoryx(t),

d
dt

H(q(t), p(t)) =
∂H
∂qi

q̇i(t) +
∂H
∂pi

ṗi(t)

=
∂H
∂qi

∂H
∂pi
− ∂H
∂pi

∂H
∂qi
= 0 , (7.5)

so the trajectories lie on surfaces of constant energy, orlevel setsof the Hamilto-
nian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the
whole story.
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Figure 7.1: Phase plane of the unforced, undamped
Duffing oscillator. The trajectories lie on level sets of
the Hamiltonian (7.6).
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Figure 7.2: A typical collinear helium trajectory in
the [r1, r2] plane; the trajectory enters along ther1-axis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case along ther2-
axis. In this example the energy is set toH = E = −1,
and the trajectory is bounded by the kinetic energy= 0
line.
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Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
form,

H(q, p) =
p2

2
− q2

2
+

q4

4
. (7.6)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (7.1) are

q̇ = p , ṗ = q− q3 . (7.7)

For 1-dof systems, the ‘surfaces’ of constant energy (7.5) are curves that foliate the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1.

Thus all 1-dof systems areintegrable, in the sense that the entire phase plane
is foliated by curves of constant energy, either periodic, as is the case for the
harmonic oscillator (a ‘bound state’), or open (a ‘scattering trajectory’). Add one example 6.1

more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.orgwe
shall apply the periodic orbit theory to the quantization of helium. In particular, we will
study collinear helium, a doubly charged nucleus with two electrons arranged on a line,
an electron on each side of the nucleus. The Hamiltonian for this system is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (7.8)
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Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation foliates by 3-dimensional constant energy hypersurfaces. In order to vi-
sualize it, we often project the dynamics onto the 2-dimensional configuration plane,
the (r1, r2), r i ≥ 0 quadrant, figure 7.2. It looks messy, and, indeed, it will turn out to
be no less chaotic than a pinball bouncing between three disks. As always, a Poincaré
section will be more informative than this rather arbitrary projection of the flow. The
difference is that in such projection we see the flow from an arbitrary perspective, with
trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic
coordinates, a pair along the marginal stability time and energy directions, and the rest
transverse, revealing the phase-space structure of the flow.

Note an important property of Hamiltonian flows: if the Hamilton equations
(7.1) are rewritten in the 2D phase-space form ˙xi = vi(x), the divergence of the
velocity fieldv vanishes, namely the flow is incompressible,∇·v = ∂ivi = ωiH,i j =

0. The symplectic invariance requirements are actually more stringent than just
the phase-space volume conservation, as we shall see in sect. 7.3.

Throughout ChaosBook we reserve the term ‘phase space’ to Hamiltonian
flows. A ‘state space’ is the stage on which any flow takes place. ’Phase space’
is a special but important case, a state space with symplectic structure, preserved
by the flow. For us the distinction is necessary, as ChaosBookcovers dissipative,
mechanical, stochastic and quantum systems, all as one happy family.

7.2 Symplectic group

Either you’re used to this stuff... or you have to get used
to it.

—Maciej Zworski

A matrix transformationg is calledsymplectic,

gTωg = ω , (7.9)

if it preserves thesymplectic bilinear form〈x̂|x〉 = x̂Tωx, wheregT denotes the
transpose ofg, andω is a non-singular [2D×2D] antisymmetric matrix which
satisfies remark 7.3

ωT = −ω , ω2 = −1 . (7.10)

While these are defining requirements for any symplectic bilinear form,ω is often
conventionally taken to be of form (7.4).

Example 7.3 Symplectic form for D = 2: For two degrees of freedom the phase
space is 4-dimensional, x = (q1, q2, p1, p2) , and the symplectic 2-form is

ω =

























0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

























, (7.11)
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The symplectic bilinear form 〈x(1)|x(2)〉 is the sum over the areas of the parallelepipeds
spanned pairwise by components of the two vectors,

〈x(1)|x(2)〉 = (x(1))Tω x(2) = (q(1)
1 p(2)

1 − q(2)
1 p(1)

1 ) + (q(1)
2 p(2)

2 − q(2)
2 p(1)

2 ) . (7.12)

It is this sum over oriented areas (not the Euclidean distance between the two vectors,
|x(2) − x(1)|) that is preserved by the symplectic transformations.

If g is symplectic, so is its inverseg−1, and if g1 andg2 are symplectic, so
is their productg2g1. Symplectic matrices form a Lie group called thesymplec-
tic group Sp(d). Use of the symplectic group necessitates a few remarks about
Lie groups in general, a topic that we study in more depth in chapter 10. ALie
group is a group whose elementsg(φ) depend smoothly on a finite numberN of
parametersφa. In calculations one has to write these matrices in a specificbasis,
and for infinitesimal transformations they take form (repeated indices are summed
throughout this chapter, and the dot product refers to a sum over Lie algebra gen-
erators):

g(δφ) ≃ 1+ δφ · T , δφ ∈ RN , |δφ| ≪ 1 , (7.13)

where{T1,T2 · · · ,TN}, thegeneratorsof infinitesimal transformations, are a set
of N linearly independent [d×d] matrices which act linearly on thed-dimensional
phase spaceM. The infinitesimal statement of symplectic invariance follows by
substituting (7.13) into (7.9) and keeping the terms linearin δφ,

TT
aω + ωTa = 0 . (7.14)

This is the defining property for infinitesimal generators ofsymplectictransfor-
mations. Matrices that satisfy (7.14) are sometimes calledHamiltonian matrices.
A linear combination of Hamiltonian matrices is a Hamiltonian matrix, so Hamil-
tonian matrices form a linear vector space, thesymplectic Lie algebra sp(d). By
the antisymmetry ofω,

(ωTa)T = ωTa . (7.15)

is a symmetric matrix. Its number of independent elements gives the dimen-
sion (the number of independent continuous parameters) of the symplectic group
Sp(d),

N = d(d + 1)/2 = D(2D + 1) . (7.16)

The lowest-dimensional symplectic group Sp(2), of dimension N = 3, is isomor-
phic to SU(2) and SO(3). The first interesting case is Sp(3) whose dimension is
N = 10.
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It is easily checked that the exponential of a Hamiltonian matrix

g = eφ·T (7.17)

is a symplectic matrix; Liegroupelements are related to the Liealgebraelements
by exponentiation.

7.3 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of equa-
tions of motion can affect the dynamics. In the case at hand, thesymplectic in-
variancewill reduce the number of independent Floquet multipliers by a factor of
2 or 4.

7.3.1 Canonical transformations

The evolution ofJt (4.6) is determined by the stability matrixA, (4.9):

d
dt

Jt(x) = A(x)Jt(x) , Ai j (x) = ωik H,k j(x) , (7.18)

where the symmetric matrix of second derivatives of the Hamiltonian, H,kn =

∂k∂nH, is called theHessian matrix. From (7.18) and the symmetry ofH,kn it
follows that for Hamiltonian flows (7.3)

ATω + ωA = 0 . (7.19)

This is the defining property (7.14) for infinitesimal generators ofsymplectic(or
canonical) transformations.

Consider now a smooth nonlinear coordinate change formyi = hi(x) (see
sect. 6.1 for a discussion), and define a ‘Kamiltonian’ function K(x) = H(h(x)).
Under which conditions doesK generate a Hamiltonian flow? In what follows we
will use the notation∂ j̃ = ∂/∂y j, si, j = ∂hi/∂x j. By employing the chain rule we
have that

K, j = H,l̃ sl̃, j (7.20)

(Here, as elsewhere in this book, a repeated index implies summation.) By virtue
of (7.1), ∂̃lH = −ωlmẏm, so that, again by employing the chain rule, we obtain

ωi j∂ jK = −ωi j sj,lωlmsm,nẋn (7.21)
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Figure 7.3: Stability exponents of a Hamiltonian equi-
librium point, 2-dof.
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The right hand side simplifies to ˙xi (yielding Hamiltonian structure) only if

−ωi j sl, jωlmsm,n = δin (7.22)

or, in compact notation,

−ω(∂h)Tω(∂h) = 1 (7.23)

which is equivalent to the requirement (7.9) that∂h is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonical transformationh is very example 6.1

cleverly chosen, the flow in new coordinates might be considerably simpler than
the original flow. Second, Hamiltonian flows themselves are aprime example of
canonical transformations.

Dream student Henriette Roux: “I hate thesesm,n. Can’t you use a more sensible
notation?” A: “Be my guest.”

Example 7.4 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.19) that d

dt

(

JTωJ
)

= 0, and since at the initial time J0(x0) = 1, Jacobian matrix
is a symplectic transformation (7.9). This equality is valid for all times, so a Hamilto-
nian flow f t(x) is a canonical transformation, with the linearization ∂x f t(x) a symplectic
transformation (7.9): For notational brevity here we have suppressed the dependence
on time and the initial point, J = Jt(x0). By elementary properties of determinants it fol-
lows from (7.9) that Hamiltonian flows are phase-space volume preserving, |detJ| = 1 .
The initial condition (4.9) for J is J0 = 1, so one always has

detJ = +1 . (7.24)

7.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointxq the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium point.A is the matrix (7.19) with
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real matrix elements, so its eigenvalues (the Floquet exponents of (4.25)) are either
real or come in complex pairs. In the case of Hamiltonian flows, it follows from
(7.19) that the characteristic polynomial ofA for an equilibriumxq satisfies section 4.3.1

exercise 7.4
exercise 7.5

det (A− λ1) = det (ω−1(A− λ1)ω) = det (−ωAω − λ1)

= det (AT + λ1) = det (A+ λ1) . (7.25)

That is, the symplectic invariance implies in addition thatif λ is an eigenvalue,
then−λ, λ∗ and−λ∗ are also eigenvalues. Distinct symmetry classes of the Floquet
exponents of an equilibrium point in a 2-dof system are displayed in figure 7.3.
It is worth noting that while the linear stability of equilibria in a Hamiltonian
system always respects this symmetry, the nonlinear stability can be completely
different.

7.4 Symplectic maps

So far we have considered only the continuous time Hamiltonian flows. As dis-
cussed in sect. 4.3 for finite time evolution mappings, and insect. 4.5 the iterated
discrete time mappings, the stability of maps is characterized by eigenvalues of
their Jacobian matrices, or ‘multipliers.’ A multiplierΛ = Λ(x0, t) associated to
a trajectory is an eigenvalue of the Jacobian matrixJ. As J is symplectic, (7.9)
implies that

J−1 = −ωJTω , (7.26)

so the characteristic polynomial is reflexive, namely it satisfies

det (J − Λ1) = det (JT − Λ1) = det (−ωJTω − Λ1)

= det (J−1 − Λ1) = det (J−1) det (1− ΛJ)

= Λ2D det (J − Λ−11) . (7.27)

Hence ifΛ is an eigenvalue ofJ, so are 1/Λ, Λ∗ and 1/Λ∗. Real eigenvalues
always come paired asΛ, 1/Λ. The Liouville conservation of phase-space vol-
umes (7.24) is an immediate consequence of this pairing up ofeigenvalues. The
complex eigenvalues come in pairsΛ, Λ∗, |Λ| = 1, or in loxodromic quartetsΛ,
1/Λ, Λ∗ and 1/Λ∗. These possibilities are illustrated in figure 7.4.

Example 7.5 Hamiltonian H énon map, reversibility: By (4.49) the Hénon
map (3.17) for b = −1 value is the simplest 2-dimensional orientation preserving area-
preserving map, often studied to better understand topology and symmetries of Poincaré
sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.18) by a and
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Figure 7.4: Stability of a symplectic map inR4.
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absorb the a factor into x in order to bring the Hénon map for the b = −1 parameter
value into the form

xi+1 + xi−1 = a− x2
i , i = 1, ..., np , (7.28)

The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a− x2
n − yn

yn+1 = xn . (7.29)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f n(x) − x (periodic points) are real. exercise 8.6

Example 7.6 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (5.6) depend only on tr Mt

Λ1,2 =
1
2

(

tr Mt ±
√

(tr Mt − 2)(tr Mt + 2)
)

. (7.30)

Greene’s residue criterion states that the orbit is (i) elliptic if the stability residue |tr Mt |−
2 ≤ 0, with complex eigenvalues Λ1 = eiθt, Λ2 = Λ

∗
1 = e−iθt. If |tr Mt | − 2 > 0, λ is real,

and the trajectory is either

(ii) hyperbolic Λ1 = eλt , Λ2 = e−λt , or (7.31)

(iii) inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (7.32)

Example 7.7 Standard map. Given a smooth function g(x), the map

xn+1 = xn + yn+1

yn+1 = yn + g(xn) (7.33)
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Figure 7.5: Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. (b)k = 0.3,
k = 0.85 andk = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times.

(a) (b)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.44) is

Mn(x0, y0) =
1

∏

k=n

(

1+ g′(xk) 1
g′(xk) 1

)

. (7.34)

The map preserves areas, detM = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder S1 × R (S1 stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.33) mod1 the map can be reduced on the 2-torus S2.

The standard map corresponds to the choice g(x) = k/2π sin(2πx). When k = 0,
yn+1 = yn = y0, so that angular momentum is conserved, and the angle x rotates with
uniform velocity

xn+1 = xn + y0 = x0 + (n+ 1)y0 mod 1 .

The choice of y0 determines the nature of the motion (in the sense of sect. 2.1.1): for
y0 = 0 we have that every point on the y0 = 0 line is stationary, for y0 = p/q the motion
is periodic, and for irrational y0 any choice of x0 leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter k is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when k is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamilto-
nian systems.

Note that the map (7.33) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

H(x, y; t) =
1
2

y2 +G(x)δ1(t) (7.35)

where δ1 denotes the periodic delta function

δ1(t) =
∞
∑

m=−∞
δ(t −m) (7.36)

and

G′(x) = −g(x) . (7.37)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
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periodic orbits. A family of periodic orbits of period Q already present in the k = 0
rotation maps can be labeled by its winding number P/Q The Greene residue describes
the stability of a P/Q-cycle:

RP/Q =
1
4

(

2− tr MP/Q
)

. (7.38)

If RP/Q ∈ (0, 1) the orbit is elliptic, for RP/Q > 1 the orbit is hyperbolic orbits, and for
RP/Q < 0 inverse hyperbolic.

For k = 0 all points on the y0 = P/Q line are periodic with period Q, winding
number P/Q and marginal stability RP/Q = 0. As soon as k > 0, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. If we further vary k in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher
period are generated.

7.5 Poincaŕe invariants

Let C be a region in phase space andV(0) its volume. Denoting the flow of the
Hamiltonian system byf t(x), the volume ofC after a timet is V(t) = f t(C), and
using (7.24) we derive theLiouville theorem:

V(t) =
∫

f t(C)
dx=

∫

C

∣

∣

∣

∣

∣

∣

det
∂ f t(x′)
∂x

∣

∣

∣

∣

∣

∣

dx′

∫

C
det (J)dx′ =

∫

C
dx′ = V(0) , (7.39)

Hamiltonian flows preserve phase-space volumes.

The symplectic structure of Hamilton’s equations buys us much more than
the ‘incompressibility,’ or the phase-space volume conservation. Consider the
symplectic product of two infinitesimal vectors

〈δx|δx̂〉 = δxTωδx̂ = δpiδq̂i − δqiδp̂i

=

D
∑

i=1

{

oriented area in the (qi , pi) plane
}

. (7.40)

Time t later we have

〈δx′|δx̂′〉 = δxT JTωJδx̂ = δxTωδx̂ .

This has the following geometrical meaning. Imagine that there is a reference
phase-space point. Take two other points infinitesimally close, with the vectorsδx
andδx̂ describing their displacements relative to the reference point. Under the
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dynamics, the three points are mapped to three new points which are still infinites-
imally close to one another. The meaning of the above expression is that the area
of the parallelepiped spanned by the three final points is thesame as that spanned
by the initial points. The integral (Stokes theorem) version of this infinitesimal
area invariance states that for Hamiltonian flows the sum ofD oriented areasVi

bounded byD loopsΩVi, one per each (qi , pi) plane, is conserved:

∫

V
dp∧ dq=

∮

ΩV
p · dq= invariant. (7.41)

One can show that also the 4, 6,· · · , 2D phase-space volumes are preserved. The
phase space is 2D-dimensional, but as there areD coordinate combinations con-
served by the flow, morally a Hamiltonian flow isD-dimensional. Hence for
Hamiltonian flows the key notion of dimensionality isD, the number of the de-
grees of freedom (dof), rather than the phase-space dimensionality d = 2D.

Dream student Henriette Roux: “Would it kill you to draw somepictures here?”
A: “Be my guest.”

in depth:

appendix B.4, p. 798

Résum é

Physicists do Lagrangians and Hamiltonians. Many know of noworld other
than the perfect world of quantum mechanics and quantum fieldtheory in which
the energy and much else is conserved. From the dynamical point of view, a
Hamiltonian flow is just a flow, but a flow with a symmetry: the stability matrix
Ai j = ωik H,k j(x) of a Hamiltonian flow ˙xi = ωi j H, j(x) satisfiesATω+ωA = 0. Its
integral along the trajectory, the linearization of the flowJ that we call the ‘Jaco-
bian matrix,’ is symplectic, and a Hamiltonian flow is thus a canonical transforma-
tion in the sense that the Hamiltonian time evolutionx′ = f t(x) is a transformation
whose linearization (Jacobian matrix)J = ∂x′/∂x preserves the symplectic form,
JTωJ = ω . This implies thatA are in the symplectic algebrasp(2D), and that the
2D-dimensional Hamiltonian phase-space flow preservesD oriented infinitesimal
volumes, or Poincaré invariants. The Liouville phase-space volume conservation
is one consequence of this invariance.

While symplectic invariance enforces|Λ| = 1 for complex eigenvalue pairs
and precludes existence of attracting equilibria and limitcycles typical of dissipa-
tive flows, for hyperbolic equilibria and periodic orbits|Λ| > 1, and the pairing
requirement only enforces a particular value on the 1/Λ contracting direction.
Hence the description of chaotic dynamics as a sequence of saddle visitations is
the same for the Hamiltonian and dissipative systems. You might find symplec-
ticity beautiful. Once you understand that every time you have a symmetry, you chapter 10

should use it, you might curse the day [7.26] you learned to say ‘symplectic’.
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Commentary

In theory there is no difference between theory and prac-
tice. In practice there is.

—Yogi Berra

Remark 7.1 Hamiltonian dynamics, sources. If you are reading this book, in theory
you already know everything that is in this chapter. In practice you do not. Try this:
Put your right hand on your heart and say: “I understand why nature prefers symplectic
geometry.” Honest?

Where does the skew-symmetricω come from? Newtonf = ma law for a motion in
a potential ismq̈ = −∂V . Rewrite this as a pair of first order ODEs, ˙q = p/m, ṗ = −∂V ,

define the total energyH(q, p) = p2/2m+V(q) , and voila, the equation of motion take on
the symplectic form (7.3). What makes this important is the fact that the evolution in time
(and more generally any canonical transformation) preserves this symplectic structure, as
shown in sect. 7.3.1. Another way to put it: a gradient flow ˙x = −∂V(x) contracts a state
space volume into a fixed point. When that happens,V(x) is a ’Lyapunov function’, and
the equilibriumx = 0 is ‘Lyapunov asymptotically stable’. In contrast, the ‘−’ sign in the
symplectic action on (q, p) coordinates, ˙p = −∂V induces a rotation, and conservation of
phase-space areas: for a symplectic flow there can be no volume contraction.

Out there there are centuries of accumulated literature on Hamilton, Lagrange, Ja-
cobi etc. formulation of mechanics, some of it excellent. Incontext of what we will
need here, we make a very subjective recommendation–we enjoyed reading Percival and
Richards [7.3] and Ozorio de Almeida [7.4]. Exposition of sect. 7.2 follows Dragt [7.15].
There are two conventions in literature for what the integerargument of Sp(· · ·) stands
for: either Sp(D) or Sp(d) (used, for example, in refs. [7.15, 7.17]), whereD = dof, and
d = 2D. As explained in Chapter 13 of ref. [7.17], symplectic groups are the ‘nega-
tive dimensional,’d → −d sisters of the orthogonal groups, so only the second notation
makes sense in the grander scheme of things. Mathematicianscan even make sense of the
d =odd-dimensional case, see Proctor [7.18, 7.19], by dropping the requirement thatω is
non-degenerate, and defining a symplectic group Sp(M, ω) acting on a vector spaceM as
a subgroup ofGl(M) which preserves a skew-symmetric bilinear formω of maximal pos-
sible rank.The odd symplectic groups Sp(2D + 1) are not semisimple. If you care about
group theory for its own sake (the dynamical systems symmetry reduction techniques of
chapter 10 are still too primitive to be applicable to Quantum Field Theory), chapter 14
of ref. [7.17] is fun, too.

Referring to the Sp(d) Lie algebra elements as ‘Hamiltonian matrices’ as one some-
times does [7.15, 7.20] conflicts with what is meant by a ‘Hamiltonian matrix’ in quantum
mechanics: the quantum Hamiltonian sandwiched between vectors taken from any com-
plete set of quantum states. We are not sure where this name comes from; Dragt cites
refs. [7.21, 7.22], and chapter 17 of his own book in progress[7.16]. Fulton and Har-
ris [7.21] use it. Certainly Van Loan [7.23] uses in 1981, andTaussky in 1972. Might go
all the way back to Sylvester?

Dream student Henriette Roux wants to know: “Dynamics equals a Hamiltonian plus a
bracket. Why don’t you just say it?” A: “It is true that in the tunnel vision of atomic
mechanicians the world is Hamiltonian. But it is much more wondrous than that. This
chapter starts with Newton 1687: force equals acceleration, and we always replace a
higher order time derivative with a set of first order equations. If there are constraints, or
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fully relativistic Quantum Field Theory is your thing, the tool of choice is to recast New-
ton equations as a Lagrangian 1788 variational principle. If you still live in material but
non-relativistic world and have not gotten beyond Heisenberg 1925, you will find Hamil-
ton’s 1827 principal function handy. The question is not whether the world is Hamiltonian
- it is not - but why it is so often profitably formulated this way. For Maupertuis 1744 vari-
ational principle was a proof of God’s existence; for Lagrange who made it mathematics,
it was just a trick. Our sect. 33.1.1 “Semiclassical evolution” is an attempt to get inside 17
year old Hamilton’s head, but it is quite certain that he did not get to it the way we think
about it today. He got to the ‘Hamiltonian’ by studying optics, where the symplectic struc-
ture emerges as the leading WKB approximation to wave optics; higher order corrections
destroy it again. In dynamical systems theory, the densities of trajectories are transported
by Liouville evolution operators, as explained here in sect. 16.6. Evolution in time is a
one-parameter Lie group, and Lie groups act on functions infinitesimally by derivatives.
If the evolution preserves additional symmetries, these derivatives have to respect them,
and so ‘brackets’ emerge as a statement of symplectic invariance of the flow. Dynamics
with a symplectic structure are just a special case of how dynamics moves densities of
trajectories around. Newton is deep, Poisson brackets are technology and thus they ap-
pear naturally only by the time we get to chapter 16. Any narrative is of necessity linear,
and putting Poisson ahead of Newton [7.1] would be a disservice to you, the student. But
if you insist: Dragt and Habib [7.24, 7.15] offer a concise discussion of symplectic Lie
operators and their relation to Poisson brackets. ”

Remark 7.2 Symplectic. The term symplectic –Greek for twining or plaiting together–
was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is church-
doctrinal: Greek ‘kanon,’ referring to a reed used for measurement, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of ω. The overall sign ofω, the symplectic invariant
in (7.3), is set by the convention that the Hamilton’s principal function (for energy con-

serving flows) is given byR(q, q′, t) =
∫ q′

q
pidqi −Et. With this sign convention the action

along a classical path is minimal, and the kinetic energy of afree particle is positive. Any
finite-dimensional symplectic vector space has aDarboux basissuch thatω takes form
(7.9). Dragt [7.15] convention for phase-space variables is as in (7.2). He calls the dy-
namical trajectoryx0 → x(x0, t) the ‘transfer map,’ something that we will avoid here, as
it conflicts with the well established use of ‘transfer matrices’ in statistical mechanics.

Remark 7.4 Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired asΛ, 1/Λ, and complex eigenvalues come either inΛ, Λ∗ pairs,|Λ| = 1, or
Λ, 1/Λ, Λ∗, 1/Λ∗ loxodromic quartets. As most maps studied in introductory nonlinear
dynamics are 2d, you have perhaps never seen a loxodromic quartet. How likely are we to
run into such things in higher dimensions? According to a very extensive study of periodic
orbits of a driven billiard with a four dimensional phase space, carried in ref. [7.28], the
three kinds of eigenvalues occur with about the same likelihood.

Remark 7.5 Standard map. Standard maps model free rotors under the influence of
short periodic pulses, as can be physically implemented, for instance, by pulsed optical
lattices in cold atoms physics. On the theoretical side, standard maps illustrate a number
of important features: smallk values provide an example ofKAM perturbative regime
(see ref. [7.11]), while largerk’s illustrate deterministic chaotic transport [7.9, 7.10], and
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the transition to global chaos presents remarkable universality features [7.5, 7.12, 7.7].
The quantum counterpart of this model has been widely investigated, as the first example
where phenomena like quantum dynamical localization have been observed [7.13]. Sta-
bility residue was introduced by Greene [7.12]. For some hands-on experience of the
standard map, download Meiss simulation code [7.14].
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Exercises

7.1. Complex nonlinear Schr̈odinger equation. Con-
sider the complex nonlinear Schrödinger equation in one
spatial dimension [7.26]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β , 0.

(a) Show that the functionψ : R → C defining the
traveling wave solutionφ(x, t) = ψ(x−ct) for c > 0
satisfies a second-order complex differential equa-
tion equivalent to a Hamiltonian system inR4 rel-
ative to the noncanonical symplectic form whose
matrix is given by

wc =

























0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0

























.

(b) Analyze the equilibria of the resulting Ha-
miltonian system inR4 and determine their linear
stability properties.

(c) Let ψ(s) = eics/2a(s) for a real functiona(s) and
determine a second order equation fora(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits forβ < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrödinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic vs. Hamiltonian matrices. In the
language of group theory, symplectic matrices form the
symplectic LiegroupSp(d), while the Hamiltonian ma-
trices form the symplectic Liealgebra sp(d), or the al-
gebra of generators of infinitesimal symplectic transfor-
mations. This exercise illustrates the relation between
the two:

(a) Show that if a constant matrixA satisfy the
Hamiltonian matrix condition (7.14), thenJ(t) =
exp(tA) , t ∈ R, satisfies the symplectic condition
(7.9), i.e.,J(t) is a symplectic matrix.

(b) Show that if matricesTa satisfy the Hamiltonian
matrix condition (7.14), theng(φ) = exp(φ · T) ,
φ ∈ RN, satisfies the symplectic condition (7.9),
i.e.,g(φ) is a symplectic matrix.

(A few hints: (i) expand exp(A) , A = φ · T , as a power
series inA. Or, (ii) use the linearized evolution equation
(7.18). )

7.3. When is a linear transformation canonical?

(a) Let A be a [n × n] invertible matrix. Show that
the mapφ : R2n → R

2n given by (q, p) 7→
(Aq, (A−1)Tp) is a canonical transformation.

(b) If R is a rotation inR3, show that the map (q, p) 7→
(R q,R p) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinants of symplectic matrices. Show that
the determinant of a symplectic matrix is+1, by going
through the following steps:

(a) use (7.27) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that thejoint multiplicity of λ = ±1 is even,

(c) show that the multiplicities ofλ = 1 andλ = −1
cannot be both odd. (Hint: write

P(λ) = (λ − 1)2m+1(λ + 1)2l+1Q(λ)

and show thatQ(1) = 0).

7.5. Cherry’s example. What follows refs. [7.25, 7.27] is
mostly a reading exercise, about a Hamiltonian system
that islinearly stablebutnonlinearly unstable. Consider
the Hamiltonian system onR4 given by

H =
1
2

(q2
1 + p2

1) − (q2
2 + p2

2) +
1
2

p2(p2
1 − q2

1) − q1q

(a) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constantτ:

q1 = −
√

2
cos(t − τ)

t − τ , q2 =
cos 2(t −

t − τ

p1 =
√

2
sin(t − τ)

t − τ , p2 =
sin 2(t −

t − τ

These solutions clearly blow up in finite time;
however they start att = 0 at a distance

√
3/τ

from the origin, so by choosingτ large, we can
find solutions starting arbitrarily close to the ori-
gin, yet going to infinity in a finite time, so the
origin isnonlinearly unstable.

(Luz V. Vela-Arevalo)
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[7.17] P. Cvitanović,Group Theory - Birdtracks, Lie’s, and Exceptional Magic
(Princeton Univ. Press, Princeton, NJ, 2008),birdtracks.eu.

[7.18] R.A. Proctor, “Odd symplectic groups,”Inv. Math.92, 307 (1988).

refsNewt - 7oct2011 ChaosBook.org version14, Dec 31 2012

References 144

[7.19] I. M. Gel’fand and A. V. Zelevinskii, “Models of representations of classi-
cal groups and their hidden symmetries,”Funct. Anal. Appl.18, 183 (1984).

[7.20] Wikipedia,Hamiltonian matrix,en.wikipedia.org/wiki /Hamiltonian matrix.

[7.21] W. Fulton and J. Harris,Representation Theory(Springer-Verlag, Berlin,
1991).

[7.22] H. Georgi,Lie Algebras in Particle Physics(Perseus Books, Reading, MA,
1999).

[7.23] C. Paige and C. Van Loan, “A Schur decomposition for Hamiltonian ma-
trices,”Linear Algebra and its Applications41, 11 (1981).

[7.24] A.J. Dragt and S. Habib, “How Wigner functions transform under sym-
plectic maps,”arXiv:quant-ph/9806056 (1998).

[7.25] T.M. Cherry, “Some examples of trajectories defined by differential equa-
tions of a generalized dynamical type,”Trans. Camb. Phil. Soc.XXIII , 165
(1925).

[7.26] J. E. Marsden and T. S. Ratiu,Introduction to mechanics and symmetry
(Springer, New York, 1994).

[7.27] K.R. Meyer, “Counter-examples in dynamical systemsvia normal form
theory,”SIAM Review28, 41 (1986).

[7.28] F. Lenz, C. Petri, F.N.R. Koch, F.K. Diakonos and P. Schmelcher, “Evolu-
tionary phase space in driven elliptical billiards,”
arXiv:0904.3636.

refsNewt - 7oct2011 ChaosBook.org version14, Dec 31 2012


