Chapter 5

Cycle stability

and the ways in which the orbits intertwine— are invariandema general

continuous change of coordinates. Surprisingly, there elsst quantities
that depend on the notion of metric distance between pdintsnevertheless do
not change value under a smooth change of coordinates. hoealities such
as the eigenvalues of equilibria and periodic orbits, ambajl quantities such
as Lyapunov exponents, metric entropy, and fractal dinoessare examples of
properties of dynamical systems independent of coordicfabéee.

TOPOLOGICAL reaTURES Of @ dynamical system —singularities, periodic orbits,

We now turn to the first, local class of such invariants, Im&ability of pe-
riodic orbits of flows and maps. This will give us metric infieation about local
dynamics, as well as the key concept, the concept rdighborhoodof a point
X : its size is determined by the number of expanding diresti@nd the rates
of expansion along them: contracting directions play ondeeondary role. (see
sect. 5.4).

If you already know that the eigenvalues of periodic orbitsiavariants of a
flow, skip this chapter.

fast track:
W chapter 7, p. 127

5.1 Stability of periodic orbits °

X

As noted on page 40, a trajectory can be stationary, periadaperiodic. For
chaotic systems almost all trajectories are aperiodicentiesless, equilibria and
periodic orbits turn out to be the key to unraveling chaogoamics. Here we
note a few of the properties that make them so precious tocsishe
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An obvious virtue of periodic orbits is that they a@pologicalinvariants: a
fixed point remains a fixed point for any choice of coordinatesd similarly a
periodic orbit remains periodic in any representation & dynamics. Any re-
parametrization of a dynamical system that preservesptdagy has to preserve
topological relations between periodic orbits, such as tieéative inter-windings
and knots. So the mere existence of periodic orbifEc®s to partially organize
the spatial layout of a non—wandering set. No less impar@sitwe shall now
show, is the fact that cycle eigenvalues aretricinvariants: they determine the
relative sizes of neighborhoods in a non—-wandering set.

We start by noting that due to the multiplicative structu4e39) of Jacobian
matrices, the Jacobian matrix for thih repeat of a prime cyclp of periodT, is

ITo(x) = ITe(F0To(x) - ITo(FT(x9)ITP(%) = Jp(¥)" 61
where Jp(x) = JTr(X) is the Jacobian matrix for a single traversal of the prime
cycle p, x € My is any point on the cycle, antiTe(x) = x as f'(x) returns tox

every multiple of the period’,. Hence, it sfices to restrict our considerations to
the stability of prime cycles.

fast track:
W sect. 5.2, p. 104
5.1.1 Floquet vectors

When dealing with periodic orbits, some of the quantitieeady introduced in-

herit names from the Floquet theory offérential equations with time-periodic
codficients. Consider the equation of variations (4.2) evatlatea periodic orbit

p,

ox=AM)S6X,  Al) = AX(V) = At +Tp). (5.2)

TheT, periodicity of the stability matrix implies that &x(t) is a solution of (5.2)
then alsasx(t + Tp) satisfies the same equation: moreover the two solutions are
related by (4.6)

Sx(t+Tp) = Ip(X) 6X(1). (5.3)

Even though the Jacobian matrig(x) depends uporx (the ‘starting’ point of
the periodic orbit), we shall show in sect. 5.2 that its eigdues do not, so we
may write for its eigenvectord)) (sometimes referred to as ‘covariant Lyapunov
vectors,’ or, for periodic orbits, as ‘Floquet vectors’)

3N = Ap (), Apy=oPelTo. (5.4)
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Where/l(p” = g(pj) + iwg) ando-(,)j) are independent of. WhenA; is real, we do
care aboutr(p') = Apj/IApjl € {+1,-1}, the sign of thejth Floquet multiplier.
If o) =
hyperbolic Keeping track of this by case-by-case enumeration is aragssary
nuisance, so most of our formulas will be stated in termseRloquet multipliers

Aj rather than in the terms of the multiplier sign§’, exponentg)) and phases
(1)
w.

Expandsx in the (5.4) eigenbasisix(t) = X ox;(t) e, el = e(x(0)).
Taking into account (5.3), we get thét;(t) is multiplied byA j per each period

SX(t+Tp) = " oxi(t+Tp e = 3" Apjox(t) e
i i

We can absorb this exponential growtbontraction by rewriting the cdigcients
oxj(t) as

s = e®tui),  u0)=6x(0),

with u;(t) periodicwith periodT . Thus each solution of the equation of variations
(4.2) may be expressed in the Floquet form

ax) = eWtumed. Ui+ Tp) = uj(y). (5.5)
j

The continuous timé appearing in (5.5) does not imply that eigenvalues of the
f ; ; i lieati 1) I ) BN ()]

Jacobian matrix enjoy any multiplicative property for rT,: Ay’ = up’ + iwp

refer to a full traversal of the periodic orbit. Indeed, vehil(t) describes the

variation ofsx(t) with respect to the stationary eigen-frame fixed by eigetors

at the pointx(0), the object of real interest is the co-moving eigen-featefined

below in (5.13).

5.1.2 Floquet matrix eigenvalues and exponents

The time-dependent-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hencenfrmw on we shall
refer to a Jacobian matrix evaluated on a periodic orbieeiéls aFloquet matrix

or amonodromy matrixto its eigenvalues\, j as Floquet multipliers (5.4), and
to /l(p’) = u(pl) + iw(p” as Floquet or characteristic exponents. We sortRloguet
multipliers{Ap1, Ap2, ..., Apg} of the [dxd] Floquet matrixJ, evaluated on the
p-cycle into setge, m, ¢}

expanding:  {Ale = {Apj:|Apj|>1}
marginal:  {Alm = {Apj:|Apj|=1) (56)
contracting: ~ {Ale = {Apj:|Apj| < 1.
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-1 and/lg) # 0, the corresponding eigen-direction is said tdrberse section 7.3
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Figure 5.1: For a prime cyclep, Floquet matrix
J, returns an infinitesimal spherical neighborhood of
X € M, stretched into an ellipsoid, with overlap ra-
tio along the eigendirectios” of Jy(X) given by the
Floquet multiplierlA . These ratios are invariant un-
der smooth nonlinear reparametrizations of state spag
coordinates, and are intrinsic property of cyple

X O

Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory’(t), except those on its center
and stable manifolds.

and denote by\, (no jth eigenvalue index) the product ekpandingFlogquet
multipliers

Ap=] ] Ape. 6.7)

As Jp is a real matrix, complex eigenvalues always come in comptjugate
pairs,Apjs1 = Ay SO the product (5.7) is always real.

The stretchinrontraction rates per unit time are given by the real parts of
Flogquet exponents

i 1
,U(;;) = T_p In |Ap,i| . (5.8)

The factor IT, in the definition of the Floquet exponents is motivated by its
form for the linear dynamical systems, for example (4.18)ell as the fact that
exponents so defined can be interpreted as Lyapunov exso{ién88) evaluated

on the prime cyclg. Asin the three cases of (5.6), we sort the Floquet exponents

A = p +iwinto three sets section 17.4

expanding:  {1le = {/lg) : /ug) > 0}
marginal: {Am = {/lg) : ,ug) =0}
contracting: {Ae = {/1(;) : ,ug) <0}. (5.9)
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A periodic orbit of a continuous-time flow, or of a map, or a fixaoint of a
map is p. 85

stable asinkor alimit cycleif all |Aj| < 1 (real parts of all of its Floquet
exponents, other than the vanishing longitudinal expofwergerturbations
tangent to the cycle, explained in sect. 5.2.1, are striwglyative ) < 0).

hyperbolicor a saddle, unstable to perturbations outside its stabffohd
if some|Aj| < 1, and otheiAj| > 1 (a set of-u > umin > 0 is strictly
positive, the rest is strictly negative).

elliptic, neutralor marginalif all |Aj| = 1 @® = 0).

partially hyperbolic if x = 0 for a subset of exponents (other than the
longitudinal one).

repelling or asource unstable to any perturbationadl |A;| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal eepbare strictly
positive,u® > ymin > 0).

The region of system parameter values for which a perioditt gris stable
is called thestability windowof p. The setM,, of initial points that are asymp-
totically attracted tgp ast — +oo (for a fixed set of system parameter values) is
called thebasin of attractionof p. Repelling and hyperbolic cycles are unstable

to generic perturbations, and thus said taibstable see figure 5.2. section 7.4

If all Floquet exponents (other than the vanishing longitudinabaent) of
all periodic orbits of a flow are strictly bounded away from zettee flow is
said to behyperbolic Otherwise the flow is said to beonhyperbolic A con-
fined smooth flow or map is generically nonhyperbolic, withtiphellipticity or
marginality expected only in presence of continuous symegtor for bifurca-
tion parameter values. As we shall see in chapter 10, in pcesef continuous
symmetries equilibria and periodic orbits are not likelyusions, and their role
is played by higher-dimensional, toroidal, relative eitpiia and relative periodic
orbits. For Hamiltonian flows the Sgi(symmetry (Liouville phase-space volume
conservation, Poincaré invariants) leads to a prolifenaof elliptic and partially
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A critical point X is a value of x for which the mapping f(X) has vanishing
derivative, f'(X;) = 0. A periodic orbit of a 1-dimensional map is stable if

Aol = [ 00, f Onpea) -+ £ 0 (x0)] < 1,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope Ap of the nth iterate f"(X) evaluated
on a periodic point X (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1,
p-cycle is unstable.

Example 5.2 Stability of cycles for maps: No matter what method one uses to
determine unstable cycles, the theory to be developed here requires that their Floquet
multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated by
picking any periodic point as a starting point, running once around a prime cycle, and
multiplying the individual periodic point Jacobian matrices according to (4.47). For
example, the Floquet matrix My, for a Hénon map (3.17) prime cycle p of length ny is
given by (4.48),

M()—ﬁ —2a% b eM
p(Xo) = 1 o]l X ps

k=np

and the Floquet matrix My, for a 2-dimensional billiard prime cycle p of length n,

wo=cor[1(5 )2 9)

k=np

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(x1) = M(Xq,)---M(x1). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see
exercise 13.13.

5.2 Floquet multipliers are invariant

e\
hyperbolic tori. section 7.5 Q
The 1-dimensional map Floquet multiplier (5.10) is a prdcafcderivatives over

Example 5.1 Stability of cycles of 1-dimensional maps: The stability of a prime fa” points around t_h(_%.CyCIe’ and 'S‘ therefgre Inerendeml’mth periodic point
cycle p of a 1-dimensional map follows from the chain rule (4.46) for stability of the npth is chosen as the initial one. In higher dimensions the forrthefFloquet ma-
iterate of the map trix Jp(Xo) in (5.1) does depend on the choice of coordinates and ttialipoint
Xo € Mp. Nevertheless, as we shall now show, the cyellequet multipliers
d ., M-l , " are intrinsic property o_f a cycle in any dimension. Consitferith eigenvalue,
Ap= Ef *(X0) = "]:([) F'0m), Xm = F7(0) - (5.10) eigenvector pair/p;, €) computed fromJ, evaluated at a periodic poist
Ay is a property of the cycle, not the initial periodic point, as taking any periodic point Jp(x) e(i)(x) = Api e“)(x) . Xe M. (5.11)

in the p cycle as the initial one yields the same Ap.
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Consider another point on the cycle at tindater, X' = f'(x) whose Floguet matrix
is Jp(X). By the semigroup property (4.39)7»*t = J%Tr, and the Jacobian
matrix atx’ can be written either as

ITH(x) = 3T (x) I = Jp(x) 3(¥).

or J'(X) Jp(X). Multiplying (5.11) by J'(x), we find that the Floguet matrix evalu-
ated atx’ has the same Floquet multiplier,

() V() = Api (), V(x)=3(xe(x), (5.12)

but with the eigenvectoe®) transported along the flow — x to e')(x) =
Ji(x) e (x). Hence, in the spirit of the Floquet theory (5.5) one canrgefime-
periodic unit eigenvectors (in a co-moving ‘Lagrangiamfeg)

) = e W1 3 eD), () =ed(x1). xt)eMp. (5.13)

Jp evaluated anywhere along the cycle has the same set of Flogugpliers

{Ap1,Ap2, -+ 1+ . Apg-1}. As quantities such as Jp(x), detJp(x) depend
only on the eigenvalues af,(x) and not on the starting point in expressions
such as de(tl - J[)(X)) we may omit reference te,

det(1- Jp) = det(1- Jy(x) foranyxe M. (5.14)

We postpone the proof that the cycle Floquet multiplierssam@oth conjugacy
invariants of the flow to sect. 6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either ancamits symmetry of the

flow (which one should immediately exploit to simplify theoptem), or a non-

hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical

of parameter values for which bifurcations occur) one hagadeyond linear

stability, deal with Jordan type subspaces (see examp)eah8 sub-exponential

growth rates, such d8. chapter 24

exercise 5.1

For flow-invariant solutions such as periodic orbits, thegievolution is itself

a continuous symmetry, hence a periodic orbit of a flow alwegs amarginal

Floquet multiplier

As JY(x) transports the velocity field(x) by (4.7), after a complete period

Jp(V(¥) = v(X), (5.15)
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so for a periodic orbit of dowthe local velocity field is always has an eigenvector
ell(x) = v(x) with the unit Floquet multiplier,

Ap=1, AV =o. (5.16)
exercise 6.3

The continuous invariance that gives rise to this margifhadjiret multiplier is the
invariance of a cycle (the sétl,) under a translation of its points along the cycle:
two points on the cycle (see figure 4.2) initially distaoeapart,x’'(0) — x(0) =
6x(0), are separated by the exactly samafter a full periodT,. As we shall see
in sect. 5.3, this marginal stability direction can be eliated by cutting the cycle
by a Poincaré section and eliminating the continuous flavgéét matrix in favor
of the Floquet matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltoniawe, ¢hergy is con-
served, and that leads to an additional marginal Floquetiplial (we shall show
in sect. 7.4 that due to the symplectic invariance (7.27)ewgnvalues come in
pairs). Further marginal eigenvalues arise in presencerdfrmious symmetries,
as discussed in chapter 10.

5.3 Stability of Poincaré map cycles

©

(R. Paskauskas and P. Cvitanovic)

If a continuous flow periodic orbip pierces the Poincaré sectighonce, the
section point is a fixed point of the Poincaré return riapith stability (4.52)

s Vi Uk
Jij = (5ik - W) ka s (5.17)

with all primes dropped, as the initial and the final pointgicimle, X' = fTr(x) =
x. If the periodic orbitp pierces the Poincaré sectintimes, the same observation
applies to thenth iterate ofP.

We have already established in (4.53) 'Ehat the velodiyy is a zero eigen-
vector of the Poincaré section Floquet matdx; = 0. Consider nextAp,q. e(”)),

the full state spaceth (eigenvalue, eigenvector) pair (5.11), evaluated atra pe
odic point on a Poincaré section,

I () = Ap €D(x), xeP. (5.18)

Multiplying (5.17) by e and inserting (5.18), we find that the full state space
Floquet matrix and the Poincaré section Floquet matrave the same Floquet
multiplier

J &) = A, 8%, xeP, (5.19)
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where&® is a projection of the full state space eigenvector onto thiedarée
section:

A Vi Uy o
@i = (‘5|k o U))(e‘ re (5.20)

Hence,jp evaluated on any Poincaré section point along the gytlas the same
set of Floquet multiplier$Ap 1, Ap2, - - - Ap g} as the full state space Floquet ma-
trix Jp, except for the marginal unit Floquet multiplier (5.16).

As established in (4.53), due to the continuous symmetrr}e(t'nvariance)ip
is a rankd—1 matrix. We shall refer to any such rankdf{1—N)x (d—1-N)]
submatrix withN — 1 continuous symmetries quotiented out as ri@nodromy
matrix M, (from Greekmono-= alone, single, andiromo = run, racecourse,
meaning a single run around the stadium). Quotienting ooaotis symmetries is
discussed in chapter 10 below.

5.4 There goes the neighborhood

’ e
In what follows, our task will be to determine the size afeighborhoodf x(t), Q

and that is why we care about the Floguet multipliers, ane@afly the unstable
(expanding) ones.

Nearby points aligned along the stable (contracting) tivas remain in the
neighborhood of the trajectory(t) = f!(xo); the ones to keep an eye on are the
points which leave the neighborhood along the unstabletitires: all chaos arises
from flights along these these directions. The sub-volutig| = [T Ax; of the
set of points which get no further away froff(xo) thanL, the typical size of the
system, is fixed by the condition that;A; = O(L) in each expanding direction
i. Hence the neighborhood size scale$fs,| o« O(Lde)/lAp| oc 1/|Apl whereAp
is the product of expanding Floquet multipliers (5.7) ordgntracting ones play
a secondary role. Discussion of sect. 1.5.1, figure 1.9, andlfi5.1 illustrate
intersection of initial volume with its return, and chapté&2 and 18 illustrate the
key role that the unstable directions play in systematicpdirtitioning the state
space of a given dynamical system. The contracting dinestae so secondary
that even infinitely many of them (for example, the infinityaaintracting eigen-
directions of the spatiotemporally chaotic dynamics dbscrby a PDE will not
matter.

So the dynamically important information is carried by thganding sub-
volume, not the total volume computed so easily in (4.42atThalso the reason
why the dissipative and the Hamiltonian chaotic flows are mmore alike than
one would have naively expected for ‘compressihlg’ ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding drect Whether the
contracting eigenvalues are inverses of the expanding @nest is of secondary
importance. As long as the number of unstable directionsitefithe same theory
applies both to the finite-dimensional ODEs and infinite-ligsional PDESs.

invariants - 7oct2011 ChaosBook.org version14, Dec 31 2012

CHAPTER 5. CYCLE STABILITY 108

Résum é

Periodic orbits play a central role in any invariant chaggeation of the dynam-
ics, because (a) their existence and inter-relations aopalogical coordinate-
independent property of the dynamics, and (b) their Flogudtipliers form an

infinite set ofmetric invariants The Floquet multipliers of a periodic orbit remaisection 6.6

invariant under any smooth nonlinear change of coordinatesho f oh™t . Let
us summarize the linearized flow notation used throughaiCtaosBook.

Differential formulation, flows:
X=v, ox = AdX

governs the dynamics in the tangent bundigsk) € T M obtained by adjoining
the d-dimensional tangent spaé& € T My to every pointx € M in the d-dim-
ensional state spacsél c RY. The stability matrix A = dv/dx describes the
instantaneous rate of shearing of the infinitesimal neigimd of x(t) by the
flow.

Finite time formulation, maps: A discrete sets of trajectory pointgo, xq, - - -,
Xn,---} € M can be generated by composing finite-time maps, either gigen
Xn+1 = F(Xn), Or obtained by integrating the dynamical equations

the1
o = f0) =30+ [ drvio). (5.21)
th
for a discrete sequence of timigg t1, - - -, tn, - - -}, Specified by some criterion such

as strobing or Poincaré sections. In the discrete timedtation the dynamics in
the tangent bundlex(6x) € T M is governed by

Xne1 = F00). O%Xne1 = I(X) 0%n,  I(%n) = I (xy)

whereJ(Xn) = 0Xn1/0% = fd‘r exp (A1) is the Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibrium(xeQ) =

0is described by the eigenvalues and eigenve¢ishs e} of the stability matrix
A evaluated at the equilibrium point, and the linear stapiiit a periodic orbit
fT(X) = x, xe Mp,

3N = Ap (), Apy=oPelTo,
by its Floquet multipliers, vectors and exponefts, €}, where/lg) = y(pj) +

iwg) For every continuous symmetry there is a marginal eigegetion, with
Apj=1, /l(p’) = 0. With all 1+ N continuous symmetries quotiented out (Poincaré
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sections for time, slices for continuous symmetries of dyica, see sect. 10.4)
linear stability of a periodic orbit (and, more generally,aopartially hyperbolic
torus) is described by thed{1-N) x (d-1-N)] monodromy matrix, all of whose
Floguet multipliergAp j| # 1 are generically strictly hyperbolic,

Mp(X) €D(x) = Apj eD(x), X e Mp/G.

We shall show in chapter 11 that extending the linearizebilgtahyperbolic
eigen-directions into stable and unstable manifolds gi@ltportant global infor-
mation about the topological organization of state spachatwhatters most are
the expanding directions. The physically important infation is carried by the
unstable manifold, and the expanding sub-volume chaiaeteby the product of
expanding Floquet multipliers df,. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily higimension.

in depth: fast track:
” appendix B, p. 787 W chapter 9, p. 154
Commentary

Remark 5.1 Periodic orbits vs. ‘cycles’. Throughout this text, the terms ‘periodic
orbit’ and ‘cycle’ (which has many other uses in mathematce used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ iager on the ear than ‘pseudo-
periodic-orbit.’ In Soviet times obscure abbreviationgseva rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). Imgte mists of time is
the excitement experienced by the first physicist to discthe there are periodic orbits
other than the limit cycles reached by mindless computdtoward in time (many a
mathematician starting with Poincaré had appreciateg} that once one understands that
there are at most several stable limit cycles (SPOs?) assepo the Smale horseshoe
infinities of unstable cycles (UPOs?), what is gained by préfi? It is like calling all
bicycles 'unstable bicycles’ rather than ‘bicycles’.

Remark 5.2 Periodic orbits and Floquet theory. Study of time-dependent ani
periodic vector fields is a classical subject in the theorgifierential equations [5.1, 5.2].
In physics literature Floquet exponents often assunfiergint names according to the
context where the theory is applied: they are called Blocaspk in the discussion of
Schrddinger equation with a periodic potential [5.3], oagi-momenta in the quantum
theory of time-periodic Hamiltonians. For further readiog periodic orbits, consult
Moehlis and K. Jositq] Scholarpedia.org article.
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Exercises

5.1. A limit cycle with analytic Floquet exponent.

Ermentrout

There are only two examples of nonlinear flows for o ) )
which the Floguet multipliers can be evaluated ana5.2. The other example of a limit cycle with analytic Flo
lytically. Both are cheats. One example is the 2-  quet exponent. What is the other example o

dimensional flow

nonlinear flow for which the Floquet multipliers car
evaluated analytically? Hint: email G.B. Ermentrou

g = p+al-g-p)
p = —q+pl-?-pd). 5.3. Yet another example of a limit cycle with analyti
Floquet exponent. Prove G.B. Ermentrout wro
Determine all periodic solutions of this flow, and deter- by solving a third example (or more) of a nonlinear:
mine analytically their Floquet exponents. Hint: go to for which the Floquet multipliers can be evaluated
polar coordinatesy, p) = (r cost, r siné). G. Bard lytically.
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