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Geometry of chaos



E START ouT With a recapitulation of the basic notions of dynamics. Oun &
narrow; we keep the exposition focused on prerequisitebe@pplications to

be developed in this text. We assume that the reader is &mith dynamics
on the level of the introductory texts mentioned in remark And concentrate here on
developing intuition about what a dynamical system can dowill be a coarse brush
sketch—a full description of all possible behaviors of dyiwal systems is beyond human
ken. While for a novice there is no shortcut through this tapgletour, a sophisticated
traveler might bravely skip this well-trodden territorycaembark upon the journey at
chapter 15.

The fate has handed you a flow. What are you to do about it?

1. Define yourdynamical systergM, f): the space of its possible statd$, and the
law f! of their evolution in time.

2. Pin it down locally—is there anything about it that is istiaary? Try to determine its
equilibria/fixed pointgChapter 2).

3. Slice it, represent as a map from a section to a sectionpf€ha).

4. Explore the neighborhood biyearizing the flow—check thdinear stability of its
equilibria/ fixed points, their stability eigen-directions (Chapter 4)

5. Go global: train bypartitioning the state spacef 1-dimensional maps. Label the
regions bysymbolic dynamic@Chapter 11).

6. Now venture global distances across the system by camgineigenvectors into
stable/ unstable manifolds Their intersectiongartition the state space a dy-
namically invariant way (Chapter 12).

7. Guided by this topological partition, compute a sepefiodic orbitsup to a given
topological length (Chapter 13).

Along the way you might want to learn about dynamical invatsa(chapter 5), nonlinear
transformations (chapter 6), classical mechanics (chaftebilliards (chapter 8), and
discrete (chapter 9) and continuous (chapter 10) symrseifidynamics.
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Chapter 1

Overture

If | have seen less far than other men it is because | have
stood behind giants.
—Edoardo Specchio

holes large enough to steam a Eurostar train through theme e learn

about harmonic oscillators and Keplerian ellipses - butretli®the chap-
ter on chaotic oscillators, the tumbling Hyperion? We haws guantized hydro-
gen, where is the chapter on the classical 3-body problenitairdplications for
quantization of helium? We have learned that an instantansislution of field-
theoretic equations of motion, but shouldn’t a stronglylma@ar field theory have
turbulent solutions? How are we to think about systems wttengs fall apart;
the center cannot hold; every trajectory is unstable?

REREADING classic theoretical physics textbooks leaves a sensehia are

This chapter fiers a quick survey of the main topics covered in the book.
Throughout the book

S‘\'\ indicates that the section is on a pedestrian level - you mpeated to
Q know/learn this material

@ indicates that the section is on a somewhat advanced, thasled

,
& indicates that the section requires a hearty stomach ancbimiply best
skipped on first reading

W fast track points you where to skip to

3 tells you where to go for more depth on a particular topic

[exercise 1.2] on margin links to an exercise that might clarify a point ia tbxt



CHAPTER 1. OVERTURE 4

m indicates that a figure is still missing—you are urged toHfétc

We start out by making promises—we will right wrongs, no lenghall you sffer
the slings and arrows of outrageous Science of Perplexigralégate a historical
overview of the development of chaotic dynamics to appeAdand head straight
to the starting line: A pinball game is used to motivate ahditate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you shetddle to follow
the thread of the argument without constant excursionsurces. Hence there are
no literature references in the text proper, all learnedar&sand bibliographical
pointers are relegated to the “Commentary” section at tideogéeach chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with sci-
ence, we acquire a firmer hold over the vicissitudes of life

and meet them with greater calm, but in reality we have

done no more than to find a way to escape from our sor-
rows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton'’s first frustratamgl unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is mckyistems governed
by simple deterministic laws whose asymptotic dynamicscamplex beyond

belief, systems which are locally unstable (almost) evésne but globally recur-
rent. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a detartitake a
logarithm. It would hardly merit a learned treatise, wenait for the fact that this
determinant that we are to compute is fashioned out of iefininany infinitely
small pieces. The feel is of statistical mechanics, andithdbw the problem
was solved; in the 1960’s the pieces were counted, and in9f@’d they were
weighted and assembled in a fashion that in beauty and i dapks along with
thermodynamics, partition functions and path integralsgst the crown jewels
of theoretical physics.

This book isnota book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, shortet dynamically invariant
compact sets (equilibria, periodic orbits, partially hgpaic invariant tori) and
the global long-time evolution of densities of trajectsrieChaotic dynamics is
generated by the interplay of locally unstable motions, @nedinterweaving of
their global stable and unstable manifolds. These featanr@sobust and acces-
sible in systems as noisy as slices of rat brains. Pointiae&jrst to understand
deterministic chaos, already said as much (modulo rat §raidnce this topology
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CHAPTER 1. OVERTURE 5

is understood, a powerful theory yields the observable exqunsnces of chaotic
dynamics, such as atomic spectra, transporficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a selitained
graduate textbook on classical and quantum chaos. Youessof does not know
this material, so you are on your own. We will teach you howMalgate a deter-
minant, take a logarithm—gfulike that. Ideally, this should take 100 pages or so.
Well, we fail-so far we have not found a way to traverse thisemial in less than
a semester, or 200-300 page subset of this text. Nothing dohe.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did statt with the
widespread use of the personal computer. Chaotic systevesbiesn studied for
over 200 years. During this time many have contributed, badield followed no
single line of development; rather one sees many interwstramds of progress.

In retrospect many triumphs of both classical and quantugsips were a
stroke of luck: a few integrable problems, such as the hainascillator and
the Kepler problem, though ‘non-generic,” have gotten uy var. The success
has lulled us into a habit of expecting simple solutions to@é equations—an
expectation tempered by our recently acquired ability tmerically scan the state
space of non-integrable dynamical systems. The initiak@sgion might be that
all of our analytic tools have failed us, and that the chagygtems are amenable
only to numerical and statistical investigations. Neveldls, a beautiful theory
of deterministic chaos, of predictive quality comparaliehat of the traditional
perturbation expansions for nearly integrable systemsady exists.

In the traditional approach the integrable motions are asexkroth-order ap-
proximations to physical systems, and weak nonlinearéresthen accounted for
perturbatively. For strongly nonlinear, non-integrabjstems such expansions
fail completely; at asymptotic times the dynamics exhikitsazingly rich struc-
ture which is not at all apparent in the integrable approkions. However, hidden
in this apparent chaos is a rigid skeleton, a self-similkee wfcycles(periodic or-
bits) of increasing lengths. The insight of the modern dyicalrsystems theory
is that the zeroth-order approximations to the harshly thaynamics should be
very different from those for the nearly integrable systems: a goarirsg ap-
proximation here is the stretching and folding of baker'sigip rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get satiregéor how
and why unstable cycles come about, we start by playing a gdupiaball. The
reminder of the chapter is a quick tour through the matedaatced in ChaosBook.
Do not worry if you do not understand every detail at the fesiding—the intention
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CHAPTER 1. OVERTURE 6
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MEAN ESCAPE

Figure 1.1: A physicist’'s bare bones game of pinball

is to give you a feeling for the main themes of the book. Dgtaill be filled out
later. If you want to get a particular point clarified rightwgsection 1.4] on the section 1.4
margin points at the appropriate section.

1.3 The future as in a mirror

All'you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand
the introduction you will first have to read the rest of the
book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprisayone who has tried
pool, billiards or snooker-the game is about beating clemsve start our story
about what chaos is, and what to do about it, with a gam@rdfall. This might
seem a trifle, but the game of pinball is to chaotic dynamicatvehpendulum is
to integrable systems: thinking clearly about what ‘chansa game of pinball
is will help us tackle more dlicult problems, such as computing thefdsion
constant of a deterministic gas, the dragfiognt of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bmeghamong the
pinball machine’s disks, and only high-school level Euetid geometry is needed
to describe its trajectory. A physicist’s pinball game is game of pinball strip-
ped to its bare essentials: three equidistantly placedcteftedisks in a plane,
figure 1.1. A physicist’s pinball is free, frictionless, ptiike, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot adigles from random starting
positions and angles; they spend some time bouncing bettieatisks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelraibniz was
confident that given the initial conditions one knew evengha deterministic
system would do far into the future. He wrote [1.2], antitiipg by a century and
a half the oft-quoted Laplace’s “Given for one instant aeliigence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an establishedigss just
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CHAPTER 1. OVERTURE 7

23132321"

Figure 1.2: Sensitivity to initial conditions: two pin-
balls that start out very close to each other separate ex-
ponentially with time.

2313

as certain as that three times three is nine. [...] If, fomeple, one sphere
meets another sphere in free space and if their sizes armdpitkis and
directions before collision are known, we can then foreaaltl calculate
how they will rebound and what course they will take afterithpact. Very
simple laws are followed which also apply, no matter how msaplyeres
are taken or whether objects are taken other than spherem this one
sees then that everything proceeds mathematically—thafadlibly—in the
whole wide world, so that if someone could have #isient insight into
the inner parts of things, and in addition had remembranderdelligence
enough to consider all the circumstances and to take themastount, he
would be a prophet and would see the future in the presentaminror.

Leibniz chose to illustrate his faith in determinism pretyswith the type of phys-

ical system that we shall use here as a paradigm of ‘chacs £IHim is wrong in a

deep and subtle way: a state of a physical systermegarbe specified to infinite

precision, and by this we do not mean that eventually thedfiisrg uncertainty
principle kicks in. In the classical, deterministic dynamthere is no way to take
all the circumstances into account, and a single trajeatanyot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 Whatis ‘chaos’?

| accept chaos. | am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present statepisnciple fully deter-
mined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat #ice examples
of stochastic systems, for which the initial conditionsedetine the future only
partially, due to noise, or other external circumstancesbe our control: the
present state reflects the past initial conditions plus #réiqular realization of
the noise encountered along the way.

A deterministic system with ghiciently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling thergehistic from the
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CHAPTER 1. OVERTURE 8

3x(t)

o . ox(0
Figure 1.3: Unstable trajectories separate with time. X(t)

x(0)

stochastic is the main challenge in many real-life settifgsm stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?

In a game of pinball, any two trajectories that start out \@oge to each other
separate exponentially with time, and in a finite (and in fica¢ a very small)
number of bounces their separati@x(t) attains the magnitude af, the charac-
teristic linear extent of the whole system, figure 1.2. Thisperty ofsensitivity
to initial conditionscan be quantified as

16x(t)| ~ e'|5x(0)|

where 4, the mean rate of separation of trajectories of the systeroalled the
Lyapunov exponentFor any finite accuracyx = [6x(0)| of the initial data, the section 17.4
dynamics is predictable only up to a finitgapunov time

1
Tiyap ~ = Inlox/L. (1.1)

despite the deterministic and, for Baron Leibniz, infadilsimple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to ch&dse could try
to play 1- or 2-disk pinball game, but it would not be much ofaang; trajecto-
ries would only separate, never to meet again. What is alsdetkismixing the
coming together again and again of trajectories. Whilellp¢he nearby trajec-
tories separate, the interesting dynamics is confined tolzafly finite region of
the state space and thus the separated trajectories assaelgefolded back and
can re-approach each other arbitrarily closely, infinitagny times. For the case
at hand there aré'2opologically distinctn bounce trajectories that originate from
a given disk. More generally, the number of distinct trajeiets withn bounces
can be quantified as section 15.1

N(n) ~ "

whereh, the growth rate of the number of topologically distinctjédories, is
called the'topological entropy” (h = In 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in det@stic dynam-
ics there is no chaos in the everyday sense of the word; éwegyproceeds
mathematically—that is, as Baron Leibniz would have itilitily. When a physi-
cist says that a certain system exhibits ‘chaos,” he meatstiie system obeys
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CHAPTER 1. OVERTURE 9

Figure 1.4: Dynamics of ahaoticdynamical sys-
tem is (a) everywhere locally unstable (positive

Lyapunov exponent) and (b) globally mixing (pos-
itive entropy). (A. Johansen)
(a)

b

deterministic laws of evolution, but that the outcome ishhigsensitive to small
uncertainties in the specification of the initial state. TWed ‘chaos’ has in this
context taken on a narrow technical meaning. If a detertignsystem is locally
unstable (positive Lyapunov exponent) and globally mix{pgsitive entropy)—
figure 1.4—it is said to behaotic

While mathematically correct, the definition of chaos assipee Lyapunov
+ positive entropy’ is useless in practice, as a measurenféhese quantities is
intrinsically asymptotic and beyond reach for systems ondegkin nature. More
powerful is Poincaré’s vision of chaos as the interplayoafal instability (unsta-
ble periodic orbits) and global mixing (intertwining of thestable and unstable
manifolds). In a chaotic system any open ball of initial ditiods, no matter how
small, will in finite time overlap with any other finite regiand in this sense
spread over the extent of the entire asymptotically acokesstate space. Once
this is grasped, the focus of theory shifts from attemptmgpriedict individual
trajectories (which is impossible) to a description of tlemgetry of the space
of possible outcomes, and evaluation of averages over plaises How this is
accomplished is what ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Can yecognize tur-
bulence when you see it? The word comes from ‘tourbillorgrfeh for ‘vortex,’
and intuitively it refers to irregular behavior of an infigitlimensional dynamical
system described by deterministic equations of motion-sdwcket of sloshing
water described by the Navier-Stokes equations. But intigeathe word ‘turbu-
lence’ tends to refer to messy dynamics which we understaodyp As soon
as a phenomenon is understood better, it is reclaimed amonenh ‘a route to
chaos’, ‘spatiotemporal chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamickfe dimens-
ional attractors visualized as a succession of nearly gierlout unstable motions.
In the same spirit, we shall think of turbulence in spati@iktended systems in
terms of recurrent spatiotemporal patterns. Pictoriaiynamics drives a given
spatially extended system (clouds, say) through a repertdiunstable patterns;
as we watch a turbulent system evolve, every so often we @aglhmpse of a
familiar pattern:

.
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For any finite spatial resolution, a deterministic flow falloapproximately for a
finite time an unstable pattern belonging to a finite alphabatimissible patterns,
and the long term dynamics can be thought of as a walk thrcugykpace of such
patterns. In ChaosBook we recast this image into mathesnatic

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical{frac
tals.

— Richard P. Taylor [1.4, 1.5]

When should we be mindful of chaos? The solar system is ‘atiagét we
have no trouble keeping track of the annual motions of ptarigte rule of thumb
is this; if the Lyapunov time (1.1)-the time by which a stgtace region initially
comparable in size to the observational accuracy extermmdssathe entire acces-
sible state space—is significantly shorter than the obgena time, you need to
master the theory that will be developed here. That is whyrtaan successes of
the theory are in statistical mechanics, quantum mechaamcsquestions of long
term stability in celestial mechanics.

In science popularizations too much has been made of thecingbéchaos
theory,” so a number of caveats are already needed at this poi

At present the theory that will be developed here is in pcactipplicable only
to systems of a low intrinsidimension- the minimum number of coordinates nec-
essary to capture its essential dynamics. If the systenrysubulent (a descrip-
tion of its long time dynamics requires a space of high isidrdimension) we are
out of luck. Hence insights that the theorffars in elucidating problems of fully
developed turbulence, quantum field theory of strong icteyas and early cos-
mology have been modest at best. Even that is a caveat wilificateons. There
are applications—such as spatially extended (non-equitit) systems, plumber’s
turbulent pipes, etc.,—where the few important degreeeeefiom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success whpliegpto the very
noisy systems so important in the life sciences and in ecarsonEven though
we are often interested in phenomena taking place on timessocauch longer
than the intrinsic time scale (neuronal inter-burst irdésy cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmentaisechas been very hard.

In 1980’s something happened that might be without parathés is an area
of science where the advent of cheap computation had actatitracted from
our collective understanding. The computer pictures amdarical plots of frac-
tal science of the 1980’s have overshadowed the deep issiftihe 1970’s, and
these pictures have since migrated into textbooks. By eetidple oversight,
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Figure 1.5: Katherine Jones-Smith, ‘Untitled 5, the
drawing used by K. Jones-Smith and R.P. Taylor to te
the fractal analysis of Pollock’s drip paintings [1.6].

ChaosBook has none, so ‘Untitled 5’ of figure 1.5 will have toas the illustra-

tion of the power of fractal analysis. Fractal science posiait certain quantitiesremark 1.7
(Lyapunov exponents, generalized dimensions, ...) carsti@a&ed on a com-

puter. While some of the numbers so obtained are indeed mati@lly sensible
characterizations of fractals, they are in no sense ohsienzand measurable on

the length-scales and time-scales dominated by chaoti@nigs.

Even though the experimental evidence for the fractal gégnug nature is
circumstantial [1.7], in studies of probabilistically assbled fractal aggregates
we know of nothing better than contemplating such quastitie deterministic
systems we can dmuchbetter.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fastenseat belts
and turn df all electronic devices. But first, a disclaimer: If you urgtand the
rest of this chapter on the first reading, you either do notlileis book, or you are
delusional. If you do not understand it, it is not becausepié@ple who figured
all this out first are smarter than you: the most you can hopatfthis stage is to
get a flavor of what lies ahead. If a statement in this chapiestifregintrigues,
fast forward to a section indicated by [section ...] on thegim read only the
parts that you feel you need. Of course, we think that you meéxhrn ALL of it,
or otherwise we would not have included it in ChaosBook infitst place.

Confronted with a potentially chaotic dynamical systemr analysis pro-
ceeds in three stages; |. diagnose, Il. count, Ill. meastiest, we determine
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CHAPTER 1. OVERTURE 12

jectories; a bounce in which the trajectory returns t
the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

Figure 1.6: Binary labeling of the 3-disk pinball tra- .
0

the intrinsicdimensionof the system—the minimum number of coordinates nec-
essary to capture its essential dynamics. If the systemristuebulent we are,

at present, out of luck. We know only how to deal with the tithmisal regime

between regular motions and chaotic dynamics in a few dimoess That is still
something; even an infinite-dimensional system such asrarfgufiame front can

turn out to have a very few chaotic degrees of freedom. Inrégsne the chaotic
dynamics is restricted to a space of low dimension, the nuwfoelevant param-

eters is small, and we can proceed to step Il; coantandclassifyall possible chapter 11
topologically distinct trajectories of the system into ararchy whose successivehapter 15
layers require increased precision and patience on theop#re observer. This

we shall do in sect. 1.4.2. If successful, we can proceed stéh lll; investigate
theweightsof the diferent pieces of the system.

We commence our analysis of the pinball game with steps Idiignose,
count. We shall return to step lll-measure—in sect. 1.5. thhee sections thatchapter 20
follow are highly technical, they go into the guts of what the book is about. If
today is not your thinking day, skip them, jump straight totsé.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck—it is a low dimensiosgktem, free

motion in a plane. The motion of a point particle is such tHagraa collision

with one disk it either continues to another disk or it essapk we label the

three disks by 1, 2 and 3, we can associate every trajectahyamiitinerary, a
sequence of labels indicating the order in which the diskvaited; for example,

the two trajectories in figure 1.2 have itinerari@813, 23132321 respectively. exercise 1.1
Such labeling goes by the namsgmbolic dynamicsAs the particle cannot collidesection 2.1
two times in succession with the same disk, any two consecsiimbols must

differ. This is an example gfruning a rule that forbids certain subsequences

of symbols. Deriving pruning rules is in general #idult problem, but with the

game of pinball we are lucky—for well-separated disks tlaeeeno further pruning

rules. chapter 12

The choice of symbols is in no sense unique. For example, eachtbounce
we can either proceed to the next disk or return to the previbsk, the above
3-letter alphabet can be replaced by a bind@yi} alphabet, figure 1.6. A clever
choice of an alphabet will incorporate important featuriethe dynamics, such as
its symmetries. section 11.6

Suppose you wanted to play a good game of pinball, that isthgepinball
to bounce as many times as you possibly can—what would berangiistrategy?
The simplest thing would be to try to aim the pinball so it boem many times
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121212313

Figure 1.7: The 3-disk pinball cycled4232 and
121212313.

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitti
two disks in a sequence requires a much sharper ¢
with initial conditions that hit further consecutive disk
nested within each other, as in Fig. 1.9.

between a pair of disks—if you managed to shoot it so it startsn the periodic
orbit bouncing along the line connecting two disk centdra/auld stay there for-
ever. Your game would be just as good if you managed to gekitép bouncing
between the three disks forever, or place it on any periodi¢.oThe only rub

is that any such orbit isnstable so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if onenterested in playing
well, unstable periodic orbits are important—they formgkeletononto which all
trajectories trapped for long times cling.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting posii and momentum. We
shall sometimes refer to the set of periodic points thatrzglto a given periodic
orbit as acycle

Short periodic orbits are easily drawn and enumerated-ampbe is drawn in
figure 1.7-but it is rather hard to perceive the systematfioshits from their con-
figuration space shapes. In mechanics a trajectory is falllyumiquely specified
by its position and momentum at a given instant, and no twindisstate space
trajectories can intersect. Their projections onto aabjtrsubspaces, however,
can and do intersect, in rather unilluminating ways. In timball example the
problem is that we are looking at the projections of a 4-disn@mal state space
trajectories onto a 2-dimensional subspace, the configarapace. A clearer
picture of the dynamics is obtained by constructing a setai€sspace Poincaré
sections.

Suppose that the pinball has just bouncédlsk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. iNoth happens in
between the bounces—the ball just travels at constantityeldong a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional Prilpt takes the
coordinates of the pinball from one disk edge to another ééiige. The trajectory
just after the moment of impact is defined by the arc-length position of the
nth bounce along the billiard wall, angl, = psing, the momentum component
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Figure 1.9: The 3-disk game of pinball Poincaré 1
section, trajectories emanating from the disk 1

with Xo = (S0, Po) - (&) Strips of initial pointsM,

Mz which reach disks 2, 3 in one bounce, respec-

tively. (b) Strips of initial pointsM,1, M3 Mz,
andM; s which reach disks 1, 2, 3intwo bounces, 8 o
respectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by

the appropriate relabeling of the strips. Disk ra-

14

AW

dius : center separation ratio a=R1:2.5. (Y.

Lan)

132

parallel to the billiard wall at the point of impact, see figur.9. Such section of a

w o

flow is called aPoincaré section In terms of Poincaré sections, the dynamicsei&mple 3.9

reduced to the set of siwaps R s : (S, Pn) = (Sh+1, Pns1), With s € {1,2, 3},

from the boundary of the diskto the boundary of the next digk chapter 8

Next, we mark in the Poincaré section those initial condsi which do not
escape in one bounce. There are two strips of survivors,easdfectories orig-
inating from one disk can hit either of the other two disks,escape without
further ado. We label the two strip§112, M13. Embedded within them there
are four stripsMio1, Mi2s, M1z, Masp of initial conditions that survive for two
bounces, and so forth, see figures 1.8 and 1.9. Providedhthalisks are fi-
ciently separated, afterbounces the survivors are divided intbdstinct strips:
the Mith strip consists of all points with itineraiy= $1553... S, s = {1,2, 3}.
The unstable cycles as a skeleton of chaos are almost vglbde each such patch
contains a periodic poirg $;S3. . . 5, with the basic block infinitely repeated. Pe-
riodic points are skeletal in the sense that as we look fughd further, the strips
shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it pded a naviga-
tion chart through chaotic state space. There exists a arnmjectory for every
admissible infinite length itinerary, and a unique itingréabels every trapped
trajectory. For example, the only trajectory labeledi®yis the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; arer dthjectory starting
out as 12.. either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate

example 17.5

What is a good physical quantity to compute for the game digdif Such a sys-
tem, for which almost any trajectory eventually leaves adineégion (the pinball
table) never to return, is said to be open, aepeller. The repellerescape rate
is an eminently measurable quantity. An example of such ssurement would
be an unstable molecular or nuclear state which can be wetbapnated by a
classical potential with the possibility of escape in der@irections. In an ex-
periment many projectiles are injected into a macroscdpack box’ enclosing
a microscopic non-confining short-range potential, and thean escape rate is
measured, as in figure 1.1. The numerical experiment mighgisbof injecting
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the pinball between the disks in some random direction akthghow many
times the pinball bounces on the average before it escapasdion between the
disks. exercise 1.2

For a theorist, a good game of pinball consists in predicéingurately the
asymptotic lifetime (or the escape rate) of the pinball. \&& show how periodic
orbit theory accomplishes this for us. Each step will be sopt that you can
follow even at the cursory pace of this overview, and st tasult is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial comalitiget thinned
out, yielding twice as many thin strips as at the previousniceu The total area
that remains at a given time is the sum of the areas of thesstipthat the fraction
of survivors aftem bounces, or theurvival probabilityis given by

- Mol [IMa] - Mool IMiol  IMoal  [Maal
—_—t —, I'; = + + + ,
M T IM 2TOM M T TIME T TIM
(n)
D7 Imil, (1.2)
i

1
M

wherei is a label of theth strip, M| is the initial area, andM;| is the area of

theith strip of survivors.i = 01, 10,11, ... is a label, not a binary number. Since

at each bounce one routinely loses about the same fractitrajettories, one

expects the sum (1.2) to falfftcexponentially withn and tend to the limit chapter 22

fn+1/fn = e_y“ - e_y. (13)

The quantityy is called theescape ratérom the repeller.

1.5 Chaos for cyclists

Etant données des equations ... et une solution pagieuli
guelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vraigé
trés longue), telle que la filérence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut. D’ailleurs, ce qui nous rend ces solu-
tions périodiques si précieuses, c'est qu’elles sonty po
ansi dire, la seule bréche par ot nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable

—H. Poincaré, Les meéthodes nouvelles de la
méchanique céleste

We shall now show that the escape ratean be extracted from a highly conver-

gentexactexpansion by reformulating the sum (1.2) in terms of unstakelriodic
orbits.
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If, when asked what the 3-disk escape rate is for a disk ofigadlj center-
center separation 6, velocity 1, you answer that the cootisuime escape rate
is roughlyy = 0.4103384077693464893384613078192 you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Of course, we can prove all these results directly from
Eq. (17.17) by pedestrian mathematical manipulations,
but that only makes it harder to appreciate their physical
significance.

— Rick Salmon, “Lectures on Geophysical Fluid Dy-
namics”, Oxford Univ. Press (1998)

Not only do the periodic points keep track of topological eridg of the strips,
but, as we shall now show, they also determine their size. tfagectory evolves,
it carries along and distorts its infinitesimal neighborthobet

X(t) = (x0)

denote the trajectory of an initial poih = x(0). Expandingf(xp + dXo) to
linear order, the evolution of the distance to a neighbotiagectoryx;(t) + 6x(t)
is given by the Jacobian matrik

d :
oh0 = D1 0ok 0ol = o, (1.4)

i1 0%

A trajectory of a pinball moving on a flat surface is specifigdwo position co-
ordinates and the direction of motion, so in this cdse 3. Evaluation of a cycle
Jacobian matrix is a long exercise - here we just state thdtreShe Jacobian section 8.2
matrix describes the deformation of an infinitesimal neahbod ofx(t) along
the flow; its eigenvectors and eigenvalues give the dirastend the correspond-
ing rates of expansion or contraction, figure 1.10. Thedtajées that start out in
an infinitesimal neighborhood separate along the unstatdetins (those whose
eigenvalues are greater than unity in magnitude), appreach other along the
stable directions (those whose eigenvalues are less thgnimmagnitude), and
maintain their distance along the marginal directions §¢havhose eigenvalues
equal unity in magnitude).

In our game of pinball the beam of neighboring trajectorsedafocused along
the unstable eigen-direction of the Jacobian matrix

As the heights of the strips in figure 1.9 afféeetively constant, we can con-

centrate on their thickness. If the heightsisL, then the area of thigh strip is
M; ~ Ll; for a strip of widthl;.
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x(t) o 0X(t) = 35 x(0)

Figure 1.10: The Jacobian matrif! maps an infinites-
imal displacementx at x, into a displacement(x)dx X(O)
finite timet later.

ox(0

Each stripi in figure 1.9 contains a periodic poirt. The finer the intervals,
the smaller the variation in flow across them, so the cortiohufrom the strip
of width I; is well-approximated by the contraction around the pedqgubint x;
within the interval,

li = a/IAil, (1.5)

where A; is the unstable eigenvalue of the Jacobian mali{x;) evaluated at

theith periodic point fort = Ty, the full period (due to the low dimensionality,

the Jacobian can have at most one unstable eigenvalue). ti@nipagnitude of

this eigenvalue matters, we can disregard its sign. Theagi@ka reflect the

overall size of the system and the particular distributibstarting values ok. As

the asymptotic trajectories are strongly mixed by bouncimgotically around the

repeller, we expect their distribution to be insensitivestioooth variations in the
distribution of initial points. section 16.4

To proceed with the derivation we need thgperbolicity assumption: for
large n the prefactorsy ~ O(1) are overwhelmed by the exponential growth of
Aj, so we neglect them. If the hyperbolicity assumption idfjigst, we can replacesection 18.1.1
IMi| ~ Llj in (1.2) by J/|A;| and consider the sum

(n)

o= 1/IAil,

where the sum goes over all periodic points of perodVe now define a gener-
ating function for sums over all periodic orbits of all lehgt

I'(2) = i . (1.6)
n=1

Recall that for largen the nth level sum (1.2) tends to the limit, — €™, so the
escape ratg is determined by the smallest € for which (1.6) diverges:

@2~ i (ze")" = M. (1.7)
n=1
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This is the property of (z) that motivated its definition. Next, we devise a formula
for (1.6) expressing the escape rate in terms of periodiitsorb

Ngkt
N,

¢
Z

I'(2

z,z,z2 2z 7 7
Aol A1l [Agol  |Aoil  |Azol  |A11l
z z z z

+ + + + +...
|[Aood  [Acodl  |Aoid  [Azod

(1.8)

For sdficiently smallz this sum is convergent. The escape raite now given by section 18.3
the leading pole of (1.7), rather than by a numerical exietjfmn of a sequence of

vn extracted from (1.3). As any finite truncation< ngrync of (1.8) is a polyno-

mial in z, convergent for any, finding this pole requires that we know something
aboutl’, for anyn, and that might be a tall order.

We could now proceed to estimate the location of the leadingutarity of
I'(2) from finite truncations of (1.8) by methods such as Padexmants. How-
ever, as we shall now show, it pays to first perform a simplemesation that
converts this divergence intozaroof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces prime cycler times, its expanding eigenvalueAs,. A
prime cyclep is a single traversal of the orbit; its label is a non-repgpgymbol
string ofn, symbols. There is only one prime cycle for each cyclic peatioin
class. For examplgy = 0011=1001= 1100= 0110 is prime, bub101= 01 is not.

By the chain rule for derivatives the stability of a cyclehig tsame everywhereexercise 15.2
along the orbit, so each prime cycle of lengthcontributesn, terms to the sumsection 4.5
(1.8). Hence (1.8) can be rewritten as

22w\ Nptp Z
r@=>n>, (m) =2 1T YTy (1.9)
p =l P

where the indexp runs through all distincprime cycles. Note that we have re-
summed the contribution of the cycteto all times, so truncating the summation
up to givenp is nota finite timen < n, approximation, but an asymptotiafinite
time estimate based by approximating stabilities of alleyby a finite number of
the shortest cycles and their repeats. Tipg" factors in (1.9) suggest rewriting
the sum as a derivative

d
r@=-zg Zpl In(1-tp).
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Hencel (2) is a logarithmic derivative of the infinite product

Zp
v@=[la-t. =g (1.10)
p

This function is called thelynamical zeta functignin analogy to the Riemann

zeta function, which motivates the ‘zeta’ in its definitios H/(2). This is the

prototype formula of periodic orbit theory. The zero g () is a pole ofl'(2),

and the problem of estimating the asymptotic escape rates finite n sums

such as (1.2) is now reduced to a study of the zeros of the dgahmeta function

(1.10). The escape rate is related by (1.7) to a divergenc&pfandl’(2) diverges section 22.1
whenever 1/(2) has a zero. section 19.4

Easy, you say: “Zeros of (1.10) can be redtitbe formula, a zero
Zp = |Ap|1/np

for each term in the product. What'’s the problem?” Dead wrong

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computmdetigths and
eigenvalues of the shortest cycles. This usually requioesesnumerical work,

such as the Newton method searches for periodic solutioashall assume that

the numerics are under control, and th#itshort cycles up to given length have

been found. In our pinball example this can be done by eleangmfeometrical chapter 13
optics. It is very important not to miss any short cycles,resdalculation is as

accurate as the shortest cycle dropped-including cychagelothan the shortest

omitted does not improve the accuracy (unless expongntiainy more cycles

are included). The result of such numerics is a table of tloetsst cycles, their

periods and their stabilities. section 29.3

Now expand the infinite product (1.10), grouping together titrms of the
same total symbol string length

1/¢

(1 —to)(1 —t1)(1 — ta)(1 — tapo) - -~

= 1-to—t1—[tio— tato] — [(ta00 — ticto) + (tr01 — taot1)]

—[(t2000 — tot100) + (t1210— tat110)

+(t1001 — tatoo1 — troato + taotots)] — ... (1.11)

The virtue of the expansion is that the sum of all terms of #raestotal length chapter 20
n (grouped in brackets above) is a number that is expongntatialler than a
typical term in the sum, for geometrical reasons we explaifé next section. section 20.1
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, togethe
with their linearized neighborhoods, (right frame). In
dicated are segments of two 1-cycles and a 2-cyt
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

Figure 1.12: A longer cyclep” shadowed by a pair of
shorter cyclep andp'.

The calculation is now straightforward. We substitute adiset of the eigen-
values and lengths of the shortest prime cycles into thee@gbansion (1.11), and
obtain a polynomial approximation tg4. We then varyin (1.10) and determine
the escape ratgby finding the smallest = €” for which (1.11) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you fmidl out that the
convergence is very impressive: only three input numbeéest{o fixed point9,

1 and the 2-cycld0) already yield the pinball escape rate to 3-4 significagits

We have omitted an infinity of unstable cycles; so why does@pmating the section 20.2.2
dynamics by a finite number of the shortest cycle eigenvakark so well?

The convergence of cycle expansions of dynamical zetaibimgis a conse-
quence of the smoothness and analyticity of the underlymg. flintuitively, one
can understand the convergence in terms of the geometiitalg sketched in
figure 1.11; the key observation is that the long orbitsshi@dowedy sequences
of shorter orbits.

Atypical termin (1.11) is a dierence of a long cyclgb} minus its shadowing
approximation by shorter cyclga} and{b} (see figure 1.12),

A
tab — tath = tab(l - tatb/tab) =1tap (1 - ‘A jf ‘) s (1-12)
al\b

wherea andb are symbol sequences of the two shorter cycles. If all odoits
weighted equallyt, = z™), such combinations cancel exactly; if orbits of similar
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symbolic dynamics have similar weights, the weights in stahbinations almost
cancel.

This can be understood in the context of the pinball gamellsv® Consider
orbits0, 1 and01. The first corresponds to bouncing between any two diskig wh
the second corresponds to bouncing successively aroutiared, tracing out an
equilateral triangle. The cyclel starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk@so on, so its
itinerary is2321. In terms of the bounce types shown in figure 1.6, thedtaijy is
alternating between 0 and 1. The incoming and outgoing anghen it executes
these bounces are very close to the corresponding anglésafat 1 cycles. Also
the distances traversed between bounces are similar sih¢hztcycle expanding
eigenvalueAo; is close in magnitude to the product of the 1-cycle eigeraalu
AogA1.

To understand this on a more general level, try to visualieepartition of
a chaotic dynamical system'’s state space in terms of cyéghberhoods as a
tessellation (a tiling) of the dynamical system, with snioibdw approximated by
its periodic orbit skeleton, each ‘tile’ centered on a pdidgoint, and the scale
of the ‘tile’ determined by the linearization of the flow aralithe periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, sucfabsand a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairs to
start out exponentially close to beat the exponential drawtseparation with
time. If the weights associated with the orbits are multigive along the flow
(for example, by the chain rule for products of derivativassyl the flow is smooth,
the term in parenthesis in (1.12) fallf exponentially with the cycle length, and
therefore the curvature expansions are expected to beyhighergent. chapter 23

1.6 Change intime

MEN are deplorably ignorant with respect to natural
things and modern philosophers as though dreaming in the
darkness must be aroused and taught the uses of things the
dealing with things they must be made to quit the sort of
learning that comes only from books and that rests only
on vain arguments from probability and upon conjectures.

— William Gilbert, De Magnete1600

The above derivation of the dynamical zeta function fornfolathe escape rate
has one shortcoming; it estimates the fraction of surviaws function of the
number of pinball bounces, but the physically interestingrdity is the escape
rate measured in units of continuous time. For continuaus flows, the escape
rate (1.2) is generalized as follows. Define a finite statespagionM such
that a trajectory that exitd1 never reenters. For example, any pinball that falls
of the edge of a pinball table in figure 1.1 is gone forever.rtStéh a uniform
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distribution of initial points. The fraction of initiak whose trajectories remain
within M at timet is expected to decay exponentially

Jy dxdys(y - £1(x)) R
Jrx

I(t) = e,

The integral ovelx starts a trajectory at every € M. The integral ovey tests
whether this trajectory is still itM at timet. The kernel of this integral

L'y, %) = oy - f'(x) (1.13)

is the Dirac delta function, as for a deterministic flow thdiah point x maps

into a unique poinl at timet. For discrete timef"(x) is thenth iterate of the
map f. For continuous flowsf!(x) is the trajectory of the initial poink, and it

is appropriate to express the finite time kerg&lin terms ofA, the generator of
infinitesimal time translations

section 16.6

very much in the way the quantum evolution is generated byHdmailtonianH,
the generator of infinitesimal time quantum transformation

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as ¢velution operatofor ad-dimensional
map or ad-dimensional flow.

The number of periodic points increases exponentially Withcycle length
(in the case at hand, a8)2As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a mattectpifaour compu-
tations will be carried out in the — oo limit. Though a quick look at long-time
density of trajectories might reveal it to be complex beybalief, this distribution
is still generated by a simple deterministic law, and witmeduck and insight,
our labeling of possible motions will reflect this simplicitf the rule that gets us
from one level of the classification hierarchy to the nextgdoat depend strongly
on the level, the resulting hierarchy is approximately-setiilar. We now turn
such approximate self-similarity to our advantage, byingrit into an operation,
the action of the evolution operator, whose iteration eesdtie self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert
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Figure 1.13: The trace of an evolution operator is con i PG -y
centrated in tubes around prime cycles, of length %gmxéhfci::issbn
and thickness /1A ,|" for therth repetition of the prime

cyclep.
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Recasting dynamics in terms of evolution operators chaegesy/thing. So far
our formulation has been heuristic, but in the evolutionrafm formalism the es-
cape rate and any other dynamical average are given by exautlas, extracted
from the spectra of evolution operators. The key toolsteaee formulasand
spectral determinants

The trace of an operator is given by the sum of its eigenvalliée explicit
expression (1.13) foL!(x,y) enables us to evaluate the trace. ldenyifyith x
and integratex over the whole state space. The result is an expression fbrais

a sum over neighborhoods of prime cycfeand their repetitions section 18.2
; > ot —rT _O(t—rTp)
tr £t = Z T Z , (1.14)
1 |det(1- mj)

whereT, is the period of prime cyclg, and the monodromy matrik, is the
flow-transverse part of Jacobian matdx1.4). This formula has a simple geo-
metrical interpretation sketched in figure 1.13. After tkiereturn to a Poincaré
section, the initial tubeM, has been stretched out along the expanding eigen-

directions, with the overlap with the initial volume givew b/ |det(1 - ML) -
1/IApl, the same weight we obtained heuristically in sect. 1.5.1.

The ‘spiky’ sum (1.14) is disquieting in the way reminiscefithe Poisson
resummation formulas of Fourier analysis; the left-hani@ $ the smooth eigen-
value sum te” = 3 e>!, while the right-hand side equals zero everywhere except
forthe set = rT,. A Laplace transform smooths the sum over Dirac delta func-
tions in cycle periods and yields thmce formulafor the eigenspectrursy, s, - - -
of the classical evolution operator: chapter 18

dtesttr £t =
0, S—A

i s—lsa - ZTPZ|

a=0

|
—
=
I

(1.15)

The beauty of trace formulas lies in the fact that everytlongthe right-hand-
side—prime cycleg, their periodsT, and the eigenvalues dfl—is an invariant
property of the flow, independent of any coordinate choice.

intro - 9apr2009 ChaosBook.org version14, Dec 31 2012



CHAPTER 1. OVERTURE 24
1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zerdbeofppropriate
determinant. One way to evaluate determinants is to expae in terms of

traces, using the identities exercise 4.1
d d 1
d—slndet(s—ﬂ)_trd—sln(s—ﬂ)_trs_ﬂ, (1.16)

and integrating oves. In this way thespectral determinandf an evolution oper-
ator becomes related to the traces that we have just computed chapter 19

@ STpr

(1.17)

det(s— A) = exp[ Z Z

= |det1 M)

The J/r factor is due to theintegration, leading to the replacem@dipt— T,/rT,
in the periodic orbit expansion (1.15). section 19.5

We have now retraced the heuristic derivation of the divergem (1.7) and
the dynamical zeta function (1.10), but this time with noragpmations: formula
(1.17) isexact The computation of the zeros of det{ A) proceeds very much
like the computations of sect. 1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of individual trajectories by evolutiorigiors which propagate
densities feels like a bit of mathematical voodoo. Nevéee something very
radical and deeply foundational has taken place. Undeistgrthe distinction
between evolution of individual trajectories and the etiolu of the densities of
trajectories is key to understanding statistical mectsasigs is the conceptual
basis of the second law of thermodynamics, and the origirr@fersibility of the
arrow of time for deterministic systems with time-revelsibquations of motion:
reversibility is attainable for distributions whose measin the space of density
functions goes exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and whaiatgjy some
deterministic machinelf we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white aare red; there
would be no pink. What is more, if we reversed the stirring,waild return to
the perfect whitged separation. However, that cannot be—in a very few tuins o
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the stirring stick the thickness of the layers goes fromioseters to Angstroms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that stdtistézdnanics ap-
plies only to systems with very many degrees of freedom. Mepent is the
realization that much of statistical mechanics followsrirohaotic dynamics, and
already at the level of a few degrees of freedom the evolufatensities is irre-
versible. Furthermore, the theory that we shall develop generalizes notions of
‘measure’ and ‘averaging’ to systems far from equilibritand transports us into
regions hitherto inaccessible with the tools of equilibrigtatistical mechanics.

By going to a description in terms of the asymptotic time atioh operators
we give up tracking individual trajectories for long timdsjt trade in the un-
controllable trajectories for a powerful description oéthsymptotic trajectory
densities. This will enable us, for example, to give exactniadas for transport
codficients such as theftlusion constants withowny probabilistic assumptions chapter 25
The classical Boltzmann equation for evolution of 1-pégtidensity is based on
stosszahlansatzneglect of particle correlations prior to, or after a 2tjuée col-
lision. It is a very good approximate description of dilutasgdynamics, but
a difficult starting point for inclusion of systematic correcgonin the theory
developed here, no correlations are neglected - they aiachlided in the cy-
cle averaging formulas such as the cycle expansion for tfiasthn constant
2dD = limy_ (X(T)?) /T of a particle difusing chaotically across a spatially-
periodic array, section 25.1

K+1 (npl -t ﬁpk)Z
, 1.18
2d (T)( Z (-1) |Ap1 “Apl ( )

whereri, is a translation along one period of a spatially periodinaway’ tra-
jectory p. Such formulas arexact the issue in their applications is what are
the most &ective schemes of estimating the infinite cycle sums redudoetheir
evaluation. Unlike most statistical mechanics, here thezeno phenomenological
macroscopic parameters; quantities such as transpdticieets are calculable to
any desired accuracy from the microscopic dynamics.

The concepts of equilibrium statistical mechanics do hslghowever, to un-
derstand the ways in which the simple-minded periodic dh@bry falters. A
non-hyperbolicity of the dynamics manifests itself in powaav correlations and chapter 24
even ‘phase transitions.’

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is un-
happy in its own way.

— Anna Kareninaby Leo Tolstoy
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(@)

(b) sin( t)

frequency Q

Figure 1.14: (a) Washboard mean velocity, (b)
cold atom lattice dtusion, and (c) AFM tip drag
force. (Y. Lan)

(c) velocity

With initial data accuracyx = |6x(0)| and system sizk, a trajectory is predictable
only up to thefinite Lyapunov time (1.1),Tyap ~ A71In|L/6X . Beyond that,
chaos rules. And so the most successful applications obktiory’ have so far
been to problems where observation time is much longer tigpieal ‘turnover’
time, such as statistical mechanics, quantum mechanicsgaestions of long
term stability in celestial mechanics, where the notionratking accurately a
given state of the system is nonsensical.

So what is chaos good fofransport! Though superficially indistinguishable
from the probabilistic random walk fiiusion, in low dimensional settings the de-
terministic difusion is quite recognizable, through the fractal depenelefche
diffusion constant on the system parameters, and perhaps bhnoungGaussion
relaxation to equilibrium (non-vanishing Burnett fogents).

Several tabletop experiments that could measure trangporhacroscopic
scales are sketched in figure 1.14 (each a tabletop, but @ngixp tabletop). Fig-
ure 1.14 (a) depicts a ‘slanted washboard;’ a particle ina&ityr field bouncing
down the washboard, losing some energy at each bounce, argechparticle in
a constant electric field trickling across a periodic cosgelRmatter device. The
interplay between chaotic dynamics and energy loss resutserminal mean ve-
locity/conductance, a function of the washboard slant or extelectri field that
the periodic theory can predict accurately. Figure 1.14épjicts a ‘cold atom lat-
tice’ of very accurate spatial periodicity, with a diluteot of atoms placed onto
a standing wave established by strong laser fields. Interacf gravity with gen-
tle time-periodic jiggling of the EM fields induces ditlision of the atomic cloud,
with a diffusion constant predicted by the periodic orbit theory. Fagli14 (c)
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depicts a tip of an atomic force microscope (AFM) bouncingiast a periodic

atomic surface moving at a constant velocity. The frictlothag experienced

is the interplay of the chaotic bouncing of the tip and thergydoss at each

tip/surface collision, accurately predicted by the periodisitotheory. None of chaosBook.org/projects
these experiments have actually been carried out, (saw®ifioe numerical exper-

imentation), but are within reach of what can be measurealytod

Given microscopic dynamics, periodic orbit theory presimbservable macro-
scopic transport quantities such as the washboard meatityetmld atom lattice
diffusion constant, and AFM tip drag force. But the experimenmtaposal is sex-
ier than that, and goes into the heart of dynamical systeemyh remark A.1

Smale 1960s theory of the hyperbolic structure of the nomeeedng set
(AKA ‘horseshoe’) was motivated by his ‘structural statyiliconjecture, which -
in non-technical terms - asserts that all trajectories dfatic dynamical system
deform smoothly under small variations of system pararseter

Why this cannot be true for a system like the washboard indidut4 (a) is
easy to see for a cyclist. Take a trajectory which barelyegdlze tip of one of the
groves. An arbitrarily small change in the washboard slage result in loss of
this collision, change a forward scattering into a backvsarattering, and lead to
a discontinuous contribution to the mean velocity. You nhighld out hope that
such events are rare and average out, but not so - a loss oftagtie leads to a
significant change in the cycle-expansion formula for agpant codficient, such
as (1.18).

When we write an equation, it is typically parameterized bgteof parameters
by as coupling strengths, and we think of dynamical systdsteimed by a smooth
variation of a parameter as a ‘family.” We would expect meaile predictions to
also vary smoothly, i.e., be ‘structurally stable.’

But dynamical systems families are ‘families’ only in a nariat the struc-
tural stability conjecture turned out to be badly wrong @yBver, not a blow for
chaotic dynamics. Quite to the contrary, it is actually audr perhaps the mostection 12.2
dramatic experimentally measurable prediction of chasfitamics.

As long as microscopic periodicity is exact, the predicti®ounterintuitive
for a physicist - transport céiécients arenot smooth functions of system paramesection 25.2
ters, rather they are non-monotonmowhere dfferentiablefunctions. Conversely,
if the macroscopic measurement yields a smooth dependdiioe wansport on
system parameters, the periodicity of the microscopickis degraded by impu-
rities, and probabilistic assumptions of traditional istatal mechanics apply. So
the proposal is to —by measuringacroscopic transpor conductance, éusion,
drag —observe determinism oanoscalesand —for example— determine whether
an atomic surface is clean.

The signatures of deterministic chaos are even mofi#ifgato an engineer:
a small increase of pressure across a pipe exhibiting embtlow does not nec-
essarily lead to an increase in the mean flow; mean flow depeadan pressure
drop across the pipe is also a fractal function.
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Is this in contradiction with the traditional statisticakohanics? No - deter-
ministic chaos predictions are valid in settings where adegrees of freedom are
important, and chaotic motion time and space scales are eosumate with the
external driving and spatial scales. Further degrees efirm act as noise that
smooths out the above fractdfects and restores a smooth functional dependence
of transport cofficients on external parameters.

1.9 Whatis not in ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as | can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer

This book dfers everyman a breach into a domain hitherto reputed urabbgh
a domain traditionally traversed only by mathematical jptigts and mathemati-
cians. What distinguishes it from mathematics is the iesist on computability
and numerical convergence of methodiered. A rigorous proof, the end of the
story as far as a mathematician is concerned, might staténtlaagiven setting,
for times in excess of 8 years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use tooaest, hard-
working plumber, especially if her hands-on experiencéas within the span of
a few typical ‘turnaround’ times the dynamics seems to asaitl a (transient?)
attractor of dimension less than 3. If rigor, magic, frastal brains is your thing,
read remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if uridec the
nuts and bolt of the theory include ODESs, PDEs, stochasti€§)Path integrals,
group theory, coding theory, graph theory, ergodic thelomgar operator theory,
quantum mechanics, etc.. We include material into the texpgr on ‘need-to-
know’ basis, relegate technical details to appendicesgamdpointers to further
reading in the remarks at the end of each chapter.

Résumé

This text is an exposition of the best of all possible theakdeterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, naterahow small,
will spread over the entire accessible state space. Hewrcthéory focuses on
describing the geometry of the space of possible outconreb eaaluating av-
erages over this space, rather than attempting the impesgiecise prediction
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of individual trajectories. The dynamics of densities @fjdctories is described
in terms of evolution operators. In the evolution operatnfalism the dynami-
cal averages are given by exact formulas, extracted fromsghetra of evolution
operators. The key tools atece formulasandspectral determinants

The theory of evaluation of the spectra of evolution opesgpoesented here is
based on the observation that the motion in dynamical systdrfew degrees of
freedom is often organized around a fawndamentatycles. These short cycles
capture the skeletal topology of the motion on a strangadtyrepeller in the
sense that any long orbit can approximately be pieced teg&thm the nearby pe-
riodic orbits of finite length. This notion is made precisedpproximating orbits
by prime cycles, and evaluating the associated curvatéyesirvature measures
the deviation of a longer cycle from its approximation bymséocycles; smooth-
ness and the local instability of the flow implies expondr{bafaster) fall-at for
(almost) all curvatures. Cycle expansiorfieoan dficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zetaction was the hy-
perbolicity assumption, i.e., the assumption of expoméstirinkage of all strips
of the pinball repeller. By dropping treg prefactors in (1.5), we have given up on
any possibility of recovering the precise distribution tdring x (which should
anyhow be impossible due to the exponential growth of eyrdmg in exchange
we gain an #&ective description of the asymptotic behavior of the syst@rhe
pleasant surprise of cycle expansions (1.10) is that theit@fime behavior of an
unstable system is as easy to determine as the short timeitweha

To keep the exposition simple we have here illustrated thigyudf cycles
and their curvatures by a pinball game, but topics covereédhaosBook — un-
stable flows, Poincaré sections, Smale horseshoes, signalyolamics, pruning,
discrete symmetries, periodic orbits, averaging over tbaets, evolution oper-
ators, dynamical zeta functions, spectral determinagitde @xpansions, quantum
trace formulas, zeta functions, and so on to the semicksgi@ntization of he-
lium — should give the reader some confidence in the broad sivehe theory.
The formalism should work for any average over any chaotiovbéch satisfies
two conditions:

1. the weight associated with the observable under coraidaris multiplica-
tive along the trajectory,

2. the set is organized in such a way that the nearby pointseirsymbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class ohtjies characterizing
chaotic systems, such as the escape rates, Lyapunov expotransport caé-
cients and quantum eigenvalues. A big surprise is that té slassical quantum
mechanics of systems classically chaotic is very much hikectassical mechanics
of chaotic systems; both are described by zeta functioncyrid expansions of
the same form, with the same dependence on the topology ofaksical flow.
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But the power of instruction is seldom of mucfiieacy,
except in those happy dispositions where it is almost su-
perfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts.  This text aims to bridge the gap between the
physics and mathematics dynamical systems literature. ifteaded audience is Hen-
riette Roux, the perfect physics graduate student with aréteal bent who does not
believe anything he is told. As a complementary presemtati® recommend Gaspard’s
monograph [1.8] which covers much of the same ground in alyigtadable and schol-
arly manner.

As far as the prerequisites are concerned—ChaosBook iswnotraduction to non-
linear dynamics. Nonlinear science requires a one semiea$éc course (advanced un-
dergraduate or first year graduate). A good start is the oektiby Strogatz [1.9], an
introduction to the applied mathematician’s visualizataf flows, fixed points, mani-
folds, bifurcations. It is the most accessible introduttio nonlinear dynamics—a book
on differential equations in nonlinear disguise, and its broadbsen examples and many
exercises make it a favorite with students. It is not strongloaos. There the textbook
of Alligood, Sauer and Yorke [1.10] is preferable: an ela@gatmoduction to maps, chaos,
period doubling, symbolic dynamics, fractals, dimensi@ngood companion to Chaos-
Book. Introduction more comfortable to physicists is thetieok by Ott [1.11], with the
baker’s map used to illustrate many key techniques in aizabfhaotic systems. Ott is
perhaps harder than the above two as first books on nonligeanucs. Sprott[1.12] and
Jackson [1.13] textbooks are very useful compendia of tAs &hd onward ‘chaos’ liter-
ature which we, in the spirit of promises made in sect. 1rid te pass over in silence.

An introductory course should give students skills in giasille and numerical anal-
ysis of dynamical systems for short times (trajectoriedipoints, bifurcations) and
familiarize them with Cantor sets and symbolic dynamicsdiaaotic systems. For the
dynamical systems material covered here in chapters 2 te Wel as for the in-depth
study of bifurcation theory we warmly recommend Kuznetsb\if4]. A good introduc-
tion to numerical experimentation with physically reatistystems is Tufillaro, Abbott,
and Reilly [1.15]. Korsch and Jodl [1.16] and Nusse and Ydtk&7] also emphasize
hands-on approach to dynamics. With this, and a gradua¢é-déxyposure to statistical
mechanics, partial flierential equations and quantum mechanics, the stage isrsaty
of the one-semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses. The courses taught so far (for a listing,
consultChaosBook . org/courses) start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continuéfferént directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formulat func-
tions, cycle expansions, Lyapunov exponents, billiands)gport cofficients, thermody-
namic formalism, period doubling, renormalization operst A graduate level introduc-
tion to statistical mechanics from the dynamical point viewiven by Dorfman [1.18];
the Gaspard monograph [1.8] covers the same ground in math.dériebe mono-
graph [1.19] dfers a nice introduction to the problem of irreversibilitydpnamics. The
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role of ‘chaos’ in statistical mechanics is critically désted by Bricmont in his highly
readable essdiscience of Chaos or Chaos in Sciencg?20].

Spatiotemporal dynamical systems.Partial diferential equations for dissipative sys-
tems, weak amplitude expansions, normal forms, symmeanesbifurcations, pseu-
dospectral methods, spatiotemporal chaos, turbulendeéspLumley and Berkooz [1.21]
offer a delightful discussion of why the Kuramoto-Sivashinsgyation deserves study as
a staging ground for a dynamical approach to study of turimgeén full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos.Semiclassical propagators, density of states, trace flasnsemiclassi-
cal spectral determinants, billiards, semiclassicalumelidifraction, creeping, tunneling,
higher-order: corrections. For further reading on this topic, consultdhantum chaos
part ofChaosBook . org.

Remark 1.3 Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbdble. role of unstable periodic
orbits was already fully appreciated by Poincaré [1.223],. who noted that hidden in the
apparent chaos is a rigid skeleton, a treeydfles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cyblesld be the key to chaotic dy-
namics. Periodic orbits have been at core of much of the mattieal work on the theory
of the classical and quantum dynamical systems ever sineerefr the reader to the
reprint selection [1.24] for an overview of some of thatriiteire.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough,
you should turn to the mathematics literature. We give atsstmift to the theory of
bifurcations, and the KAM (Kolmogorov-Arnol'd-Moser) fianake only a tangential ap-
pearance. We recommend Robinson’s advanced graduateebgvesition of dynami-
cal systems theory [1.25] from Smale perspective. The mxsnsive reference is the
treatise by Katok and Hasselblatt [1.26], an impressivepmmdium of modern dynam-
ical systems theory. The fundamental papers in this fieldstitll valuable reading, are
Smale [1.27], Bowen [1.28] and Sinai [1.29]. Sinai’'s pageariescient andfers a vision
and a program that ties together dynamical systems ansti&taktimechanics. Itis written
for readers versed in statistical mechanics. For a dyndmsiystems exposition, consult
Anosov and Sinai [1.30]. Markov partitions were introducsdSinai in ref. [1.31]. The
classical text (though certainly not an easy read) on th@gstibf dynamical zeta func-
tions is Ruelle’sStatistical Mechanics, Thermodynamic Formaligh82]. In Ruelle’s
monograph transfer operator technique (or the ‘Perromé&imus theory’) and Smale’s
theory of hyperbolic flows are applied to zeta functions aodeatation functions. The
status of the theory from Ruelle’s point of view is compastynmarized in his 1995 Pisa
lectures [1.33]. Further excellent mathematical refeesran thermodynamic formalism
are Parry and Pollicott’s monograph [1.34] with emphasishensymbolic dynamics as-
pects of the formalism, and Baladi’s clear and compact vevif the theory of dynamical
zeta functions [1.35, 1.36].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical
magic such as spaces of constant negative curvature, Poitilaggs, modular domains,
Selberg Zeta functions, Riemann hypothesisWhy? While this beautiful mathematics
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has been very inspirational, especially in studies of quanthaos, almost no powerful
method in its repertoire survives a transplant to a physgsiem that you are likely to
care about.

Remark 1.6 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’
was discussed by Maxwell, then 30 years later by Poincar&velather prediction, the
Lorenz’ ‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopp@e&’ in a book
review by W. S. Franklin [3.16]. In 1963 Lorenz ascribed agell fect’ to an unnamed
meteorologist, and in 1972 he repackaged it as the ‘ButtEffct’.

Remark 1.7 Sorry, no schmactals! ChaosBook skirts mathematics and empirical
practice of fractal analysis, such as Haustland fractal dimensions. Addison’s intro-
duction to fractal dimensions [1.37fters a well-motivated entry into this field. While in
studies of probabilistically assembled fractals such fisglon limited aggregates (DLA)
better measures of ‘complexity’ are lacking, for deterstici systems there are much
better, physically motivated and experimentally meadergbantities (escape rates, dif-
fusion codficients, spectrum of helium, ...) that we focus on here.

Remark 1.8 Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, thigweline of research in neu-
ronal dynamics that focuses on possible unstable peritatiess described for example in
refs. [1.38, 1.39, 1.40, 1.41].
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A guide to exercises

God can #&ord to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; thlg way to develop

intuition about chaotic dynamics is by computing, and treeles is urged to try to

work through the essential exercises. As not to fragmentetiiethe exercises are

indicated by text margin boxes such as the one on this maguhcollected at theexercise 20.2
end of each chapter. By the end of a (two-semester) coursehaud have com-

pleted at least three small projects: (a) compute everytfon a 1-dimensional

repeller, (b) compute escape rate for a 3-disk game of gdinfolcompute a part

of the quantum 3-disk game of pinball, or the helium spectromif you are

interested in statistical rather than the quantum meckagmmpute a transport
codficient. The essential steps are:

e Dynamics

1. count prime cycles, exercise 1.1, exercise 9.6, exetdise
pinball simulator, exercise 8.1, exercise 13.4

pinball stability, exercise 13.7, exercise 13.4

pinball periodic orbits, exercise 13.5, exercise 13.6
helium integrator, exercise 2.10, exercise 13.11

helium periodic orbits, exercise 13.12

R e

e Averaging, numerical
1. pinball escape rate, exercise 17.3
e Averaging, periodic orbits

1. cycle expansions, exercise 20.1, exercise 20.2

pinball escape rate, exercise 20.4, exercise 20.5

cycle expansions for averages, exercise 20.1, exer2i8e 2
cycle expansions for flusion, exercise 25.1

pruning, transition graphs, exercise 15.6
desymmetrization exercise 21.1

No gk wN

intermittency, phase transitions, exercise 24.6

The exercises that you should do hawelerlined titles . The rest §maller type )
are optional. Dfficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth a publication. Sohg to some of the
problems are available dthaosBook.org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be dguilieacknowledged.
Often going through a solution is more instructive than egdhe chapter that
problem is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics.

will turn out to be our main tool to breach deep into
the realm of chaos, it pays to start familiarizing oneself
with them now by sketching and counting the few short-
est prime cycles (we return to this in sect. 15.4). Show
that the 3-disk pinball has 32"! itineraries of length

n. List periodic orbits of lengths 2, 3, 4, 5,-. Verify

that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123;. Try to sketch them.
(continued in exercise 12.6)

As periodic trajectories 1.2. Sensitivity to initial conditions. Assume that two pin-

ball trajectories start out parallel, but separated by 1
Angstrom, and the disks are of radias= 1 cm and
center-to-center separatiéh= 6 cm. Try to estimate

in how many bounces the separation will grow to the
size of system (assuming that the trajectories have beer
picked so they remain trapped for at least that long). Es-
timate the Who'sPinball Wizards typical score (num-
ber of bounces) in a game without cheating, by hook or
crook (by the end of chapter 20 you should be in position

to make very accurate estimates).
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