Chapter 36

Chaotic multiscattering

(A. Wirzba and P. Cvitanovit)

number of non-overlapping finite scattering regions. Whthis inter-

esting at all? The semiclassics of scattering systems haadivantages
compared to the bound-state problems such as the heliuntizatéeon discussed
in chapter 37.

WE pIscuss HERE the semiclassics of scattering in open systems with a finite

e For bound-state problem the semiclassical approximataes ehot respect
quantum-mechanical unitarity, and the semi-classicaredgergies are not
real. Here we construetmanifestly unitangemiclassical scattering matrix.

e The Weyl-term contributions decouple from the multi-seattg system.
e The close relation to the classical escape processes sigtirschapter 1.

e For scattering systems the derivation of cycle expans®nsoire direct and
controlled than in the bound-state case: the semiclassjycid expansion
is the saddle point approximation to the cumulant expansiohe determi-
nant of the exact quantum-mechanical multi-scatteringimat

e The region of convergence of the semiclassical spectraitifom is larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a pparticle from finite
collection of non-overlapping scattering regions in teohthe standard textbook
scattering theory, and then develop the semiclassicaksiceg trace formulas and
spectral determinants for scatteringj N disks in a plane.
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CHAPTER 36. CHAOTIC MULTISCATTERING 687

36.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point parfrom finite collection
of N non-overlapping reflecting disks in a 2-dimensional plakethe point par-
ticle moves freely between the static scatterers, the tildependent Schrodinger
equation outside the scattering regions is the Helmholiz&on:

(VZ2+K)y(")=0,  routside the scattering regions. (36.1)

Herey () is the wave function of the point particle at spatial pasiti andE =
72Kk2/2m s its energy written in terms of its massand the wave vectdt of the
incident wave. For reflecting wall billiards the scatterjpigpblem is a boundary
value problem with Dirichlet boundary conditions:

y(P) =0, " on the billiard perimeter (36.2)

As usual for scattering problems, we expand the wave fumeti@) in the
(2-dimensional) angular momentum eigenfunctions basis

p(r) = ). uk(r)e ™, (36.3)
mM=—co
wherek and®y are the length and angle of the wave vector, respectivelylaAg
wave in two dimensions expaned in the angular momentum lsasis

gkt _ dkr cos@r—ay) _ Z Jn(kr)gm(@r =) (36.4)

mM=—oc0

wherer and®, denote the distance and angle of the spatial vatés measured
in the global 2-dimensional coordinate system.

Themth angular componeni,(kr)é™® of a plane wave is split into a super-
position of incoming and outgoing 2-dimensional spherngaves by decompos-
ing the ordinary Bessel functiody,(z) into the sum

In(@) = %(Hr(%)(z) +HP ) (36.5)

of the Hankel function$iY(2) andH®(2) of the first and second kind. Fiaf > 1
the Hankel functions behave asymptotically as:

2 1 s n . .

M@~ Ze i incoming
2 1 s n .

HY@) ~ ,/—Ze“(z‘im‘z) outgoing. (36.6)
T
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CHAPTER 36. CHAOTIC MULTISCATTERING 688

Thus forr — o andk fixed, themth angular componeniy(kr)é™® of the plane
wave can be written as superposition of incoming and outg@iuimensional
spherical waves:

In(kr)e™ i) . glk-§m-)] g (36.7)

1 [
V2rkr

In terms of the asymptotic (angular momentum) componghitsf the wave
functiony(r), the scattering matrix (35.3) is defined as

(o8]

1 I e
K ~ — mZ [rmme =25 4 S k2D MO (36.8)

The matrix elemenSmy describes the scattering of an incoming wave with an-
gular momenturmm into an outgoing wave with angular momentum If there
are no scatterers, th&= 1 and the asymptotic expression of the plane wele

in two dimensions is recovered frop(r).

36.1.1 1-disk scattering matrix

In general,S is nondiagonal and nonseparable. An exception is the 1stiak
terer. If the origin of the coordinate system is placed atciater of the disk, by
(36.5) themth angular component of the time-independent scatteringgvitanc-
tion is a superposition of incoming and outgoing 2-dimenaispherical waves
exercise 35.2

Wy = 5 (HOW) + SnHP(kn) &

(Jm(kr) - lZTmmH,(TP(kr)) gmer
The vanishing (36.2) of the wave function on the disk perenet
_ i (1)
0= Jm(ka) - ETmmHm (ka)

yields the 1-disk scattering matrix in analytic form:

Smnt » (36.9)

2Jm(kas)) ~ HP(kas)
m - _T m
Hn’(kas)

SS (k=|1-———>
() ( H (kas)

wherea = aq is radius of the disk and the fix S indicates that we are dealing
with a disk whose label is. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect. 36.3.
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CHAPTER 36. CHAOTIC MULTISCATTERING 689
36.1.2 Multi-scattering matrix

Consider next a scattering region consisting\Nohon-overlapping disks labeled
se{1,2,---,N}, following the notational conventions of sect. 11.6. Thratsgy

is to construct the fullT-matrix (35.3) from the exact 1-disk scattering matrix
(36.9) by a succession of coordinate rotations and traosksuch that at each
step the coordinate system is centered at the origin of a diskn theT-matrix

iN Smm = dmm — | Ty €an be split into a product over three kinds of matrices,

N o0
Tom@) = > > Ca (MY, DY ().

Islgs
s,8'=1lg,lg=—c0

The outgoing spherical wave scattered by the disk obtained by shifting the
global coordinates origin distané® to the center of the disk, and measuring
the angle®s with respect to directiork of the outgoing spherical wave. As in
(36.9), the matri>xCs takes form

s 2i \]m—ls(kRS) eim(Ds .

= — (36.10)
mls mas H|(Sl)(kas)

If we now describe the ingoing spherical wave in the diskoordinate frame by
the matrixD¥

D 1 = —7as -1, (KRs) 3, (ks )& ™ %, (36.11)

and apply the Bessel function addition theorem

Iny+2 = D In-c)A(),

{=—c0

we recover thd -matrix (36.9) for the single disk = ', M = 1 scattering. The
Bessel function sum is a statement of the completness optierisal wave basis;
as we shift the origin from the dis&to the disks’ by distanceRy , we have to
reexpand all basis functions in the new coordinate frame.

The labelsmandm refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate systardls, | refer to the
(angular momentum) basis fixed at tsth ands’th scatterer, respectively. Thus,
Cs andD® depend on the origin and orientation of the global coordirsgtstem
of the 2-dimensional plane as well as on the internal coatdsof the scatterers.
As they can be made separable in the scatterer Ighibley describe the single
scatterer aspects of what, in general, is a multi-scatigrinblem.
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Figure 36.1: Global and local coordinates for a gen-
eral 3-disk problem.

The matrixM is called themulti-scattering matrix If the scattering problem
consists only of one scatterdy] is simply the unit matrixMEf’s/ = 6555|S|S,.
For scattering from more than one scatterer we separate ‘Ginge traversal”
matrix A which transports the scattered wave from a scattering meyig to the
scattering regiotMy,

MSS

lslg

=561, - A (36.12)

sls/ ’

The matrixASS reads:

_ 558 as Ji;(kas) e

ss
--(1 S HY
as HO(kas)

o =

(kRSS’) ei(lsa/s’s_ls’(a/ss’—”)) . (3613)

Here,as is the radius of thesth disk. R and®g are the distance and angle,
respectively, of the ray from the origin in the 2-dimensioplane to the center of
disk s as measured in the global coordinate system. Furtherrgee= Ry is
the separation between the centers ofdtheands’th disk andx s of the ray from
the center of disks to the center of disls’ as measured in the local (body-fixed)
coordinate system of disk(see figure 36.1).

Expanded as a geometrical series about the unit mattie inverse matrix
M1 generates a multi-scattering series in powers of the sinalersal matrix.
All genuine multi-scattering dynamics is contained in thatmx A; by construc-
tion A vanishes for a single-scatterer system.

36.2 N-scatterer spectral deter minant

In the following we limit ourselves to a study of the specipebperties of thes-
matrix: resonances, time delays and phase shifts. Thearses are given by the
poles of thes-matrix in the lower complex wave numbéqg) plane; more precisely,

by the poles of thé& on the second Riemann sheet of the complex energy plane.
As the S-matrix is unitary, it is also natural to focus on its totalagk shiftr(k)
defined by des = exp?®. The time-delay is proportional to the derivative of
the phase shift with respect to the wave nuniber
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CHAPTER 36. CHAOTIC MULTISCATTERING 691

As we are only interested in spectral properties of the egatf problem, it
sufices to study de. This determinant is basis and coordinate-system indepen-
dent, whereas th8-matrix itself depends on the global coordinate system and o
the choice of basis for the point particle wave function.

As the Smatrix is, in general, an infinite dimensional matrix, itnst clear
whether the corresponding determinant exists at all-iifiatrix is trace-class, the
determinant does exist. What does this mean?

36.2.1 Trace-classoperators

An operator (an infinite-dimensional matrix) is callegdce-classif and only if,

for any choice of orthonormal basis, the sum of the diagonafrim elements
converges absolutely; it is called “Hilbert-Schmidt,” et sum of the absolute
squared diagonal matrix elements converges. Once an opé&aliagnosed as
trace-class, we are allowed to manipulate it as we mangfilaite-dimensional
matrices. We review the theory of trace-class operatorpperdix J; here we
will assume that th@ -matrix (35.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det{zA), as defined by the cumulant
expansion, exists and is an entire functioreofurthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation é40f expansion in
the book-keeping variabl® of the determinant

det (L — zA) = exp[tr Ind - zA)] = exp[— i gtr (AM| .
n=1
That means
det(L - zA) := i Z2"Qm(A) (36.14)
m=0

where the cumulant®,(A) satisfy the Plemelj-Smithies recursion formula (J.19),
a generalization of Newton's formula to determinants ofitdi-dimensional ma-
trices,

Qo(A) 1

Qm(A) = —%ZQm_j(A)tr(Aj) form>1, (36.15)
=1

in terms of cumulants of order < mand traces of ordar < m. Because of the
trace-class property &, all cumulants and traces exist separately.
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CHAPTER 36. CHAOTIC MULTISCATTERING 692

For the general case bf < oo non-overlapping scatterers, tfiematrix can be
shown to be trace-class, so the determinant o&neatrix is well defined. What
does trace-class property mean for the correspondingaea@?®, DS and ASS?
Manipulating the operators as though they were finite medrieve can perform
the following transformations:

detS

det(1-iCM~'D)
Det(1-iM~'DC) = Det(M~*(M —iDC))
Det(M —iDC)

Det(M)

(36.16)

In the first line of (36.16) the determinant is taken over $idhe angular mo-
mentum with respect to the global system). In the remaintié3&16) the deter-
minant is evaluated over the multiple indices = (s,1s). In order to signal this
difference we use the following notation: det and tr... refer to thel¢) space,
Det... and Tr... refer to the multiple index space. The matrices in the migltip
index space are expanded in the complete H#sis} = {|s, £s)} which refers for
fixed indexs to the origin of thesth scatterer and not any longer to the origin of
the 2-dimensional plane.

Let us explicitly extract the product of the determinantstted subsystems
from the determinant of the total system (36.16):

Det(M — iDC)

e

Det(M - iDC) T3, detS®
DetM 1Y, detss

N Det(M —iDC)/ [TV, detSs
[ ]detse v M ey . (36.17)
ol DetM

detS

The final step in the reformulation of the determinant of $mmatrix of theN-
scatterer problem follows from the unitarity of ttf&matrix. The unitarity of
S'(k*) implies for the determinant

det S(k*)") = 1/detS(K), (36.18)

where this manipulation is allowed because Thmatrix is trace-class. The uni-
tarity condition should apply for th&matrix of the total system$, as for the
each of the single subsystenss, s = 1,---, N. In terms of the result of (36.17),
this implies

Det(M (k) — iD(K)C(K))

_ #\ T
T de - PetMEO)
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CHAPTER 36. CHAOTIC MULTISCATTERING 693

since all determinants in (36.17) exist separately ancedime determinants dst
respect unitarity by themselves. Thus, we finally have

N DetM (k)
detsKk) = { [ | (detss(k)} ——— 2 | (36.19)
{gl } DetM (k)

where all determinants exist separately.

In summary: We assumed a scattering system &hite number ofnon-
overlappingscatterers which can be offiirent shape and size, but are all of
finite extent. We assumed the trace-class character of tmatrix belonging to
the total system and of the single-traversal ma#ixand finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering fromitefnumber of
scatterers of arbitrary shape and size? As long as eddh<ofo single scatterers
has a finite spatial extent, i.e., can be covered by a finite die total system
has a finite spatial extent as well. Therefore, it too can hdrmided a circular
domain of finite radiud, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of thikdt larger than the disk
size (actually larger thare(2) x b), then theT matrix elements of th&l-scatterer
problem become very small. If the wave numkds kept fixed, the modulus of
the diagonalmatrix elements|T | with the angular momentum > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

36.2.2 Quantum cycle expansions

In formula (36.19) the genuine multi-scattering terms apssated from the single-
scattering ones. We focus on the multi-scattering termas, on the ratio of the
determinants of the multi-scattering mathk = 1 — A in (36.19), since they are
the origin of the periodic orbit sums in the semiclassicaluaion. The reso-
nances of the multi-scattering system are given by the zefr@etM (k) in the
lower complex wave number plane.

In order to set up the problem for the semiclassical redoctie express the
determinant of the multi-scattering matrix in terms of theces of the powers
of the matrixA, by means of the cumulant expansion (36.14). Because of the
finite numberN > 2 of scatterers tiA") receives contributions corresponding to
all periodic itinerariess; $S3 - - - $h-1S, of total symbol lengtm with an alphabet
s €1{L12,...,N}. of N symbols,

tr ASIZADS .. A1 ASS: (36.20)
= io io io A18152 $2S3 ...Aﬁ“-lsﬂ ShSL
L | silsy” sls shealsn” Talsy
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Remember our notation that the trace tr) refers only to thdl) space. By con-
struction A describes only scatterer-to-scatterer transitions, sasyimbolic dy-
namics has to respect the no-self-reflection pruning roleadmissible itineraries
the successive symbols have to b@adient. This rule is implemented by the factor
1-6%% in (36.13).

The trace tA" is the sum of all itineraries of lengti

AT = ) rASRARS . ASISASS (36.21)
{S192°+5n}

We will show for theN-disk problem that these periodic itineraries correspond
in the semiclassical limitkas > 1, to geometricalperiodic orbits with the same
symbolic dynamics.

For periodic orbits with creeping sections the symbolichalpet has to be
extended, see sect. 36.3.1. Furthermore, depending oretmeegry, there might
be nontrivial pruning rules based on the so called ghostgréée sect. 36.4.1.

36.2.3 Symmetry reductions

The determinants over the multi-scattering matrices riar tve multiple indext
of the multiple index space. This is the proper form for thmsyetry reduction
(in the multiple index space), e.g., if the scatterer coméijan is characterized
by a discrete symmetry group, we have

DetM = [ | (detMp, ()*

where the indexr runs over all conjugate classes of the symmetry giGugmnd
D, is theath representation of dimensiaf). The symmetry reduction on the
exact quantum mechanical level is the same as for the céssrolution oper-
ators spectral determinant factorization (21.17) of s&t#.2.

36.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. Iriotd be concrete, we

will consider the semiclassical reduction of the scattgdha single disk in plane.
Instead of calculating the semiclassical approximatiotheodeterminant of

the one-disk system scattering matrix (36.9), we do so for

dk) = % %( IndetS(ka) = % %(tr (Ins'(ka)) (36.22)
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the so calledime delay

1 d e - L N (HRKka) d HD (ka)
A0 = g (IndetS'a) = 25 ) (H,ﬁ?(ka) a<Hr(%)(ka>)

m

ay HY (ka) H,‘%)’(ka)]
2 S\ HD k) H(ka) )

(36.23)

Here the prime denotes the derivative with respect to thenaegit of the Hankel
functions. Let us introduce the abbreviation

_HPka HY (ka)

= - . (36.24)
HPka)  HY(ka)
We apply the Watson contour method to (36.23)
a; +x a; 1 e—iwr
dk) = — =—=Qpdv—x,. 36.25
® =2 m;m Xm = oni 2i 9§ Y Sinpn)* (36.25)

Here the contou€ encircles in a counter-clockwise manner a small semiifinit
strip D which completely covers the realaxis but which only has a small finite
extent into the positive and negative imaginargirection. The contou€ is then
split up in the path above and below the realxis such that

a +oo+ie e—iwr +oo—ie e—iV”
i) = Ari {j:ooﬂe dr Sin(wr)Xv - f—oo—ie & Sin(WT)XV} .

Then, we perform the substitution— —v in the second integral so as to get

a +oo+i€ —ivr e+iWT
) = 72 {fm Y Sinem" " Y sinem }

a +oo+ie eZiwr +00
- 2 dy———y, dvy, b 36.26
o { f_mie \% 1—e2'V”X +j:oo VX } ( )

where we used the fact that, = y,. The contour in the last integral can be de-
formed to pass over the reakxis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassicak., under the
assumptiorka > 1. As the two contributions in the last line of (36.26Jfdr by
the presence or absence of the Watson denominator, theljavel to be handled
semiclassically in dferent ways: the first will be closed in the upper complex
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plane and evaluated at the polegpfthe second integral will be evaluated on the
realv-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles @f, in the upper complex
plane are given by the zeros BfY(ka) which will be denoted by, (ka) and by
the zeros OHSZ)(ka) which we will denote by-v,(ka), £ = 1,2,3,---. In the Airy
approximation to the Hankel functions they are given by

ve(ka)
—ve(ka)

ka+ia(ka) , (36.27)
—ka+i(a k) = - (ve(k'a)" (36.28)

with

le(ka) = é3(6) G- e (ka) 180 70ka|- 30

3 4
+ é%(g) 1 (quf— 2814, ] T (36.29)

ka/ 3150( 62 180-68

Hereq, labels the zeros of the Airy integral
Ag) = f dr cos@rr — 73) = 3 ¥37Ai(-37Y3) ,
0

with Ai(2) being the standard Airy function; approximatety, ~ 6%3[3x(¢ —
1/4)]%2/2. In order to keep the notation simple, we will abbreviate= v,(ka)
andvy, = v¢(kd). Thus the first term of (36.26) becomes finally

(o8]

a +oo+ie e2iwr ezi,,m e—2i17m
—<2 dv ———y,; =2a : — .
27” { j:oo+i5 v 1 — 62"’” X } ; (1 — e2|V[’7T + 1 — e—2IV[7T)

In the second term of (36.26) we will insert the Debye apprations for the
Hankel functions:

HSl/z)(x) ~ S — exp(il VX2 —y2F ivarccos. ¥ |E) for |x| > v
VX2 =2 x 4
(36.30)
_ 2
HSl/Z)(x) ~ F o — exp(— V2 — X2 + vArCCOShZ) for|x <v.
T Vv2 — X2 X

Note that fory > kathe contributions iny, cancel. Thus the second integral of
(36.26) becomes

+00 +ka
%f dv y, 2 dv( 2) d (Vk2a2—v2—varccos—)

27 a dk ka

2
- ——f dv vVikeaZ — 2 + - :—%k+---, (36.31)
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where- - - takes care of the polynomial corrections in the Debye appration
and the boundary correction terms in thmtegration.

In summary, the semiclassical approximatiord(k) reads

g eziV[ﬂ' e—2i17[7r a2
d(k) = ZaZ; (1_ e e_zwm) - Sk
(=

Using the definition of the time delay (36.22), we get thedaihg expression for
detSt(ka):

In detS'(ka) — I(I(imo In detSt(koa) (36.32)

k ~ o0 j2rve(ka) ~i27v;(ka)
:27riafdk —a—k+22 el_ — + © — +
0 2 = 1—g2veka) 1 - gi2o(ka)

~ —27riN(k)+2i fo ik d% {~In (1-62 ) 1 |n (1-g 2@ 4 ...
=1

where in the last expression it has been used that semhziﬂysﬁ—kw(ka) ~
%ﬂ(ka) ~ a and that the Weyl term for a single disk of radiasgoes like
N(k) = 7a?k?/(4n) + --- (the next terms come from the boundary terms in the
v-integration in (36.31)). Note that for the lower limikyg — 0, we have two
simplifications: First,

~Hi/(ko?)
lim St a) = lim —m " = 1x6 vm, m/
Ko—0 mI’H(kO) ko0 Hr(%)(koa) mm mm

Il
=

; 1
- kl(!TOdetS (kod)
Secondly, fokyg — 0, the two terms in the curly bracket of (36.32) cancel.

36.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the detemtS'(ka) is given
by

e, (1 _ e—2im7[(ka))2
e, (1- ezim(ka))Z ’

detS!(ka) ~ eZNK (36.33)

with
vi(ka) = ka+iaika = ka+ei™3(ka/6) 3+
ve(ka) = ka-—i(ae(k@)* = ka+e™3(ka/6)Y3q, + -
= (ve(k@)*
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Figure 36.2: Right- and left-handed fractive
creeping paths of increasing mode numbeor
a single disk.
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andN(ka) = (7a’k?)/4x + --- the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues imifteinterior. From
the point of view of the scattering particle, the interiomukins of the disks are
excluded relatively to the free evolution without scatigrobstacles. Therefore
the negative sign in front of the Weyl term. For the same neate subleading
boundary term has here a Neumann structure, although tke kigve Dirichlet
boundary conditions.

Let us abbreviate the r.h.s. of (36.33) for a dss&s

2 ZX(K'as) ZS(kas)’
Z (kas) Z'(kas)

detS°(kag) ~ (e7™Nka)) (36.34)

whereZ?(kas) andZ?(kas) are thediffractional zeta functions (here and in the fol-
lowing we will label semiclassical zeta functionsth diffractive corrections by a
tilde) for creeping orbits around theth disk in the left-handed sense and the right-
handed sense, respectively (see figure 36.2). The two atiens$ of the creeping
orbits are the reason for the exponents 2 in (36.33). Equ#86.33) describes
the semiclassical approximation to the incoherent gathé curly bracket on the
r.h.s.) of the exact expression (36.19) for the case thatdaterers are disks.

In the following we will discuss the semiclassical resoremnin the 1-disk
scattering problem with Dirichlet boundary condition®. ithe so-called shape
resonances. The quantum mechanical resonances are theptileS-matrix in
the complexk-plane. As the 1-disk scattering problem is separableSthsatrix
is already diagonalized in the angular momentum eigenlzasistakes the sim-
ple form (36.9). The exact quantummechanical poles of ta#esing matrix are
therefore given by the zerdg’; of the Hankel functiondHP(ka) in the lower
complexk plane which can be labeled by two indicesandn, wherem denotes
the angular quantum number of the Hankel function and a radial quantum
number. As the Hankel functions have to vanish at spekifialues, one cannot
use the usual Debye approximation as semiclassical appabixin for the Hankel
function, since this approximation only works in case thalkéh function is dom-
inated by only one saddle. However, for the vanishing of thekel function, one
has to have the interplay of two saddles, thus an Airy appratibn is needed as
in the case of the creeping poles discussed above. The Aprpaipnation of the
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Hankel functionHﬁl)(ka) of complex-valued index reads

2 6 1/3
M) ~ 2 () A
/s

with
qP = g% (2)1/3 (v—-ka+0 ((ka)‘l)
ka .

Hence the zeros, of the Hankel function in the complex plane follow from
the zerogy, of the Airy integral A(q) (see (36.3). Thus if we set = m (with m
integer), we have the following semiclassical conditiorkf

m ~ Kk®a+ia,(K®%)
Y ) Y LN I A S PO
6 ¢ kesa] 180  70kesa 30
5
L oaa( 8V L (2% 281q; .
kesa) 3150( 62 180- 63 ’
withl=1,2,3,---. (36.35)

For a given index this is equivalent to

0~ 1 gike-an2m

the de-Broglie condition on the wave function that encsdliee disk. Thus the
semiclassical resonances of the 1-disk problem are givehebyeros of the fol-
lowing product

(o)

1—[ (1 _ e(ik—a/)Zna) ,

=1

which is of course nothing else thﬁ]-disk(k), the semiclassical firaction zeta
function of the 1-disk scattering problem, see (36.34). eNbat this expression
includes just the pure creeping contribution and no gengieemetrical parts.
Because of

HO (k) = (-1)"H{M(ka),

the zeros are doubly degeneratenif: 0, corresponding to right- and left handed
creeping turns. The case = 0 is unphysical, since all zeros of the Hankel func-
tion H(()l)(ka) have negative real value.
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Figure 36.3: The shape resonances of the 1-disk
system in the complek plane in units of the disk
radiusa. The boxes label the exact quantum me-
chanical resonances (given by the zerosig(ka)
form = 0, 1, 2), the crosses label thefftactional
semiclassical resonances (given by the zeros of
the creeping formula in the Airy approximation
(36.35) up to the orded([ka]“/?)).

QM (exac
Semiclass.(creeping): +

Imk [1/a]
ot

4
Re k[l/a]

Figure 36.4: Same as in figure 36.3. However,
the subleading terms in the Airy approximation
(36.35) are taken into account up to the order
O([ka]~*'3) (upper panel) and up to ordé¥[ka] )
(lower panel).

QM (exacty: © QM (exacty: ©

Imk [Va)
Imk [Va)

Semiclass. creeping (w. 1st Airy corr.): + Semiclass. creeping (w. 2nd Airy corr.): +

a 5 B 7 8 “o 1 2 3 a 5 B 7
Rek[1/a] Rek[1/a]

From figure 36.3 one notes that the creeping terms in the Adgr@)([ka]/3),
which are used in the Keller construction, systematicaligarestimate the magni-
tude of the imaginary parts of the exact data. However, teepng data become
better for increasing Reand decreasingmk|, as they should as semiclassical
approximations.

In the upper panel of figure 36.4 one sees the change, wherexterder
in the Airy approximation (36.35) is taken into account. Tdmproximation is
nearly perfect, especially for the leading row of resonanc&he second Airy
approximation using (36.35) up to ordé[ka]~!) is perfect up to the drawing
scale of figure 36.4 (lower panel).
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Figure 36.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed.

ltinerary: . .
izl
’

36.4 From quantum cycleto semiclassical cycle

The procedure for the semiclassical approximation of agéperiodic itinerary
(36.20) of lengthn is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods depebbfor the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

S1S2, .. ASmSL — S1%2 . ASmSL
trA A= ) 2> AL, AL

|51:—c>o lgm=—00

still has the structure of a “multi-trace” with respect t@atar momentum.

Each of the squ]f;’:_oo — as in the 1-disk case — is replaced byvatson
contourresummation in terms of complex angular momenwymThen the paths
below the real s -axes are transformed to paths above these axes, and tpealste
split into expressionsvith andwithoutan explicit Watson sing r) denominator.

1. In the sin¢sm) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate theesspn in
the saddle point approximation: either left or rigdiecular reflectiorat
disks or ghost tunnelinghrough disks result.

2. For the sings ) -dependent integrals, we close the contour in the upgper
plane and evaluate the integral at the resi&lﬁ?(kas):o. Then we use
the Airy approximation fon]vS (kag) and Hg)(kas): left and rightcreeping
pathsaround disks result.

In the above we have assumed that no grazing geometricad ppftear. If
they do show up, the analysis has to be extended to the casgmintiding saddles
between the geometrical paths witf2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contdcthe point particle
with the disks:

1. either geometrical which in turn splits into three altgives

multscat - 25jul2006 ChaosBook.org version14, Dec 31 2012



CHAPTER 36. CHAOTIC MULTISCATTERING 702

(a) specular reflectiorto the right,
(b) specular reflectiorto the left,

(c) or ‘ghost tunneling’where the latter induce the nontrivial pruning
rules (as discussed above)

2. orright-handed creeping turns

3. orleft-handed creeping turns

see figure 36.5. The specular reflection to the right is lirtkdéft-handed creep-
ing paths with at least one knot. The specular reflection ¢oléffit matches a
right-handed creeping paths with at least one knot, wheteashortest left- and
right-handed creeping paths in the ghost tunneling casepodogically trivial.
In fact, the topology of the creeping paths encodes the ehwétween the three
alternatives for the geometrical contact with the disk. sTisi the case for the
simple reason that creeping sections have to be positivaitdefin length: the
creeping amplitude has to decrease during the creepinggspas tangential rays
are constantly emitted. In mathematical terms, it meanisth@acreeping angle
has to be positive. Thus, the positivity of ttveo creeping angles for the shortest
left andright turn uniquely specifies the topology of the creepinctisas which
in turn specifies which of the three alternatives, eithercsfzg reflection to the
right or to the left or straight “ghost” tunneling throughsHlij, is realized for the
semiclassical geometrical path. Hence, the existence ofcue saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in théofwing to the scat-
tering fromN < oo non-overlappinglisksfixed in the 2-dimensional plane. The
semiclassical approximation of the periodic itinerary

trASI2A SRS ... AS-15 ASSL

becomes a standard periodic orbit labeled by the symboksegs; s, - - - $,. De-
pending on the geometry, the individual legs, — § — S.1 result either from a
standard specular reflection at dlor from a ghost path passing straight through
disk 5. If furthermore creeping contributions are taken into artpthe symbolic
dynamics has to be generalized from single-letter symiisglso triple-letter sym-
bols {s, i x ¢} with ¢ > 1 integer valued and = 0, +1 ! By definition, the
valueo; = 0 represents the non-creeping case, such{thdtx ¢} = {s,0} = {s}
reduces to the old single-letter symbol. The magnitude obrzerof; corre-
sponds to creeping sections of mode numbgmwhereas the sigor; = =1 signals
whether the creeping path turns around the digk the positive or negative sense.
Additional full creeping turns around a diskcan be summed up as a geometrical
series; therefore they do not lead to the introduction ofrthér symbol.
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Figure 36.6: (a) The ghostitinerary (2, 3,4). (b)

The parent itinerary (B, 4). °

36.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, sayk discan be shown to
have the same weight as the corresponding itinerary withwis th symbol.
Thus, semiclassically, they cancel each other in the fr 44) expansion, where
they are multiplied by the permutation factofr with the integemr counting the
repeats. For example, let,@ 3,4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order trad¥.trBy convention,
an underlined disk index signals a ghost passage (as in f8fu6a), with cor-
responding semiclassical ghost traversal matrices alderlined, AM*1AIFLI1+2.
Then its semiclassical, geometrical contribution to tdlr(A) cancels exactly
against the one of its “parent” itinerary,@ 4) (see figure 36.6b) resulting from
the 3rd-order trace:

—% (4A1’2A2’3A3’4A4’1) _ % (3A1,3A3,4A4,1)

= (+1-1)A%A3A%t =0,

The prefactors-1/3 and—-1/4 are due to the expansion of the logarithm, the fac-
tors 3 and 4 inside the brackets result from the cyclic peatiarn of the periodic
itineraries, and the cancellation stems from the rule

o AVEIALRLIFZ ...(_Ai,i+2)... ) (36.36)

The reader might study more complicated examples and comviarself that the
rule (36.36).is sfiicient to cancel any primary or repeated periodic orbit witk o
or more ghost sections completely out of the expansion of(fr+ A) and there-
fore also out of the cumulant expansion in the semiclaséiwat: Any periodic
orbit of lengthm with n(< m) ghost sections is cancelled by the sum of all ‘par-
ent’ periodic orbits of lengtim — i (with 1 < i < nandi ghost sections removed)
weighted by their cyclic permutation factor and by the pceda resulting from
the trace-logexpansion. This is the way in which the nontrivial pruning fioe
N-disk billiards can be derived from the exact quantum meiclahexpressions
in the semiclassical limit. Note that there must exist astieme index in any
given periodic itinerary which corresponds to a non-ghost section, sirthere
wise the itinerary in the semiclassical limit could only lieaght and therefore
nonperiodic. Furthermore, the series in the ghost canoeléias to stop at the
2nd-order trace, #h?, as trA itself vanishes identically in the full domain which
is considered here.

1Actually, these are double-letter symbolsoasandl; are only counted as a product.
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36.5 Heisenberg uncertainty

Where is the boundarya ~ 2™1L/a coming from?

This boundary follows from a combination of the uncertaiptinciple with
ray optics and the non-vanishing value for the topologicatapy of the 3-disk
repeller. When the wave numbleis fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topologicalesn. The quantum wave
packet which explores the repelling set has to disentangl@ifierent sections
of sized ~ a/2" on the “visible” part of the disk surface (which is of ord&r
between any two successive disk collisions. SuccessiNisiook are separated
spatially by the mean flight length, and the flux spreads with a factbya. In
other words, the uncertainty principle bounds the maxireakible truncation in
the cycle expansion order by the highest quantum resolatitamable for a given
wavenumbek.

Commentary

Remark 36.1 Sources. This chapter is based in its entirety on ref. [J.1]; the reade
is referred to the full exposition for the proofs and diseoisof details omitted here.
sect. 36.3 is based on appendix E of ref. [J.1]. We follow Ef@5.19] in applying the
Watson contour method [35.20] to (36.23). The Airy and Deagproximations to the
Hankel functions are given in ref. [35.21], the Airy expamsdf the 1-disk zeros can be
found in ref. [35.22].For details see refs. [35.19, 35.2223, J.1]. That the interior do-
mains of the disks are excluded relatively to the free evmiutithout scattering obstacles
was noted in refs. [35.24, 35.15].

The procedure for the semiclassical approximation of a iggnEeriodic itinerary
(36.20) of lengthn can be found in ref. [J.1] for the case of thedisk systems. The
reader interested in the details of the semiclassical temucs advised to consult this
reference.

The ghost orbits were introduced in refs. [35.12, 35.24].

Remark 36.2 Krein-Friedel-Lloyd formula. In the literature (see, e.g., refs. [35.14,
35.15] based on ref. [35.11] or ref. [35.1]) the transitisanfi the quantum mechan-
ics to the semiclassics of scattering problems has beeprpeztl via the semiclassical
limit of the left hand sides of the Krein-Friedel-Lloyd sumrfthe (integrated) spectral

density [J.5, J.6, 35.8, 35.9]. See also ref. [35.13] for aeno discussion of the Krein-

Friedel-Lloyd formula and refs. [35.1, 35.17] for the contien of (35.17) to the Wigner

time delay.

The order of the two limits in (35.18) and (35.17) is essénsiee e.g. Balian and
Bloch [35.11] who stress that smoothed level densities Ishmeiinserted into the Friedel

sums.

The necessity of theie in the semiclassical calculation can be understood by purel
phenomenological considerations: Without théerm there is no reason why one should
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be able to neglect spurious periodic orbits which solelytheee because of the introduc-

tion of the confining boundary. The subtraction of the sec@mpty) reference system

helps just in the removal of those spurious periodic orbhgv never encounter the scat-

tering region. The ones that do would still survive the finstit b — oo, if they were not

damped out by theie term. exercise 35.1

Remark 36.3 T, C3, DS and AS® matrices are trace-class Inrefs. [J.1] it has explic-
itly been shown that th&-matrix as well as th€s, DS andASS -matrices of the scattering
problem fromN < oo non-overlapping finite disks are all trace-class. The apoeding
properties for the single-disk systems is particulary éagyove.
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