Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

flection and rotation symmetries of various potentials.his thapter we

study quotienting of discrete symmetries, and in the neaptdr we study
symmetry reduction for continuous symmetries. We look dividual orbits, and
the ways they are interrelated by symmetries. This setstége $or a discussion
of how symmetries féect global densities of trajectories, and the factorizatid
spectral determinants to be undertaken in chapter 21.

DYNAMICAL sysTEMs Often come equipped with symmetries, such as the re-

As we shall show here and in chapter 21, discrete symmeitngdify the dy-

namics in a rather beautiful way: If dynamics is invariandena set of discrete
symmetriesG, the state spaca is tiled by a set of symmetry-related tiles, and

the dynamics can be reduced to dynamics within one suchthigfundamental

domain M/G. In presence of a symmetry the notion of a prime periodictorbi

has to be reexamined: a set of symmetry-related full stateespycles is replaced

by often much shorteelative periodic orbif the shortest segment of the full state

space cycle which tiles the cycle and all of its copies ungertction of the group.
Furthermore, the group operations that relate distires tllo double duty as letters

of an alphabet which assigns symbolic itineraries to ttajies. section 11.1

Familiarity with basic group-theoretic notions is assumeih details rele-
gated to appendix H.1. We find the abstract notions easieigastby working
out the examples interspersed throughout this chapteefindite reader might
prefer to skip the lengthy group-theoretic overture and gectly to G = D;
example 9.12, example 9.14, ang,G D3 example 9.1, backtrack as needed.
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Figure 9.1: The symmetries of three disks on an equi
lateral triangle. A fundamental domain is indicated b
the shaded wedge.

9.1 Discrete symmetries

. . . . %\
Normal is just a setting on a washing machine. A
—Borgette, Borgo’s daughter

We show that a symmetry equates multiplets of equivalentpidr ‘stratifies’ the
state space into equivalence classes, each class a ‘groitip \bfe start by defin-
ing a finite (discrete) group, its state space represengtend what we mean by
asymmetry(invarianceor equivariancg of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A.2.3) way toggnabstract notions
have to be defined before an intelligent conversation campédce. Perhaps best
to skim through this section on the first reading, then retarihlater as needed.

Definition: A group consists of a set of elements
G={e0ds....0n...} (9.2)
and a group multiplication rulg; o g; (often abbreviated ag;g;), satisfying

Closure: Ifgi,gj € G, thengjo g € G
Associativity:gx o (9j © gi) = (Gk © gj) © i
Identityee goe=eog=gforallge G

El A

Inverseg™: For everyg € G, there exists a unique elemdnt= g € G
such that
hog=goh=e

If the group is finite, the number of elemeniS| = n, is called theorder of the
group. example H.1
example H.2

) ) example H.3
Example 9.1 Cg, = D3 symmetry of the 3-disk game of pinball: If the three unit-

radius disks in figure 9.1 are equidistantly spaced, our game of pinball has a sixfold
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CHAPTER 9. WORLD IN A MIRROR 156

symmetry. The symmetry group of relabeling the 3 disks is the permutation group Ss;
however, it is more instructive to think of this group geometrically, as Cs,, also known
as the dihedral group

Ds = {€ 012, 013, 0723, CY3,C#3}, (9.2)

the group of order |G| = 6 consisting of the identity element e, three reflections across
symmetry axes {o12, 023, 013}, and two rotations by 2r/3 and 4r/3 denoted {C/3, C?/3}.

(continued in example 9.6)

Definition: Coordinate transformations. Consider a max’ = f(x), x, X €
M. An activecoordinate transformatiollx corresponds to a non-singulat{d]
matrix M that maps the vector € M onto another vectoMx € M. The corre-
spondingpassivecoordinate transformatiofi(x) — M~1f(x) changes the coor-
dinate system with respect to which the vectéx) € M is measured. Together,
a passive and active coordinate transformations yield te imthe transformed
coordinates:

f(x) = M71f(MX). (9.3)

Example 9.2 Discrete groups of order 2 on  R3.  Three types of discrete group of

order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: o(x,y,2) = (XY,-2)
rotations: CY2(x,y,2 = (=X -V,2)
inversions: P(X,y,2) = (=X, -Y,-2).

(9.4)

o is areflection (or an inversion) through the [x, y] plane. CY/? is[x, y]-plane, constant z
rotation by & about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0,0, 0). Singly, each operation generates a group
of order 2: Dy = {e, 0}, C, = {€,C%?}, and D; = {e, P}. Together, they form the dihedral

group D, = {e, o, CY/?, P} of order 4. (continued in example 9.3)

Definition: Matrix group.  The set of fixd]-dimensional real non-singular ma-
tricesA, B,C, ... € GL(d) acting in ad-dimensional vector spadé € RY forms
the general linear grou@ L(d) under matrix multiplication. The product of matri-
cesA andB gives the matridxC, Cx = B(AX) = (BA)x e V, for all x € V. The unit
matrix 1 is the identity element which leaves all vectorsMrunchanged. Every
matrix in the group has a unique inverse.

discrete - 7feb2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 9. WORLD IN A MIRROR 157

Definition: Matrix representation. Linear action of a group elemermf on
statesx € M is given by a finite non-singuladfx d] matrix g, the matrix rep-
resentationof elementg € G. We shall denote byg both the abstract group
element and its matrix representation.

However, when dealing simultaneously with several repriegions of the
same group action, notatid;(g), j a representation label, is preferable (see ap-
pendix H.1). A linear or matrix representatidG) of the abstract grou@ acting
on arepresentation space ¥ a group of matrice®(G) such that

1. Anyg € G is mapped to a matriv(g) € D(G).

2. The group produdl, o g1 is mapped onto the matrix produd{g, o g1) =
D(92)D(91).

3. The associativity follows from the associativity of niatmultiplication,
D(gs © (92 © 1)) = D(93)(D(92)D(91)) = (D(gs)(D(g2))D(91).

4. The identity elemeng¢ € G is mapped onto the unit matriR(e) = 1 and
the inverse elemerg™ e G is mapped onto the inverse matiXg™?) =

[D(@] ™ = D(9).

Example 9.3 Discrete operations on R3. (continued from example 9.2) The matrix

representation of reflections, rotations and inversions defined by (9.4) is

10 0 -1 0 0 -1 0 O
0':{0 1 0], c1/2={ 0 -1 o], P:[ 0 -1 o], (9.5)
0 0 -1 0 0 1 0 0 -1

with detC¥? = 1, deto = detP = —1; that is why we refer to CY/? as a rotation, and o, P
as inversions. As g = e in all three cases, these are groups of order 2. (continued in

example 9.5)

If the coordinate transformatiog belongs to a linear non-singular represen-
tation of a discrete finite grou@, for any elemeng € G there exists a number
m < |G| such that

nggogo___og:e — |detg|:1 (96)

m times

As the modulus of its determinant is unity, deis anmth root of 1. Hence all
finite groups have unitary representations.

Definition: Symmetry of a dynamical system. A groupG is asymmetnpof the
dynamics if for every solutiori(x) e M andg € G, gf(x) is also a solution.

Another way to state this: A dynamical system(f) is invariant (or G-
equivarian) under a symmetry grou@ if the time evolutionf : M —- M (a

discrete - 7feb2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 9. WORLD IN A MIRROR 158

 F(X)
fo
AN
X3 | X
Froeeee " X2
 £(X)
OXp L\l )
0Xs
Figure 9.2: The bimodal Ulam sawtooth map with thel O 1 X
D; symmetryf(-x) = —f(x). If the trajectoryxy — | /> /7
X1 — X2 — ---iS a solution, so is its reflectionxy —
oX3 — oX — ---. (continued in figure 9.4) SO X

discrete time mag, or the continuous flowf* map from thed-dimensional man-
ifold M into itself) commutes with all actions &,

f(gx) = gf(x). (9.7)

In the language of physicists: The ‘law of motion’ is invantai.e., retains its form
in any symmetry-group related coordinate frame (9.3),

f() =979, (9.8)

for x e M andany finite non-singular §xd] matrix representatiog of element
g € G. As these are truany statex, one can state this more compactlyfasg =
gof,orf=glofog.

Why ‘equivariant?’ A scalar functioh(x) is said to beG-invariantif h(x) =
h(gx) for all g € G. The group actions map the solution M — M into different
(but equivalent) solutiong f(x), hence the invariance conditidi{x) = g~ f(gX)
appropriate to vectors (and, more generally, tensors). flulheet of such solu-
tions isG-invariant but the flow that generates them is said td@equivariant.
It is obvious from the context, but for verbal emphasis amplmathematicians
like to distinguish the two cases liyequivariant. The distinction is helpful in
distinguishing the dynamics written in the original, equiant coordinates from
the dynamics rewritten in terms ofvariant coordinates, see sects. 9.5 and 10.4xercise 9.7
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Figure 9.3: The 3-disk pinball cycles: (a)2,13,
23, 123; the clockwisel32 not drawn. (b) Cy-

cle1232; the symmetry relatel®13 andL323 not
drawn. (c)12323;12123,12132,12313,13131

and 13232 not drawn. (d) The fundamental do-
main, i.e., the Bth wedge indicated in (a), con-
sisting of a section of a disk, two segments of sym(a)
metry axes acting as straight mirror walls, and the

escape gap to the left. The above 14 full-space cy- L

cles restricted to the fundamental domain and re-

coded in binary reduce to the two fixed poifiXs

1, 2-cyclel0, and 5-cycl®0111 (not drawn). See

figure 9.9 for thédO1 cycle. 0

(d)

Example 9.4 A reflection symmetric 1d map.  Consider a 1d map f with reflection
symmetry f(—x) = —f(X), such as the bimodal ‘sawtooth’ map of figure 9.2, piecewise-
linear on the state space M = [-1, 1], a compact 1-dimensional line interval, split into
three regions M = M| U Mc U Mg. Denote the reflection operation by ox = —X. The
2-element group G = {e, o} goes by many names, such as Z, or C,. Here we shall
refer to it as D1, dihedral group generated by a single reflection. The G-equivariance
of the map implies that if {x,} is a trajectory, than also {oX,} is a symmetry-equivalent
trajectory because o-Xn1 = o f(Xy) = f(ox,) (continued in example 9.12)

Example 9.5 Equivariance of the Lorenz flow. (continued from example 9.3) The
velocity field in Lorenz equations (2.12)

X oy—X)
y | = px—y—xz}
z Xy — bz

is equivariant under the action of cyclic group C, = {e, C¥/?} acting on R® by a  rotation
about the z axis,

CY2(x,y,2) = (%, Y, 2). (9.9)

(continued in example 9.14)

Example 9.6 3-disk game of pinball - symmetry-related orbits: (continued from
example 9.1) Applying an element (identity, rotation by +2x/3, or one of the three
possible reflections) of this symmetry group to a trajectory yields another trajectory.
For instance, o3, the flip across the symmetry axis going through disk 1 interchanges
the symbols 2 and 3; it maps the cycle 12123into 13132 figure 9.3 (c). Cycles 12, 23,
and 13 in figure 9.3 (a) are related to each other by rotation by +2r/3, or, equivalently,
by a relabeling of the disks. (continued in example 9.8)
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Example 9.7 Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: reflection through the (streamwise , wall-normal) plane,
and rotation by & in the (streamwise , wall-normal) plane. That is why the system has
equilibrium and periodic orbit solutions, (as opposed to relative equilibrium and relative
periodic orbit solutions discussed in chapter 10). They belong to discrete symmetry

subspaces. (continued in example 10.4)

9.1.1 Subgroups, cosets, classes

Inspection of figure 9.3 indicates that various 3-disk arlite the same up to a
symmetry transformation. Here we set up some abstract grmgretic notions
needed to describe such relations. The reader might pr@fekip to sect. 9.2,
backtrack as needed.

Definition: Subgroup. A set of group elementsl = {e by, bs,...,by} € G
closed under group multiplication forms a subgroup.

Definition: Coset. LetH = {e by, bs,...,by} € G be a subgroup of orddr =
[H|. The set oth elementdc, chp, chg, ..., chy}, c € G but not inH, is called left
coset cH For a given subgroupl the group elements are partitioned ifcand
m — 1 cosets, wheren = |G|/|H|. The cosetgannot besubgroups, since they do
not include the identity element. We learn that a nontrivhigsoup can exist only
if |G|, the order of the group, is divisible b¥l|, the order of the subgroup, i.e.,
only if |G| is not a prime number.

Example 9.8 Subgroups, cosets of Dg: (continued from example 9.6) The

3-disks symmetry group, the D3 dihedral group (9.2) has six subgroups

{e), (e o), (6013}, {6023}, (6 CY3,C%3), Djs. (9.10)

The left cosets of subgroup D1 = {e o1} are {013, CY/3}, {023, C¥3). The coset of

subgroup Cs = {e,C*3,C?3} is {012, 013, 023}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123is Cg, then all
elements in a coset act on it the same way, for example {012, 013, 023}123= 132

The nontrivial subgroups of D3 are Dy = {e, o}, consisting of the identity and
any one of the reflections, of order 2, and C; = {e, C¥3,C?%3}, of order 3, so possible
cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has
full symmetry G, = G. Such equilibria exist for smooth potentials, but not for the 3-
disk billiard. Examples of other multiplicities are given in figure 9.3 and figure 9.7.
(continued in example 9.9)

Next we need a notion that will, for example, identify thecB-disk 2-cycles
in figure 9.3 as belonging to the same class.
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Definition: Class. An elementb € G is conjugateto a if b = cac wherec s

some other group element. bfandc are both conjugate ta, they are conjugate

to each other. Application of all conjugations separatesstt of group elementssxercise 9.3
into mutually not-conjugate subsets calleldsses typesor conjugacy classes

The identitye is always in the clasg&} of its own. This is the only class which isxercise 9.5
a subgroup, all other classes lack the identity element.

Example 9.9 D3 symmetry - classes: (continued from example 9.8) The three
classes of the 3-disk symmetry group D5 = {e, CY/3,C%3, &, 7C/3, 0C?/3), are the iden-
tity, any one of the reflections, and the two rotations,

012 cl3
{e}, 013 ¢, { c2/3 } (9.11)

023

In other words, the group actions either flip or rotate. (continued in example 9.13)

Physical importance of classes is clear from (9.8), the vaydinate trans-
formations act on mappings: action of elements of a clasg r@lections, or
rotations) is equivalent up to a redefinition of the coorterfaame.

Definition: Invariant subgroup. A subgroupH C G is aninvariant subgroup
or normal divisorif it consists of complete classes. Class is complete if mguzo
gation takes an element of the class ouHof

Think of action ofH within each coset as identifying ifid| elements as equiv-
alent. This leads to the notion of tii@ctor groupor quotient group GH of G,
with respect to the invariant subgrot. H thus dividesG into H andm - 1
cosets, each of ord@i|. The order ofG/H is m = |G|/|H|, and its multiplication
table can be worked out from ti@ multiplication table class by class, with the
subgroupH playing the role of identity.G/H is homeomorphido G, with [H|
elements in a class @ represented by a single elementdnH.

9.1.2 Orbits, quotient space

So far we have discussed the structure of a group as an dbmstititg. Now we
switch gears and describe the action of the group on thesgiate. This is the key
step; if a set of solutions is equivalent by symmetry (a eirtdt’s say), we would
like to represent it by a single solution (cut the circle atagnp or rewrite the
dynamics in a ‘reduced state space, where the circle oftisolsl is represented
by a single point).

section 2.1

Definition: Orbit.  The subseiMy, c M traversed by the infinite-time trajec-
tory of a given pointxg is called theorbit (or time orbit, or solution) x(t) = f'(xg).
An orbit is adynamically invarianinotion: it refers to the set of all states that can

discrete - 7feb2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 9. WORLD IN A MIRROR 162

be reached in time fromg, thus as a set it is invariant under time evolution. The
full state spaceM is foliated into a union of such orbits. We label a generidtorb
My, by any point belonging to itxg = x(0) for example.

A generic orbit might be ergodic, unstable and essentialtontrollable. The
ChaosBook strategy is to populate the state space by adhgraf orbits which
are compact invariant setgéequilibria, periodic orbits, invariant tori,..), each
computable in a finite time. They are a set of zero Lebesguesuneabut dense
on the non—wandering set, and are to a generic orbit whaidrecare to normal
numbers on the unit interval. We label orbits confined to cachpwvariant sets by
whatever alphabet we find convenient in a given context:t@o = xeq = Meqg
for an equilibrium, 1-dimensional loop = M, for a prime periodic orbip, etc.
(note also discussion on page 205, and the distinction leetivajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment ofrhit)o

Definition: Group orbit  or theG-orbit of the pointx € M is the set
My ={gx|geG} (9.12)

of all state space points into whichis mapped under the action & If Gis a
symmetry, intrinsic properties of an equilibrium (such tbaity eigenvalues) or
a cyclep (period, Floquet multipliers) evaluated anywhere alosgstorbit are
the same.

A symmetry thus reduces the number of inequivalent solatibfy. So we
also need to describe the symmetry adaution as opposed to (9.8), the sym-
metry of thesystem We start by defining the notions ofduced state spacef
isotropyof a state space point, and of ttygmmetry of an orhit

Definition: Reduced state space. The action of groups partitions the state
spaceM into a union of group orbits. This set of group orbits, dedod/G, has
many namesreduced state spacguotient spacer any of the names listed on
page 195.

Reduction of the dynamical state space is discussed in $dctor discrete
symmetries, and in sect. 10.4 for continuous symmetries.

Definition: Fixed-point subspace. My is the set of all state space points left
H-fixed point-wiseinvariant under subgroup or ‘centralizéff c G action

My = Fix(H) = {xe M :hx=xforallhe H}. (9.13)

Points in state space subspaef; which are fixed points of the full group action
are callednvariant points

Mg =Fix(G) ={xe M:gx=xforallgeG}. (9.14)
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Definition: Flow invariant subspace. A typical point in fixed-point subspace
My moves with time, but, due to equivariance (9.7), its trajpeix(t) = fY(x)
remains withinf (My) € My for all times,

hft(x) = fi(hx) = f'(x), heH, (9.15)

i.e., it belongs to dlow invariant subspaceThis suggests a systematic approach
to seeking compact invariant solutions. The larger the sgimnsubgroup, the
smaller My, easing the numerical searches, so start with the largbgt@upsH
first.

We can often decompose the state space into smaller subspdtte group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. M, c M is aninvariant subspace if
{M, :gxe M, forallge Gandxe M,}. (9.16)

{0} and M are always invariant subspaces. So is any(Hxwhich is point-wise
invariant under action d&.

Definition: Irreducible subspace. A spaceM, whose only invariant subspaces
are{0} and M,, is calledirreducible

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all osffsem’s symmetries, a
subgroup of them, or have no symmetry at all. For a generimdécgrbit f'(x) the
trajectory and any of its images under actiorgef G are distinct with probability
one, fi(x) N gft'(x) = 0 for all t, t'. For example, a typical turbulent trajectory
of pipe flow has no symmetry beyond the identity, so its symyngtoup is the
trivial {€}. For compact invariant sets, such as fixed points and permdits the
situation is very diterent. For example, the symmetry of the laminar solution of
the plane Couette flow is the full symmetry of its Navier-&®lequations. In
between we find solutions whose symmetries are subgroue éfili symmetry

of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space pointinto itself,

GCx={geG:gx=x}, (9.17)
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is called thasotropy groupor little group of x.

A solution usually exhibits less symmetry than the equatiohmotion. The
symmetry of a solution is thus a subgroup of the symmetry gmfudynamics.
We thus also need a notion sét-wiseinvariance, as opposed to tpeint-wise
invariance unde6y. exercise 9.2

Definition: Symmetry of a solution, Gp-symmetric cycle. We shall refer to the
subset of nontrivial group actiorid, € G on state space points within a compact
setM,, which leave no point fixed but leave the set invariant, asymemetryG,

of the solutionM,,

Gp=1{0€eGp:gxe Mp, gx# xforg # ¢}, (9.18)

and reserve the notion of ‘isotropy’ of a séft,, for the subgroufs, that leaves
each point in it fixed.

A cycle p is Gp-symmetric(set-wise symmetricself-dua) if the action of
elements of5, on the set of periodic pointaA,, reproduces the seg € G, acts
as a shift in time, mapping the periodic poiné M, into another periodic point.

Example 9.10 Di1-symmetric cycles: For D, the period of a set-wise symmetric
cycle is even (ns = 2ng), and the mirror image of the Xs periodic point is reached by
traversing the relative periodic orbit segment § of length ns, f™(xs) = oXs, see fig-
ure 9.4 (b).

Definition: Conjugate symmetry subgroups. The splitting of a groufs into

a symmetry groufis, of orbit M, andm - 1 cosetG, relates the orbitM,, to

m- 1 other distinct orbite M. All of them have equivalent symmetry subgroupsxercise 9.4
or, more precisely, the points on the same group orbit ltavgugate symmetry
subgroupgor conjugate stabilizeps

Gep=CGpCt, (9.19)

l.e., if Gy is the symmetry of orbitM,, elements of the coset spages G/Gp
generate then, — 1 distinct copies ofM,,, so for discrete groups the multiplicity
of orbit pis mp = |G|/IGp|.

Definition: Gp-fixed orbits:  An equilibriumxg or a compact solutiopis point-
wise orGp-fixedif it lies in the invariant points subspace I{@p), gx = xforall
g € Gp, andx = xq or x € Mp. A solution that isG-invariant under all grouiG
operations has multiplicity 1. Stability of such solutionsl have to be examined
with care, as they lie on the boundaries of domains relatethéyaction of the
symmetry group.
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Figure 9.4: The Dy-equivariant bimodal sawtooth
map of figure 9.2 has three types of periodic or-
bits: (a) D-fixed fixed pointC, asymmetric fixed
points pair{L,R}. (b) D;-symmetric (setwise in-
variant) 2-cycleLR. (c) Asymmetric 2-cycles pair —
{LC,CR. (continued in figure 9.8) (Y. Lan)
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Example 9.11 Dj-invariant cycles: In the example at hand there is only one G-
invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.4 (a). As
reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 9.16, and work out the symbolic dynamics
of such reflection symmetric systems in example 12.5.

In the literature the symmetry group of a solution is oftellechstabilizer
or isotropy subgroup Saying thaiG;, is the symmetry of the solutiop, or that
the orbit M, is ‘Gp-invariant,” accomplishes as much without confusing yothwi
all these names (see remark 9.1). In what follows we say ‘yhansetry of the
periodic orbitp is C, = {e, R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbitshiirt symmetry.
We note three types of solutions: (i) fully asymmetric siolns a, (i) subgroup
Gg set-wise invariant cycles built by repeats of relative cycle segmersisaind
(iii) isotropy subgroupGeg-invariant equilibria or point-wis&,-fixed cyclesb.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {xq} N {gXy} = 0 for anyg € G, where{xy} is the set of periodic points
belonging to the cyclea. Thusg € G generatdG| distinct orbits with the same
number of points and the same stability properties.

Example 9.12 Group D; - a reflection symmetric 1d map: Consider the bimodal
‘sawtooth’ map of example 9.4, with the state space M = [-1, 1] split into three regions
M = {My, Mc, Mg} which we label with a 3-letter alphabet L (eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C, R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D;-equivariance of the map,
D1 = {e, o}, implies that if {Xn} is a trajectory, so is {oXn}.

Fix (G), the set of points invariant under group action of D1, Mn oM, is just
this fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, o maps
it into the reflected cycle oa, with the same period and the same stability properties,
see the fixed points pair {L, R} and the 2-cycles pair {LC, CR} in figure 9.4 (c).

The next illustration brings in the non-abelian, noncomativué group struc-
ture: for the 3-disk game of pinball of sect. 1.3, exampledhidl example 9.17,
the symmetry group has elements that do not commute. exercise 9.5
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Example 9.13 3-disk game of pinball - cycle symmetries: (continued from exam-
ple 9.9) The C; subgroup G, = {e, CY/3,C?3} invariance is exemplified by the two cy-
cles 123and 132 which are invariant under rotations by 2r/3 and 4r/3, but are mapped
into each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gp| = 2.

The C, type of a subgroup is exemplified by the symmetries of p = 1213 This
cycle is invariant under reflection 0,3{1213 = 1312= 1213 so the invariant subgroup
is Gp = {e, 023}, with multiplicity is mp = |G|/|Gp| = 3; the cycles in this class, 1213 1232
and 1323 are related by 23 rotations, figure 9.7 (b).

A cycle of no symmetry, such as 12123 has G = {e} and contributes in all six
copies (the remaining cycles in the class are 12132 12313 12323 13132and 13232,
figure 9.7 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
313212121= 121213132vhich have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.17)

Consider next perhaps the simplest 3-dimensional flow wifirametry, the
iconic flow of Lorenz. The example is long but worth workingdtg: the symmetry-

reduced dynamics is much simpler than the original Loreng. flo exercise 9.7
exercise 9.8

exercise 9.9

Example 9.14 Desymmetrization of Lorenz flow: (continuation of example 9.5) Lorenz

equation (2.12) is equivariant under (9.9), the action of order-2 group C, = {e, C%?},
where C/2 s [x, y]-plane, half-cycle rotation by = about the z-axis:

(Xv yv Z) - Cl/z(xv yv Z) = (_X’ _yv Z) . (920)

(CY?)?2 = 1 condition decomposes the state space into two linearly irreducible sub-
spaces M = M*@& M, the z-axis M* and the [X, y] plane M~, with projection operators
onto the two subspaces given by (see sect. ??)

1 0 00 1 100
Pr=Z(1+CY%=| 0 0 0|, P=Z-@1-CY=]l0 1 0. (9.21)
2 001 2 000

As the flow is Cy-invariant, so is its linearization X = Ax. Evaluated at EQy, A com-
mutes with CY?, and, as we have already seen in example 4.7, the EQy stability matrix
decomposes into X, y] and z blocks.

The 1-dimensional M* subspace is the fixed-point subspace, with the z-axis
points left point-wise invariant under the group action

M =Fix(G) = {(xe M:gx=xforge {e C/?}) (9.22)

(here x = (X, Y, 2) is a 3-dimensional vector, not the coordinate x). A C,-fixed point X(t)
in Fix (C;) moves with time, but according to (9.15) remains within x(t) € Fix (C,) for all
times; the subspace M* = Fix (C,) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x,y, 2) = (0, 0, 2) the full state space Lorenz equation (2.12) is
reduced to the exponential contraction to the EQy equilibrium,

7= bz (9.23)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
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Figure 9.5: Lorenz attractor of figure 3.4, the full ste
space coordinatesy, Z], with the unstable manifol
orbitsWH!(EQ). (Green) is a continuation of the uns
ble e of EQy, and (brown) is itsr-rotated symmetris
partner. Compare with figure 9.6. (E. Simin

Figure 9.6: (a) Lorenz attractor plotted irx[V, 7],

the doubled-polar angle coordinates (9.24), with
points related byt-rotation in the k, y] plane iden-
tified. Stable eigenvectors &Q,: € ande&®,
along thez axis (9.23). Unstable manifold orbit
WHY(EQ) (green) is a continuation of the unstable
&b of EQy. (b) Blow-up of the region nedEQ;:
The unstable eigenplane BQ, defined by Re®
and Ime®, the stable eigenvectef’). The descent
of the EQy unstable manifold (green) defines the
innermost edge of the strange attractor. As it is
clear from (a), it also defines its outermost edge.

167

(E. Siminos)

(@)

plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
symbolic dynamics.

The M~ subspace is, however, not flow-invariant, as the nonlinear terms z =
Xy—bzin the Lorenz equation (2.12) send all initial conditions within M~ = (x(0), y(0), 0)
into the full, z(t) + O state space M/M".

By taking as a Poincaré section any CY2-equivariant, non-self-intersecting sur-
face that contains the z axis, the state space is divided into a half-space fundamental
domain M = M/ C, and its 18C° rotation C*> M. An example is afforded by the P plane
section of the Lorenz flow in figure 3.4. Take the fundamental domain M to be the half-
space between the viewer and . Then the full Lorenz flow is captured by re-injecting
back into M any trajectory that exits it, by a rotation of = around the z axis.

As any such CY?-invariant section does the job, a choice of a ‘fundamental
domain’ is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M explicit, through any
State space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (X,y) in polar
coordinates (X,y) = (rcosh,r sind), and then plotting the flow in the ‘doubled-polar

angle representation:’ section 9.5
exercise 9.8
(%,9,2) = (rcosd,rsin2,2) = ((x* -y?)/r,2xy/r,2), (9.24)

as in figure 9.6 (a). In contrast to the original G-equivariant coordinates [X,Y, Z], the
Lorenz flow expressed in the new coordinates [X, ¥, Z] is G-invariant, see example 9.18.
In this representation the M = M/ C, fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [X, Y] plane. (continued in example 11.4)
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(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as thdélddepolar angle
representation (9.24) amot required to implement the symmetry quotienting
M/G.We deploy them only as a visualization aid that might heprémder dis-
entangle 2-dimensional projections of higher-dimendidioavs. All numerical
calculations can still be carried in the initial, full stajgace formulation of a flow,
with symmetry-related points identified lipear symmetry transformations.

F in depth:
3 appendix H, p. 841

9.3 Relative periodic orbits

R

So far we have demonstrated that symmetry relates classabitd. Now we
show that a symmetry reduces computation of periodic otbitspeats of shorter,
‘relative periodic orbit’ segments.

Equivariance of a flow under a symmetry means that the symnmtge of
a cycle is again a cycle, with the same period and stabilitye few orbit may be
topologically distinct (in which case it contributes to timeltiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetriaunder symmetry operatiame Gy, if the operation
acts on it as a shift in time, advancing a cycle point to a cpdiat on the sym-
metry related segment. The cygbecan thus be subdivided intm, repeats of a
relative periodic orbit segmentprime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry titon of a periodic
orbit is replaced by the notion of the shortest segment ofulstate space cycle
which tiles the cycle under the action of the group. In whibfes we refer to this
segment as eelative periodic orbit In the literature this is sometimes referred to
as ashort periodic orbit or, for finite symmetry groups, aspae-periodicorbit.

Relative periodic orbits (oequivariant periodic orbitsare orbitsx(t) in state
spaceM which exactly recur

X(t) = gx(t+T) (9.25)

for the shortest fixetklative period Tand a fixed group actiop e G,. Parameters

of this group action are referred to as ‘phases’ or ‘shiftsdr a discrete group
g™ = e for some finitem, by (9.6), so the corresponding full state space orbit is
periodic with periodnT.

The period of the full orbit is given by the, x (period of the relative periodic
orbit), Ty, = |Gy|Tp, and theith Floquet multiplierAp; is given byAgj‘i’ of the
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Figure 9.7: Cycle 121212313 has multiplicity 6;
shown here i421313132= 0,3121212313. How-
ever,121231313 which has the same stability an
period is related td21313132 by time reversal,
but not by any G, symmetry.

121212313

121313132

169

121231313

relative periodic orbit. The elements of the quotient sgaee5/G,, generate the
copiesbp, so the multiplicity of the full state space cyghas m, = |G|/|Gp|.

Example 9.15 Relative periodic orbits of Lorenz flow: (continuation of exam-
ple 9.14) The relation between the full state space periodic orbits, and the fundamen-
tal domain (9.24) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rpmaps into a single cycle p in the fundamental domain, and
any self-dual cycle p = Rp= PR is a repeat of a relative periodic orbit .

9.4 Dynamics reduced to fundamental domain

O\ ¢
| submit my total lack of apprehension of fundament D A
concepts.

—John F. Gibson

So far we have used symmetry tiext a reduction in the number of independent
cycles, by separating them into classes, and slicing theamprime’ relative orbit
segments. The next step achieves much more: it replacesckmshby a single
(typically shorter) prime cycle segment.

1. Discrete symmetry tessellates the state space into dyabynequivalent
domains, and thus induces a natural partition of state spieibe dynamics
is invariant under a discrete symmetry, the state spdaan be completely
tiled by afundamental domainM and its symmetry |mage,$/ta = aM,
My = bM, ... under the action of the symmetry groGp= {e,a,b, .. .},

MI/\;(U/\;(aU/\:(b---U/\;ﬂq. (9.26)

2. Discrete symmetriy can be used to restrict all computatio the funda-
mental domaintM = M/G, the reduced state space quotient of the full state
spaceM by the group actions db.

We can use the invariance condition (9.7) to move the stafoint x into
the fundamental domair = a%, and then use the relatiar’b = h™! to
also relate the endpoigte M to its image in the fundamental domat.
While the global trajectory runs over the full spaté the restricted trajec-
tory is brought back into the fundamental doma?hany time it exits into
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Figure 9.8: The bimodal Ulam sawtooth map of
figure 9.4 with the D symmetryf(-x) = —f(x) f(X)
restricted to the fundamental domaif(x) is in-
dicated by the thin line, and fundamental domai
map (%) by the thick line. (a) Boundary fixed
pointC is the fixed poinD. The asymmetric fixed
point pair {L,R} is reduced to the fixed poirg,
and the full state space symmetric 2-cytlg is 6
reduced to the fixed poirit. (b) The asymmetric LI S
2-cycle pair{LC,CR) is reduced to 2-cycl®1. (c) LR
All fundamental domain fixed points and 2-cycles

(a) (b)

(Y. Lan)

an adjoining tile; the two trajectories are related by thmsyetry operation
h which maps the global endpoint into its fundamental domaiage.

3. Cycle multiplicities induced by the symmetry are remowsdreduction
of the full dynamics to the dynamics on a fundamental domatach
symmetry-related set of global cyclgscorresponds to precisely one fun-
damental domain (or relative) cycfe ~

4. Conversely, each fundamental domain cygleates out a segment of the
global cyclep, with the end point of the cyclp rhapped into the irreducible
segment ofp with the group elemertts. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundataledomain.

5. The group elements = {e g,...,gg} Which map the fundamental do-
main M into its copiesgM, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symeasetsee sect. 10.4.

exercise 9.6
Example 9.16 Group D;i and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f(-x) = —f(X) of exam-

ple 9.12, with symmetry group D, = {e, o}. The state space M = [-1, 1] can be tiled by
half-line M = [0, 1], and o M = [-1,0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain X € M = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using o.

In figure 9.8 the fundamental domain map f (X) is obtained by reflecting x < 0O
segments of the global map f(X) into the upper right quadrant. f is also bimodal and
piecewise-linear, with M = [0, 1] split into three regions M = { Moy, M1, Mz} which we
label with a 3-letter alphabet A =1{0,1,2). The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
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(@)

Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwisel21232313 and the clockwise
131323212 correspond to (b) one fundamental do-
main 3-cycle001.

(b)

2-cycle pair {LC,CR} is reduced to the 2-cycle OL Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c).

Example 9.17 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk— disk
increments g;, where g; is the discrete group element that maps disk i—1 into disk i. For
3-disk system g is either reflection o back to initial disk (symbol ‘0’) or 2rt/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N—1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.3(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13 and 23) have muiltiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples of
such orbits are shown in figures 9.7 and 9.9.  (continued in example 12.7)

9.5 Invariant polynomials

O3

Physical laws should have the same form in symmetry-eauivaloordinate frames,
so they are often formulated in terms of functions (Hamikos, Lagrangians,
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-+ ) invariant under a given set of symmetries. The key resuh®fepresentation
theory of invariant functions is:

Hilbert-Weyl theorem. For a compact grou@ there exists a finit&-invariant
homogenous polynomial badig;, Uy, ..., Un}, m > d, such that any-invariant
polynomial can be written as a multinomial

h(xX) = p(ur(X), u2(X), ..., Um(X)), Xe M. (9.27)

These polynomials are linearly independent, but can betihmadly dependent
through nonlinear relations calleyzygies

Example 9.18 Polynomials invariant under discrete operations on R3. (continued
from example 9.2) o is a reflection through the [X,y] plane. Any {e, o}-invariant
function can be expressed in the polynomial basis {uz, Uz, Uz} = {X,V, 2}

CY2 is a[x, y]-plane rotation by = about the z-axis. Any {e, CY/?}-invariant func-
tion can be expressed in the polynomial basis {Uy, Uy, Us, Us} = {X?, Xy, y2 z}, with one
syzygy between the basis polynomials, (x?)(y?) — (xy)? = O.

P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function can be
expressed in the polynomial basis {uy,---,Us} = {X2,¥°, 72, Xy, Xz, yZ}, with three syzy-
gies between the basis polynomials, (x?)(y?) — (xy)? = 0, and its 2 permutations.

For the D, dihedral group G = {e, o, C'/2, P} the G-invariant polynomial basis
is {ug, Up, U, Ug} = {X2,¥?, 22, xy}, with one syzygy, (x*)(y?) — (xy)> = 0. (continued in
example 10.13)

In practice, explicit construction dg-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few daripw-dimensional
cases, such as the 5-dimensional example of sect. 10.5. &% po apply the
symmetry to the system as given, rather than undertake essafrnonlinear co-
ordinate transformations that the theorem suggests. (Wi@ipact’ in the above
refers to will become clearer after we have discussed aootisl symmetries. For
now, it sufices to know that any finite discrete group is compact.) exercise 9.1

Résum é

A groupG is asymmetnof the dynamical systemMl, f) if its ‘law of motion’
retains its form under all symmetry-group actiofg) = g~ f(gX) . A mappingu
is said to banvariant if gu = u, whereg is any element o6. If the mapping and
the group actions commutgu = ug, u is said to besquivariant The governing
dynamical equations are equivariant with respecsto

We have shown here that if a dynamical system, f) has a symmetry,
the symmetry should be deployed to ‘quotient’ the statespad 1 = M/G, i.e.,
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identify all symmetry-equivalenx € M on each group orbit, thus [ep[acing the
full state space dynamical system( f) by the symmetry-reduced\, f). The
main result of this chapter can be stated as follows:

In presence of a discrete symmetBy associated with each full state space
solution p is the group of its symmetrigS, c G of order 1< |Gp| < |G|, whose
elements leave the orbM(,, invariant. The elements @, act onp as shifts, tiling
it with |Gp| copies of its shortest invariant segment, the relativeogesiorbit .
The elements of the coskte G/G, generatem, = |G|/|Gp| equivalent copies of

p.

Once you grasp the relation between the full state spdcand the desym-
metrized,G-quotiented reduced state spaelG, you will find the life as a funda-
mentalist so much simpler that you will never return to yaut $tate space ways
of yesteryear. The reduction to the fundamental domiein= M/G simplifies
symbolic dynamics and eliminates symmetry-induced degeres. For the short
orbits the labor saving is dramatic. For example, for thasB-dgame of pinball
there are 256 periodic points of length 8, but reduction éoftindamental domain
non-degenerate prime cycles reduces this number to 30elndkt chapter con-
tinuous symmetries will induce relative periodic orbitatthever close a periodic
orbit, and in the chapter 25 they will tile the infinite periodtate space, and re-
duce calculation of diusion constant in an infinite domain to a calculation on a
compact torus.
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Commentary

Remark 9.1 Literature. We found Tinkham [9.1] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic conceptsroByand Fuller [9.2], the last
chapter of volume two, féers an introduction even more compact than Tinkham’s. For
a summary of the theory of discrete groups see, for examele[9.3]. Chapter 3 of
Rebecca Hoyle [9.4] is a very student-friendly overview loé tgroup theory a non-
linear dynamicist might need, with exception of the qudiiey reduction of dynam-

ics to a fundamental domain, which is not discussed at all. foMed sites such as
en.wikipedia.orgwiki/Quotientgroup helpful. Curiously, we have not read any of the
group theory books that Hoyle recommends as backgroundhggashich just confirms
that there are way too many group theory books out there. ¥ample, one that you
will not find useful at all is ref. [9.5]. The reason is presutyahat in the 20th century
physics (which motivated much of the work on the modern grbgpry) the focus is onappendix A.2.3
the linear representations used in quantum mechanicsattoggaphy and quantum field
theory. We shall need these techniques in Chapter 21, whereduce the linear action

of evolution operators to irreducible subspaces. Howédare we are looking at nonlin-
ear dynamics, and the emphasis is on the symmetries of cifiefis reduced state space
sisters, and the isotypic decomposition of their linedbititg matrices.

In ChaosBook we focus on chaotic dynamics, and skirt therthefbifurcations, the
landscape between the boredom of regular motions and tlie tifrchaos. Chapter 4
of Rebecca Hoyle [9.4] is a student-friendly introductiorttie treatment of bifurcations
in presence of symmetries, worked out in full detail and gelity in monographs by
Golubitsky, Stewart and Schi@ier [9.6], Golubitsky and Stewart [9.7] and Chossat and
Lauterbach [9.8]. Term ‘stabilizer’ is used, for examplg Byoeret al.[9.9] to refer to a
periodic orbit withZ, symmetry; they say that the relative or pre-periodic segrizeim
this case called a ‘short periodic orbit.” In Efstathioul[@] a subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropsogp or stabilizer.” Chap. 8
of Govaerts [9.11] fiers a review of numerical methods that employ equivarianite w
respect to compact, and mostly discrete groups. (contimuemamark 10.1)

Remark 9.2 Symmetries of the Lorenz equation:  (continued from remark 2.3) Af-
ter having studied example 9.14 you will appreciate WhyosBook . org starts out with
the symmetry-less Rossler flow (2.17), instead of the b&ttewn Lorenz flow (2.12).
Indeed, getting rid of symmetry was one of Rossler's maitives. He threw the baby out
with the water; for Lorenz flow dimensionalities of stghlestable manifolds make pos-
sible a robust heteroclinic connection absent from Rodkles, with unstable manifold
of an equilibrium flowing into the stable manifold of anotleguilibrium. How such con-
nections are forced upon us is best grasped by perusing #ptertl 3 ‘Heteroclinic tan-
gles’ of the inimitable Abraham and Shaw illustrated cla$8i12]. Their beautiful hand-
drawn sketches elucidate the origin of heteroclinic cotines in the Lorenz flow (and
its high-dimensional Navier-Stokes relatives) bettenthay computer simulation. Mi-
randa and Stone [9.13] were first to quotient thes@mmetry and explicitly construct the
desymmetrized, ‘proto-Lorenz system,’ by a nonlinear dowate transformation into the
Hilbert-Weyl polynomial basis invariant under the actidrtiee symmetry group [9.14].
For in-depth discussion of symmetry-reduced (‘imagest) sygmmetry-extended (‘cov-
ers’) topology, symbolic dynamics, periodic orbits, ineat polynomial bases etc., of
Lorenz, Rossler and many other low-dimensional systeragetis no better reference
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than the Gilmore and Letellier monograph [9.15]. They iptet [9.16] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the agas of ‘amplitudes,” and call
quotiented flows such as (Lorefi@) ‘images.” Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, iraggthe flow and construct
Poincaré sections and return maps in the original Lorgng f] coordinates, without any
nonlinear coordinate transformations. The Poincarémenap figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paped the one plotted in a
radial coordinate by Gilmore and Letellier. Neverthelasis profoundly diferent: our
return maps are from unstable manifelditself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [9.17]. This constructiomicessary for high-dimensional
flows in order to avoid problems such as double-valuednesstai map projections on
arbitrary 1-dimensional coordinates encountered alréadlye Rossler example of fig-
ure 3.3. More importantly, as we know the embedding of theéalsie manifold into the
full state space, a periodic point of our return nimpregardless of the length of the cycle
- the periodic point in the full state space, so no additidf&iton searches are needed.
In homage to Lorenz, we note that his return map was alreaayr®try-reduced: as
belongs to the symmetry invariant Ki@) subspace, one can replace dynamics in the full
space by, 7, - - -. That isG-invariant by construction [9.15].

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow
of interest is symmetric in some way or other: the list of epden is endless, we list
here a handful that we found interesting. One has ay@nmetry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensional@nipic Kepler potential [9.18,
9.19, 9.20], aD, = C4 Symmetry in quartic oscillators [9.21, 9.22], in the purg?
potential [9.23, 9.24] and in hydrogen in a magnetic fiel@§, and aD, = Cypy = V4 =
C, x C; symmetry in the stadium billiard [9.26]. A very nice nontaldesymmetrization
is carried out in ref. [9.27]. An example of a system with B Cs, symmetry is provided
by the motion of a particle in the Heénon-Heiles potentialf® 9.29, 9.30, 9.31]

V(r,6) = %rz + %re’ sin(¥) .

Our 3-disk coding is indficient for this system because of the existence of elliplanids
and because the three orbits that run along the symmetrycarisot be labeled in our
code. As these orbits run along the boundary of the fundaahdnmain, they require
the special treatment. A partial classification of the 67sfile symmetries of solutions
of the plane Couette flow of example 9.7, and their reductioarjugate classes is given
in ref. [9.32].
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Exercises

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

exerDiscrete - 12feb2012

Polynomials invariant under discrete operations on
R3. Prove that thele o}, {e CY2}, {e, P} and
{e, o, CY2, P}-invariant polynomial basis and syzygies
are those listed in example 9.18.

Gx c G. Prove that the sd&B, as defined in (9.17) is a
subgroup ofG.

Transitivity of conjugation. Assume that);, g, g3 €
G and bothg; andg, are conjugate tgs. Prove thag;
is conjugate ta,.

Isotropy subgroup of gx. Prove that foig € G, x and
gx have conjugate isotropy subgroups:
Ggx = 9 Gx gil

D3: symmetries of an equilateral triangle. Consider
group Dy = Cg, the symmetry group of an equilateral
triangle:

9.8.

2 3

(a) Listthe group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group.D

(c) Find the classes of{and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups af D
(continued as exer:FractRot)

Reduction of 3-disk symbolic dynamics to binary.
(continued from exercise 1.1)

(@) Verify that the 3-disk cycles
{12,13,23,{123,132, {1213+ 2 perms},
{121232 313+ 5 perms}, {121 323 2 perms},

correspond to the fundamental domain cy€lgk,

01,001,011, - - respectively.

(b) Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.

9.7.

(c) Optional: Can you see how the group elements
listed in table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 12.6)

C,-equivariance of Lorenz system.
vector field in Lorenz equations (2.12)

Verify that the

[ x oy - %) }
X=V(X)=|Y |=| pX-y—XZ (9.28)
z Xy — bz

is equivariant under the action of cyclic group G
{e, C¥?} acting onR® by ax rotation about the axis,

Cl/z(xv yv Z) = (_X’ _yv Z) )

as claimed in example 9.5. (continued in exercise 9.8)

Lorenz system in polar coordinates: group the-
ory. Use (6.7), (6.8) to rewrite the Lorenz equa-
tion (9.28) in polar coordinates,, 2), where K y) =

(r cosd, r sind).

1. Show that in the polar coordinates Lorenz flow

takes form
o= %(—0'—1+(0'+p—z)sin29

+(1-0)cosd)

0 = %(—0'+p—2+(0'—1)sin29
+(o+p—2)cos D)
2
7 = —bz+%sin29. (9.29)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Loren4}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation in the k, y] plane.

4. Rewrite (9.28) in the invariant polynomial basis of
example 9.18 and exercise 9.29.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (9.29) is either a periodic or-
bit or a relative periodic orbit (9.25) of the Lorenz
flow in the (x,y, 2) representation.
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By going to polar coordinates we have quotiented out the
n-rotation &, y, 2) — (=X, -y, 2 symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.9. Proto-Lorenz system.  Here we quotient out the C
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.13].

1. Rewrite the Lorenz equation (2.12) in terms of
variables

(u,v,2) = (¢ - y2,2xy,2), (9.30)

show that it takes form

v/2-bz
Vu? + V2,

Z
I

2. Show that this is the (Loren4}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation (9.20).

3. Show that (9.30) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.31)

References

177

45;
40}
351 |7
30
=2 25;
20
15;
10}

for the Lorenz parameter values= 10,b = 8/3,

p = 28. Topologically, does it resemble more the
Lorenz, or the Rossler attractor, or neither? (plot
by J. Halcrow)

—(oc+Lu+ (o -r)v+(L-o0)N +vz 7.|Show that a periodic orbit of the proto-Lorenz is
(r—o)u—(o+1)Vv+(r+0)N—-uz-uN |ejther a periodic orbit or a relative periodic orbit

of the Lorenz flow.

(981Bhow that if a periodic orbit of the proto-Lorenz

10.

11.

is also periodic orbit of the Lorenz flow, their Flo-
qguet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

What does the volume contraction formula (4.43)
look like now? Interpret.

Show that the coordinate change (9.30) is the same
as rewriting (9.29) in variables

(u,v) = (r>cosd,r?sin ),
i.e., squaring a complex numbee x + iy, 72 =
u+iv.

How is (9.31) related to the invariant polynomial
basis of example 9.18 and exercise 9.297?
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