Chapter 22

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had found
it ... the invisible king - the élan vital - the principle of
evolution ... writing a book, starting a war, founding a
school....”

—F. Scott FitzgeraldThis Sde of Paradise

operator formalism. Here we slow down in order to develop esdimgertip

feeling for the traces of evolution operators. It is a melety task, as the
“intuition” garnered by these heuristic approximationsnisall ways inferior to
the straightforward and exact theory developed so far. Bhgs to be done, as
there is immense literature out there that deploys thesgstietestimates, most
of it of it uninspired, some of it plain wrong, and the readeowd be able to
understand and sort through that literature. We start oekplaining qualitatively
how local exponential instability of topologically distintrajectories leads to a
global exponential instability.

I N THE PRECEDING CHAPTERS We have moved rather briskly through the evolution

22.1 Escaperates

We start by verifying the claim (17.11) that for a nice hygsibflow the trace of
the evolution operator grows exponentially with time. ddes again the game
of pinball in figure 1.1. Designate byl a region of state space that encloses the
three disks, such as the surface of the table along with miighi directions. The
fraction of initial points whose trajectories start with¥ and recur within that
region at the time is given by

fmn:ﬁ f fM dxdys(y - () . (22.1)
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This quantity is both measurable and physically intergstima variety of prob-
lems spanning nuclear physics to celestial mechanics. fitegral overx takes
care of all possible initial pinballs; the integral owechecks whether they are
still within M by timet. If the dynamics is bounded, an®l envelops the entire
accessible state spadey(t) = 1 for all t. However, if trajectories exit, the
recurrence fraction decreases with time. For example, rajgctory that falls &
the pinball table in figure 1.1 is gone for good.

These observations can be made more concrete by examirengirtball
phase-space of figure 1.9. With each pinball bounce thealirétinditions that
survive get thinned out, each strip yielding two thinneipstwithin it. The total
fraction of survivors (1.2) aftem bounces is given by

L)
I'n=— Mil, 22.2
n W"Z' i (22.2)

wherei is a binary label of théth strip, and M| is the area of théh strip. Phase-
space volume is preserved by the flow, so the strips of suwigee contracted
along the stable eigen-directions and ejected along thiahieseigen-directions.
As a crude estimate of the number of survivors inithestrip, assume that a ray
of trajectories spreads by a factbrfter every bounce. The quantityrepresents
the mean value of the expanding eigenvalue of the corregpgdadcobian matrix
of the flow. We replacéM;| by the phase-space strip width estimgtd|/|IM| ~
1/A;, which is right in spirit but not without drawbacks. For exale in general
the eigenvalues of a Jacobian matrix for a finite segment odjactory have no
invariant meaning; they depend on the choice of coordindtEsvever, we saw
in chapter 18 that neighborhood sizes are determined byuBtagultipliers of
periodic points, which are invariant under smooth coorirteansformations.

In the approximatiorfn receives 2 contributions of equal size

2n
B e E - (22.3)
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up to pre-exponential factors. We see here the interplalyeofito key ingredients
of chaos first mentioned in sect. 1.3.1: the escapeyratpials the local expansion
rate (the Lyapunov exponeit= In A) minus the rate of global reinjection back
into the system (the topological entropy= In 2).

At each bounce one routinely loses the same fraction ofci@jes, so one
expects the sum (22.2) to decay exponentially withMore precisely, by the

hyperbolicity assumption of sect. 18.1.1, the expandiggmialue of the Jacobian
matrix of the flow is exponentially bounded from both above baelow,

1 < |Aminl < A < [Amaxl » (22.4)
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and the area of each strip in (22.2) is boundedAph < IMi| < |A;;‘n|. Replac-
ing M| in (22.2) by its estimates ir) terms @HKnaxl and|Aninl immediately leads
to exponential bounds (P\max))" < T'n < (2/|Aminl)", i.€.,

1 .
IN|Amax] =In2 > —ﬁlnrn > In|Apinl = In2. (22.5)

The argument based on (22.5) establishes only that the seguye= —% InTy
has a lower and an upper bound for anyn order to prove thag, converge to the
limit y, we first show that for hyperbolic systems the sum over singiintervals
(22.2) can be replaced by a sum over periodic orbit staslitBy (22.4) the size
of the stripM; can be bounded by the stability of theith periodic point:

1 M<Cl

Ci1— < —_—
AT T M T A

(22.6)

for any periodic point of periodn, with constant€; dependent on the dynamical
system but independent of The meaning of these bounds is that for increasingly
long cycles in a system of bounded hyperbolicity, the shniglof theith strip is
better approximated by the derivatives evaluated on thiegierpoint within the
strip. Hence, the survival probability can be bounded ctosbe periodic point
stability sum

Ciln< Y 22 <Gl , (22.7)

wherel'y = Zi(”) 1/|Ai| is the asymptotic trace sum (18.26). This establishes that
for hyperbolic systems the survival probability sum (2Zajp be replaced by the

periodic orbit sum (18.26). exercise 22.1
exercise 16.4

We conclude that for hyperbolic, locally unstable flows trecfion (22.1) of
initial x whose trajectories remain trapped withii up to timet is expected to
decay exponentially,

Cp(t) o« e,

wherey is the asymptotiescape rate defined by

1
y == lim a0 (22.8)
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22.2 Natural measurein termsof periodic orbits

Let us now refine the reasoning of sect. 22.1 and argue thaiteis a discretized
integral over state space. Consider the trace (18.7) iratige time limit (18.25):

0 pAT(x)
trL" = fdx&(x— (X)) S » Z Eﬁ|A»|
I

The factor J|Aj| was interpreted in (22.2) as the area of itthephase-space strip.
Hence, the t£" represents a discrete version pixe’A"® approximated by a
tessellation into strips centered on periodic poigsee figure 1.11), with the
volume of theith neighborhood given by estima®;| ~ 1/]Ail, ande’A"™ es-
timated byeA'®), its value at thdth periodic point. If the symbolic dynam-
ics is complete, any state space rectanglg,[-- S.51S - - - Sh] @lways contains section 12.3.1
the periodic poinS -~ %515, - - 5 hence, although the periodic points are of
measure zero (just like rationals in the unit interval) ythee dense on the non—
wandering set. Equipped with a measure for the associattdngdes, periodic
orbits sffice to cover the entire non—wandering set. The averagéoévaluated
on the non-wandering set is therefore given by the trac@eplpnormalized so
that(1) = 1:

DR

il YV I S O (22.9)
(" /il Z
Herey; is thenormalized natural measure section 17.3
()
Domi=1, i = €A, (22.10)
i

which is correct both for closed systems as well as openrsgste
Unlike brute numerical slicing of the integration spaceiah arbitrary lattice
(for a critique, see sect. 16.3), periodic orbit theory isagimas it automatically

partitions integrals according to the intrinsic topolodittee flow, and assigns to
each tilei the invariant natural measugg

2221 Unstable periodic orbitsare dense

(L. Rondoni and P. Cvitanovit)
Our goal in sect. 17.1 was to evaluate the space and timegacexpectation

value (17.9). An average over all periodic orbits can acdwinghe job only if
the periodic orbits fully explore the asymptotically acgibke state space.
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Why should unstable periodic points end up being dense? yidiescare intu-
itively expected to belense because on a connected chaotic set a typical trajectory
is expected to behave ergodically, and infinitely many tipeess arbitrarily close
to any point on the set (including the initial point of thejéetory itself). The
argument proceeds more or less as follows. Partifiérin arbitrarily small re-
gions and consider particles that start in the regidn and return to it im steps
after some peregrination in the state space. For examptajeztory might re-
turn a little to the left of its original position, whereas eanby neighbor might
return a little to the right of its original position. By assption, the flow is con-
tinuous, so generically one expects to be able to gently rtewénitial point in
such a way that the trajectory returns precisely to theahfibint, i.e., one ex-
pects a periodic point of periaalin celli. As we diminish the size of regionf;,
aiming a trajectory that returns 1, becomes increasingly fticult. Therefore,
we are guaranteed that unstable orbits of increasinglye lpegiods are densely
interspersed in the asymptotic non—wandering set.

The above argument is heuristic, by no means guaranteedrko aral it must
be checked for the particular system at hand. A variety obdigybut insufi-

ciently mixing counter-examples can be constructed - thetrfamiliar being a
quasiperiodic motion on a torus.

22.3 Correation functions

Thetime correlation function Cag(t) of two observable#\ andB along the trajec-
tory x(t) = f!(xo) is defined as

-
Cag(t; %) = T“an%j(; drA(X(t + t))B(x(7)) , X0 = x(0). (22.11)

If the system is ergodic, with invariant continuous meaguy(&)dx, then correla-
tion functions do not depend og (apart from a set of zero measure), and may be
computed by a state space average as well,

Cralt) = fM %o po(Xo)A(F (%)) B(X0) (22.12)

For a chaotic system we expect that time evolution will Idseihformation con-
tained in the initial conditions, so th@xg(t) will approach theuncorrelated limit
(A) - (B). As a matter of fact the asymptotic decay of correlation fioms

Cag = Cag — (A (B) (22.13)

for any pair of observables coincides with the definitionmdfing, a fundamental
property in ergodic theory. We now assume without loss oégality that(B) = 0.

getused - 24dec2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 22. WHY CYCLE? 447

(Otherwise we may define a new observableBfy) — (B).) Our purpose is how
to connect the asymptotic behavior of correlation fundiarith the spectrum of
the Perron-Frobenius operatfr We can write (22.12) as

Canlt) = [ o | ay AQIBXIO09GY - 11(9)
M M
and recover the evolution operator

Calt) = fM dx fM dy AW)L(y. YBX)p0(x).

Recall sect. 16.1, where we showed thét) is the eigenvector of” corre-
sponding to probability conservation:

f dy L1 y)p) = p(¥).-
M

We can expand the-dependent part of this equation in terms of the eigenbdsis o
L

B(Xpo(¥) = ) CapalX).

a=0

wherepo(X) is the natural measure. Since the average of the left haledsizero
the codficientco must vanish. The action of can then be written as

Caalt) = Y e, [ ay AL 0) (22.14)
a#0 M
exercise 22.2
We see immediately that if the spectrum hagap, i.e., if the second largest
leading eigenvalue is isolated from the largest eigenvédgie= 0) then (22.14)
implies exponential decay of correlations

Cag(t) ~ e,

The correlation decay rate= s; then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading migkie of the Perron-
Frobenius operator), and the choice of a particular obb&afluences only the
prefactor.

Correlation functions are often accessible from time samieasurable in lab-

oratory experiments and numerical simulations; moreott@y are intimately
linked to transport exponents.
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22.4 Traceformulasvs. level sums

Benoit B. Mandelbrot: “I would be perfectly happy being
Kepler” [to a coming fractals’ Newton]. Referring to the
broad array of things now described by fractals, he added,
“I have been Kepler many times over.”

—J. Gleick, New York Times, January 22, 1985

)

J Trace formulas (18.10) and (18.23) diverge precisely whasewould
like to use them, as equal to eigenvalues,. To avoid this divergence, one can
proceed as follows; according to (18.27) the “level” sunibsiambol strings of
lengthn) behave asymptotically dominated by the leading eigereveil of the
evolution operator

ieFixfn
so annth order estimatey, of the leading eigenvalus, is fixed by the condition

S0 SN
1= Z AT (22.15)
ieFixfn !

The eigenvalue condition for the level sum (22.15) can béevrin the same form
as the two conditions (20.18) and (20.19) given so far:

@
Ozl—Zti, t =t s8), n=n. (22.16)

We do not recommended it as a computational method. Theudty in estimat-
ing the leading eigenvalug) from thisn — co limit is at least twofold:

1. Due to an exponential growth in the number of intervalsameéxponential
decrease in the attainable accuracy, the maximuathieved experimentally or
numerically, is approximately between 5 and 20.

2. The pre-asymptotic sequence of finite estimagds not unique, because
the sumsl', depend on how we define the escape region, and because in gen-
eral the areapM;| in the sum (22.2) should be weighted by the density of initial
conditionsp(0). For example, an overall measuring unit rescaliff — a|M;|
introduces 1In corrections insy, defined by the log of the sum (22.8§, —
Sn) + Ina/n. This problem can be ameliorated by defining a level average

BA(X) gsn
A(S) P
(€%9) E;fn T (22.17)
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and requiring that the ratios of successive levels satisfy

_ <e8A(S(n))>(n+1)
(eﬁA(S(n))>(n)

This avoids the worst problem with formula (22.15), the itedsle 1/n corrections

due to its lack of rescaling invariance. However, even thoogich published
pondering of “chaos” relies on it, there is no need for suamggstics: dynamical
zeta functions and spectral determinants are alreadyiamtarot only under linear
rescalings, but undel smooth nonlinear conjugacies— h(x), and require no

n — oo extrapolations to asymptotic times. Comparing this witbleyexpansions
(20.7), we see the fierence; in the level sum approach, we keep increasing expo-
nentially the number of terms with no reference to the faat thost are already
known from shorter estimates, but in cycle expansions gkaris dominate and
longer ones enter only as exponentially small corrections.

22.4.1 Flow conservation sum rules

The trace formula version of the flow conservation sum ru®12) comes in two
varieties (one for maps and another for flows). By flow coreston, the leading
eigenvalue isp = 0, which for maps (22.16) yields

1
trL" = — = 14+eM4 . 22.18
PIR=rem ey (22.19)

For flows, one can apply this rule by grouping together cyflesxt = T to
t=T+AT

T<rTp<T+AT

i Tp :ifTJrATdt 1 st
AT o |det(1—M[))' AT Jy (+e +)

= 1+ii al (T -1~ 1+€T +... . (22.19)

As is usual for fixed level trace sums, the convergence ofL@2s controlled
by the gap between the leading and next-to-leading eigeesadf the evolution
operator.

Résum é

We conclude this chapter by a general comment on the relafidmite trace
sums such as (22.2) to spectral determinants and dynaneizafunctions. One
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might be tempted to believe that given a deterministic ralesum like (22.2)
can be evaluated to any desired precision. For short tirhés g indeed true:
every regionM; in (22.2) can be accurately delineated, and there is no reed f
any fancy theory. However, if the dynamics is unstable, llsaaations in initial
conditions grow exponentially and in finite time attain tieef the system. The
difficulty with estimating th& — co limit from (22.2) is then at least twofold:

1. Due to the exponential growth in number of intervals, dmeléxponen-
tial decrease in attainable accuracy, the maximattainable experimentally or
numerically is in practice of order of something between 8ap

2. The pre-asymptotic sequence of finite estimateis not unique, because
the sumd', depend on how we define the escape region, and because imlgener
the area$M;| in the sum (22.2) should be weighted by the density of inigal

In contrast, dynamical zeta functions and spectral deteants are invariant
underall smooth nonlinear conjugacies— h(x), not only linear rescalings, and
require non — oo extrapolations.

Commentary

Remark 22.1 Nonhyperbolic measures. The measurg; = 1/|Aj| is the natural
measure only for the strictly hyperbolic systems. For ngpéubolic systems, the mea-
sure might develop cusps. For example, for Ulam maps (uréinodps with quadratic
critical point mapped onto the “left” unstable fixed poiat discussed in more detail in
chapter 24), the measure develops a square-root singuarthe0 cycle:

1

= (22.20)

Ho

Thermodynamic averages are still expected to convergedritiiperbolic” phase in

which the positive entropy of unstable orbits dominatesttfaeginal orbits, but they fail

in the “non-hyperbolic” phase. The general case remainkanfl2.12, 22.2, 22.3, 22.4,
22.6].

Remark 22.2 Trace formula periodic orbit averaging. ~ The cycle averaging formu-
las are not the first thing one intuitively writes down; thg@egximate trace formulas are
more accessibly heuristically. Trace formula for avergdi22.19) seems to have been
discussed for the first time by Hannay and Ozorio de Almei@a926.9]. Another nov-
elty of cycle averaging formulas is one of their main virtuescontrast to the explicit
analytical results such as those of ref. [20.4]. Their eatidun does not require any ex-
plicit construction of the (coordinate dependent) eigenfions of the Perron-Frobenius
operator (i.e., the natural measeg.

Remark 22.3 Role of noise in dynamical systems. In any physical application,
the dynamics is always accompanied by external noise irtiaddd deterministic chaos.
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The former can be characterized by its strengt@ind distribution. Lyapunov exponents,
correlation decay, and dynamo rate can be defined in thistbassame way as in the
deterministic case. One might think that noise completelstiys the results derived
here. However, as we show chapter 28, deterministic forsmgimain valid to accuracy
comparable with noise width if the noise level is small. A #ifexel of noise even helps,
as it makes the dynamics more ergodic. Deterministically-oommunicating parts of
state space become weakly connected due to noise. This engexplains why periodic
orbit theory is also applicable to non-ergodic systems.siaall amplitude noise, one can

expand perturbatively

A=d+a@mel + ;o + ...,

around the deterministic averagas The expansion cdgcientsay, a, ... can also be
expressed in terms of periodic orbit formulas. Calculatimgse cofficients is one of the
challenges facing periodic orbit theory, discussed in.[[¢%.9, 16.10, 16.11].

Exercises

22.1. Escaperateof thelogistic map.

(a) Calculate the fraction of trajectories remaining

trapped in the interval [@] for the logistic map

f(x) = AL - (2x- 1)),

and determine thA dependence of the escape rate

y(A) numerically.

(22.21)

with a 4-interval state space Markov partition

M = {Moo, Moz, Mo, M1}
{[0,b/Aq], (b/ Ao, b](b, c](c, 1]} .

(a) computesy, Sio, C.
(b) Show that the 2-cycle Floquet multiplier does

(b) Develop a numerical method for calculating the depend orb,

lengths of intervals of trajectories remaining stuck

for niterations of the map.

(c) Describe the dependence Afnear the critical

valueA; = 1?

22.2. Four-scale map correlation decay rate.
the piecewise-linear map

f01

b
00 01 10 1

fog = ApX

for = Soi(x—b) +1
f11 = Al(X - b) +1
fi0 = s10(x - 1)

f(x) =

exerGetused - 1sep2007

Consider

AoA1
(ho-1)(A1+1)"
(c) Write down the [ 2] Perron-Frobenius operz
acting on the space of densities piecewise col
over the four partitions.

Ao1 = S01810 =

(d) Construct the corresponding transition graph

(e) Write down the corresponding spectral deter
ant.

(f) Show that the escape rate vanishes, — In(z) =
0.

(g) Determine the spectrum of the Perron-Frob
operator on the space of densities piecewise
stant over the four partitions. Show that the se

largest eigenvalue of the % =-1+ A—ln - Ail

(h) Is this value consistent with the tent map v
previously computed in exercise 16.4 (with the
propriate choice ofAg, A1, C}).
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(i) (optional) Is this next-to leading eigenvalue still
correct if the Perron-Frobenius operator acts on
the space of analytic functions?

22.3. Lyapunov exponentsfor 1-dimensional maps.  Ex-

tend your cycle expansion programs so that the first and

the second moments of observables can be computed.

Use it to compute the Lyapunov exponent for the fol-
lowing maps:

(a) the piecewise-linear skew tent (flow conserving

map)
~f Aox if 0 <x<AZL
6 = { A(l-%  if At<x<1
A1 = Ao/(Ao—1).
(b) the Ulam mapf(x) = 4x(1 - x).
(c) the skew Ulam map
f(X) = Aox(1 - x)(1 - bx), (22.22)

1/A0 = X(1—%)(1—bxc) . In our numerical work
we fix (arbitrarily, the value chosen in ref. [20.3])
b=0.6, so

452

(e) the 2-branch flow conserving map

00 = 2 (n-pe J-pran)
fi(x) = Z—lh(h+ p-1) (22.23)

Y R _
+2h (h+ p—1)? +4h(x- p),

with a 2-interval state space Markov partition
M = {Mo, M1} = {[0, pl, (p,1]}. This is a non-
linear perturbation of the Bernoulli shift map, for
whichh = 0 (23.6); the first 15 eigenvalues of the
Perron-Frobenius operator are listed in ref. [22.1]
for p = 0.8, h = 0.1. Use these parameter values
when computing the Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases
(c), (d) and (e) require numerical computation of cy-
cle stabilities. Just to see whether the theory is worth
the trouble, also check your cycle expansions results for
cases (c) and (d) with Lyapunov exponents computed
by direct numerical averaging along trajectories of ran-
domly chosen initial points:

(f) trajectory-trajectory separation (17.32) (hint:

rescalesx every so often, to avoid numerical over-

f(x) = 0.1218x(1 - X)(1 - 0.6 X) flows),

with a peakf (x;) = 1 atx. = 0.7.

(d) the repeller off (x) = Ax(1-X), for eitherA = 9/2
or A = 6 (this is a continuation of exercise 20.2).
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(9) iterated stability (17.37).

How good is the numerical accuracy compared with pe-
riodic orbit theory predictions for (a) - (g)?
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