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Chapter 9

Figure 9.1: The symmetries of three disks on an equi
lateral triangle. A fundamental domain is indicated b
the shaded wedge.

World in a mirror

9.1 Discrete symmetries

(]
Normal is just a setting on a washing machine. N
A detour of a thousand pages starts with a single misstep. —Borgette, Borgo’s daughter

—Chairman Miaw
We show that a symmetry equates multiplets of equivalentspmr ‘stratifies’ the
state space into equivalence classes, each class a ‘groitip \0fe start by defin-

YNAMICAL SYSTEMs Often come equipped with symmetries, such as the re- ing a finite (discrete) group, its state space representatand what we mean by
D flection and rotation symmetries of various potentials. his thapter we asymmetryinvarianceor equivariancg of a dynamical system. As is always the
study quotienting of discrete symmetries, and in the neaptdr we study problem with ‘gruppenpest’ (read appendix A.2.3) way toagnabstract notions
symmetry reduction for continuous symmetries. We look dividual orbits, and have to be defined before an intelligent conversation canpédce. Perhaps best
the ways they are interrelated by symmetries. This setstéye $or a discussion to skim through this section on the first reading, then retariblater as needed.

of how symmetries féect global densities of trajectories, and the factorizatd
spectral determinants to be undertaken in chapter 21.

Definition: A group consists of a set of elements
As we shall show here and in chapter 21, discrete symmetrigsliy the dy-
namics in a rather beautiful way: If dynamics is invariantiena set of discrete

G= 9.1
symmetriesG, the state spac# is tiled by a set of symmetry-related tiles, and @0 G-} ©-
the dynamics can be reduced to dynamics within one suchthiésundamental S ) o
domain M/G. In presence of a symmetry the notion of a prime periodictorbi and a group multiplication rulg; o g; (often abbreviated ag;g;), satisfying
has to be reexamined: a set of symmetry-related full stateespycles is replaced
by often much §hor§e’elatlve periodic orblche shqrtest segment of the full state 1. Closure: Ifg,,gj € G, thengj o g € G
space cycle which tiles the cycle and all of its copies unigeiaction of the group. o
Furthermore, the group operations that relate distires tilo double duty as letters 2. Associativity:gk o (gj © gi) = (gk © ;) i
of an alphabet which assigns symbolic itineraries to ttajées. section 11.1 3. Identitye: goe=eog=gforallge G

Familiarity with basic group-theoretic notions is assumeith details rele- 4. Inverseg L: For everyg e G, there exists a unique element g € G
gated to appendix H.1. We find the abstract notions easieigesidby working such that
out the examples interspersed throughout this chapteeTimite reader might hog=goh=e

prefer to skip the lengthy group-theoretic overture and gectly to G = D,

example 9.12, example 9.14, ang,& D3 example 9.1, backtrack as needed. . .
If the group is finite, the number of elemeniS| = n, is called theorder of the

group. example H.1
example H.2

. i example H.3
Example 9.1 Cz, = D3 symmetry of the 3-disk game of pinball: If the three unit-

radius disks in figure 9.1 are equidistantly spaced, our game of pinball has a sixfold
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symmetry. The symmetry group of relabeling the 3 disks is the permutation group Ss;
however, it is more instructive to think of this group geometrically, as Csy, also known
as the dihedral group

Ds = {€ 012, 0713, 0723, C1/3, C*/3} 9.2)

the group of order |G| = 6 consisting of the identity element e, three reflections across
symmetry axes {012, 023, 013}, and two rotations by 2x/3 and 4r/3 denoted {CY/3, C%/3).
(continued in example 9.6)

Definition: Coordinate transformations. Consider a mapx’ = f(x), x,X €
M. An activecoordinate transformatiol x corresponds to a non-singulah{d]
matrix M that maps the vector € M onto another vectoMx € M. The corre-
spondingpassivecoordinate transformatiofi(x) — M~1f(x) changes the coor-
dinate system with respect to which the vect¢x) € M is measured. Together,
a passive and active coordinate transformations yield the imthe transformed
coordinates:

f(x) = MLE(MX). (9.3)

Example 9.2 Discrete groups of order 2 on  R3.  Three types of discrete group of
order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: o(X, Y, 2) (xy,-2)
rotations: C¥?(x,y,2) = (-x-Y.2) (9.4)
inversions: P(X, Y, 2) (=% -y, -2).

o is areflection (or an inversion) through the [x, y] plane. CY? is [x, y]-plane, constant z
rotation by m about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0,0, 0). Singly, each operation generates a group
of order 2: Dy = {e, o}, C, = {e,CY/?}, and D; = {e, P}. Together, they form the dihedral
group D, = {e, o, CY/2, P} of order 4. (continued in example 9.3)

Definition: Matrix group.  The set of fixd]-dimensional real non-singular ma-
tricesA, B,C,... € GL(d) acting in ad-dimensional vector spadé € RY forms
the general linear grou@ L(d) under matrix multiplication. The product of matri-
cesA andB gives the matrixC, Cx = B(AX) = (BA)x € V, for all x € V. The unit
matrix 1 is the identity element which leaves all vectorsvirunchanged. Every
matrix in the group has a unique inverse.
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Definition: Matrix representation. Linear action of a group elemerf on
statesx € M is given by a finite non-singuladfx d] matrix g, the matrix rep-
resentationof elementg € G. We shall denote byg both the abstract group
element and its matrix representation.

However, when dealing simultaneously with several repregions of the
same group action, notatidd;(g), j a representation label, is preferable (see ap-
pendix H.1). A linear or matrix representatidiG) of the abstract grou@ acting
on arepresentation space i a group of matriceB(G) such that

1. Anyg e G is mapped to a matri®(g) € D(G).

2. The group produdl, o g; is mapped onto the matrix produd{g, o gi1) =
D(92)D(g)-

3. The associativity follows from the associativity of matmultiplication,
D(gz © (92 © 91)) = D(93)(D(g2)D(91)) = (D(gs)(D(92))D(9y)-

4. The identity elemen¢ € G is mapped onto the unit matri2(e) = 1 and
the inverse elemerg™* € G is mapped onto the inverse matiiXg™?) =
[D(@]™ = D7X(g).

Example 9.3 Discrete operations on R3. (continued from example 9.2) The matrix
representation of reflections, rotations and inversions defined by (9.4) is

10 0 1 00 -1 0 0
g=[o 1 o], c1/2=[ 0 -1 o], P:( 0 -1 o], (9.5)
00 -1 0 0 1 0 0 -1

with detCY¥2 = 1, deto = detP = —1; that is why we refer to CY/? as a rotation, and o, P
as inversions. As g* = e in all three cases, these are groups of order 2. (continued in
example 9.5)

If the coordinate transformatiog belongs to a linear non-singular represen-
tation of a discrete finite grou, for any element € G there exists a number
m < |G| such that

g'=gogo...og=e — |detg =1. (9.6)

mtimes

As the modulus of its determinant is unity, des anmth root of 1. Hence all
finite groups have unitary representations.

Definition: Symmetry of a dynamical system. A groupG is asymmetnof the

dynamics if for every solutiorf(x) € M andg € G, gf(x) is also a solution.

Another way to state this: A dynamical system(f) is invariant (or G-
equivarian) under a symmetry grou@ if the time evolutionf : M — M (a
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Figure 9.3: The 3-disk pinball cycles: (a)2, 13,

23, 123; the clockwisel32 not drawn. (b) Cy-
cle 1232; the symmetry relaté13 andl323 not
drawn. (c)12323;12123,12132,12313,13131
and 13232 not drawn. (d) The fundamental do-
main, i.e., the J6th wedge indicated in (a), con-
sisting of a section of a disk, two segments of sym(a)
metry axes acting as straight mirror walls, and the
escape gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and re-
coded in binary reduce to the two fixed poifits

1, 2-cyclel0, and 5-cycl®0111 (not drawn). See
figure 9.9 for theDO1 cycle.

159

oX 2 e
oX 3
Figure 9.2: The bimodal Ulam sawtooth map withthe OX/7 1 -~
D; symmetryf(-x) = —f(x). If the trajectoryx, — o
X; — Xp — --- is a solution, so is its reflectionx, — L
0% — 0% — ---. (continued in figure 9.4) A ¢

discrete time mag, or the continuous flowf' map from thed-dimensional man-
ifold M into itself) commutes with all actions &,

(9% = gf(x). 9.7)

In the language of physicists: The ‘law of motion’ is invaniiai.e., retains its form
in any symmetry-group related coordinate frame (9.3),

f() =g tf(gx. (9.8)

for x e M andanyfinite non-singular §ixd] matrix representatioggy of element
g € G. As these are truany statex, one can state this more compactlyfasg =
gof,orf=glofog.

Why ‘equivariant?’ A scalar functioh(x) is said to beG-invariantif h(x) =
h(gX) for all g € G. The group actions map the solutién M — M into different
(but equivalent) solutiongf(x), hence the invariance conditidi{x) = g~ f(gx)
appropriate to vectors (and, more generally, tensors). filhset of such solu-
tions isG-invariant, but the flow that generates them is said tad@®equivariant.
It is obvious from the context, but for verbal emphasis agpinathematicians
like to distinguish the two cases liyequivariant. The distinction is helpful in
distinguishing the dynamics written in the original, equiant coordinates from

the dynamics rewritten in terms ofvariant coordinates, see sects. 9.5 and 10.4xercise 9.7
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Example 9.4 A reflection symmetric 1d map.  Consider a 1d map f with reflection
symmetry f(-x) = —f(X), such as the bimodal ‘sawtooth’ map of figure 9.2, piecewise-
linear on the state space M = [-1, 1], a compact 1-dimensional line interval, split into
three regions M = M, U Mc U Mg. Denote the reflection operation by ox = —X. The
2-element group G = {e, o} goes by many names, such as Z, or C,. Here we shall
refer to it as D1, dihedral group generated by a single reflection. The G-equivariance
of the map implies that if {X,} is a trajectory, than also {o-X,} is a symmetry-equivalent
trajectory because oXn1 = o f(Xn) = f(oXy) (continued in example 9.12)

Example 9.5 Equivariance of the Lorenz flow. (continued from example 9.3) The
velocity field in Lorenz equations (2.12)

X o(y-X)
[ y}= px—y—xz}
z xy— bz

is equivariant under the action of cyclic group C, = {e, C'/?} acting on R® by a  rotation
about the z axis,

CY2(xy.2) = (-%,-¥.2). (9.9)

(continued in example 9.14)

Example 9.6 3-disk game of pinball - symmetry-related orbits: (continued from
example 9.1) Applying an element (identity, rotation by +2r/3, or one of the three
possible reflections) of this symmetry group to a trajectory yields another trajectory.
For instance, o-23, the flip across the symmetry axis going through disk 1 interchanges
the symbols 2 and 3; it maps the cycle 12123into 13132 figure 9.3(c). Cycles 12, 23,
and 13 in figure 9.3 (a) are related to each other by rotation by +2r/3, or, equivalently,
by a relabeling of the disks.  (continued in example 9.8)
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Example 9.7 Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: reflection through the (streamwise , wall-normal) plane,
and rotation by r in the (streamwise , wall-normal) plane. That is why the system has
equilibrium and periodic orbit solutions, (as opposed to relative equilibrium and relative
periodic orbit solutions discussed in chapter 10). They belong to discrete symmetry
subspaces. (continued in example 10.4)

9.1.1 Subgroups, cosets, classes

Inspection of figure 9.3 indicates that various 3-disk arhite the same up to a
symmetry transformation. Here we set up some abstract gtwmgretic notions
needed to describe such relations. The reader might prefekip to sect. 9.2,
backtrack as needed.

Definition: Subgroup. A set of group elementsi = {e by, bs,....by} € G
closed under group multiplication forms a subgroup.

Definition: Coset. LetH = {e by, bs,...,b,} € G be a subgroup of ordédr =
[H|. The set ot elementdc, chy, chs, ..., cby}, ¢ € G but not inH, is called left
coset cH For a given subgroupl the group elements are partitioned itfoand
m— 1 cosets, wheren = |G|/|H|. The cosetgannot besubgroups, since they do
not include the identity element. We learn that a nontriwdigsoup can exist only
if |G|, the order of the group, is divisible b#|, the order of the subgroup, i.e.,
only if |G| is not a prime number.

Example 9.8 Subgroups, cosets of Dj: (continued from example 9.6) The
3-disks symmetry group, the D3 dihedral group (9.2) has six subgroups

{e), {e o2 {eois) {eo2s), {eCY3,C¥3), Ds. (9.10)

The left cosets of subgroup Dy = (e 012} are {13, CY3}, {023, C%3). The coset of
subgroup Cz = {e, CY/3,C%3} is {012, 013, 023}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123is Cs, then all
elements in a coset act on it the same way, for example {012, 013, 023}123 = 132

The nontrivial subgroups of D3 are D1 = {e, o}, consisting of the identity and
any one of the reflections, of order 2, and C; = {e, CY/3,C%3), of order 3, so possible
cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has
full symmetry G, = G. Such equilibria exist for smooth potentials, but not for the 3-
disk billiard. Examples of other multiplicities are given in figure 9.3 and figure 9.7.
(continued in example 9.9)

Next we need a notion that will, for example, identify thestB-disk 2-cycles
in figure 9.3 as belonging to the same class.
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Definition: Class. An elementb € G is conjugateto aif b = cac? wherecis
some other group element. bfandc are both conjugate ta, they are conjugate

to each other. Application of all conjugations separatesstit of group elementssxercise 9.3

into mutually not-conjugate subsets calleldsses typesor conjugacy classes

The identityeis always in the clasge} of its own. This is the only class which isxercise 9.5

a subgroup, all other classes lack the identity element.

Example 9.9 D3 symmetry - classes: (continued from example 9.8) The three
classes of the 3-disk symmetry group Ds = {e, CY/3,C?3, o, oCY3, #C?/3), are the iden-
tity, any one of the reflections, and the two rotations,

012 cu3
{e}, 013 ¢, { c23 } . (9.11)
In other words, the group actions either flip or rotate. (continued in example 9.13)

Physical importance of classes is clear from (9.8), the vemydinate trans-
formations act on mappings: action of elements of a clasg rsiections, or
rotations) is equivalent up to a redefinition of the coortérfaame.

Definition: Invariant subgroup. A subgroupH < G is aninvariant subgroup
or normal divisorif it consists of complete classes. Class is complete if mjuzo
gation takes an element of the class ouHof

Think of action ofH within each coset as identifying iid| elements as equiv-
alent. This leads to the notion of tifi@ctor groupor quotient group GH of G,
with respect to the invariant subgrot. H thus dividesG into H andm — 1
cosets, each of ordéi|. The order ofG/H is m = |G|/|H|, and its multiplication
table can be worked out from ti@& multiplication table class by class, with the
subgroupH playing the role of identity.G/H is homeomorphid¢o G, with |H|
elements in a class @ represented by a single elemenGpjH.

9.1.2 Orbits, quotient space

So far we have discussed the structure of a group as an dhestitlg. Now we
switch gears and describe the action of the group on thesgiatee. This is the key
step; if a set of solutions is equivalent by symmetry (a eirtét's say), we would
like to represent it by a single solution (cut the circle atainp or rewrite the
dynamics in a ‘reduced state space,” where the circle otisolsi is represented
by a single point).

section 2.1

Definition: Orbit. ~ The subseiM,, c M traversed by the infinite-time trajec-
tory of a given pointx, is called theorbit (or time orbit, or solutior) x(t) = f'(xo).
An orbit is adynamically invariantnotion: it refers to the set of all states that can
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be reached in time fromy, thus as a set it is invariant under time evolution. The
full state spaceM is foliated into a union of such orbits. We label a generiatorb
My, by any point belonging to itxo = x(0) for example.

A generic orbit might be ergodic, unstable and essentialyoatrollable. The
ChaosBook strategy is to populate the state space by adtigraf orbits which
are compact invariant setéequilibria, periodic orbits, invariant tori,..), each
computable in a finite time. They are a set of zero Lebesgusuneabut dense
on the non-wandering set, and are to a generic orbit whatdrescare to normal
numbers on the unit interval. We label orbits confined to cachpvariant sets by
whatever alphabet we find convenient in a given context:tgp@ = xgq = Meg
for an equilibrium, 1-dimensional loop = M, for a prime periodic orbip, etc.
(note also discussion on page 205, and the distinction legtivajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment ofrait)o

Definition: Group orbit  or theG-orbit of the pointx € M is the set
My =1{gx|geG} (9.12)

of all state space points into whichis mapped under the action &f If G is a
symmetry, intrinsic properties of an equilibrium (such &bty eigenvalues) or
a cyclep (period, Floquet multipliers) evaluated anywhere alosdsiorbit are
the same.

A symmetry thus reduces the number of inequivalent solatibfy. So we
also need to describe the symmetry cdaution as opposed to (9.8), the sym-
metry of thesystem We start by defining the notions efduced state spacef
isotropyof a state space point, and of tgmmetry of an orhit

Definition: Reduced state space. The action of grougs partitions the state
spaceM into a union of group orbits. This set of group orbits, dedotd/G, has
many namesreduced state spaceuotient spacer any of the names listed on
page 195.

Reduction of the dynamical state space is discussed in&dcfor discrete
symmetries, and in sect. 10.4 for continuous symmetries.

Definition: Fixed-point subspace. My is the set of all state space points left
H-fixed point-wiseinvariant under subgroup or ‘centralizéf’ c G action

My = Fix(H) = {xe M:hx= xforallheH}. (9.13)

Points in state space subspakf which are fixed points of the full group action
are callednvariant points

Mg =Fix(G) = {xe M:gx=xforallgeG}. (9.14)
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Definition: Flow invariant subspace. A typical point in fixed-point subspace
My moves with time, but, due to equivariance (9.7), its trajpei(t) = fi(X)
remains withinf(My) € My for all times,

ht(x) = fi(hy) = fi(x), heH, (9.15)

i.e., it belongs to dlow invariant subspaceThis suggests a systematic approach
to seeking compact invariant solutions. The larger the sgtmyrsubgroup, the
smaller My, easing the numerical searches, so start with the largbgt@upsH
first.

We can often decompose the state space into smaller subspete group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. M, c M is aninvariant subspace if
{M, :gxe M, forallge Gandxe M,}. (9.16)

{0} and M are always invariant subspaces. So is any(Rixwhich is point-wise
invariant under action d&.

Definition: Irreducible subspace. A spaceM, whose only invariant subspaces
are{0} and M, is calledirreducible

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all offfstem’s symmetries, a
subgroup of them, or have no symmetry at all. For a generimdécgrbit f'(x) the
trajectory and any of its images under actiogef G are distinct with probability
one, f{(x) N gft'(x) = 0 for all t, t’. For example, a typical turbulent trajectory
of pipe flow has no symmetry beyond the identity, so its synnyngtoup is the
trivial {e}. For compact invariant sets, such as fixed points and peritits the
situation is very dierent. For example, the symmetry of the laminar solution of
the plane Couette flow is the full symmetry of its Navier-®®lequations. In
between we find solutions whose symmetries are subgroupe ééli symmetry

of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space pointinto itself,

Gx={geG:gx=x, (9.17)
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is called thesotropy groupor little group of x.

A solution usually exhibits less symmetry than the equatiohmotion. The
symmetry of a solution is thus a subgroup of the symmetry gfudynamics.
We thus also need a notion sét-wiseinvariance, as opposed to tpeint-wise
invariance undeGy. exercise 9.2

Definition: Symmetry of a solution, Gp-symmetric cycle. We shall refer to the
subset of nontrivial group actior®, C G on state space points within a compact
set M, which leave no point fixed but leave the set invariant, asymemetryG,

of the solutionM,

Gp=1{ge€Gp:gxe M, gx# xforg e}, (9.18)

and reserve the notion of ‘isotropy’ of a s&t,, for the subgrous,, that leaves
each point in it fixed.

A cycle p is Gp-symmetric(set-wise symmetricself-dua) if the action of
elements ofG;, on the set of periodic point, reproduces the setj € G, acts
as a shift in time, mapping the periodic poie M, into another periodic point.

Example 9.10 D;-symmetric cycles: For D1 the period of a set-wise symmetric
cycle is even (ns = 2ng), and the mirror image of the Xs periodic point is reached by
traversing the relative periodic orbit segment § of length ns, f™(xs) = oXs, see fig-
ure 9.4 (b).

Definition: Conjugate symmetry subgroups. The splitting of a groug into

a symmetry grouyis,, of orbit Mp andm — 1 cosetG, relates the orbit\,, to

m- 1 other distinct orbite M. All of them have equivalent symmetry subgroupeyercise 9.4
or, more precisely, the points on the same group orbit ltavgugate symmetry
subgroupgor conjugate stabilize)s

Gep=cGpct, (9.19)

i.e., if Gp is the symmetry of orbiM,, elements of the coset spages G/Gp
generate then, — 1 distinct copies ofM,, so for discrete groups the multiplicity
of orbit pis mp = |G|/|Gpl.

Definition: Gp-fixed orbits:  An equilibrium x; or a compact solutiop is point-
wise orGp-fixedif it lies in the invariant points subspace Fftzp), gx = xfor all
g € Gp, andx = Xq or x € Mp. A solution that isG-invariant under all grouis
operations has multiplicity 1. Stability of such solutiomdl have to be examined
with care, as they lie on the boundaries of domains relatethéaction of the
symmetry group.
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f(x). f(x). f(x).
R —
CR.

Figure 9.4: The D;-equivariant bimodal sawtooth fL f f
map of figure 9.2 has three types of periodic or- 9 >
bits: (a) Di-fixed fixed pointC, asymmetric fixed C X X ,
points pair(L,R}. (b) D;-symmetric (setwise in- Ez i
variant) 2-cycleLR. (c) Asymmetric 2-cycles pair — [ LC

{LC,CR. (continued in figure 9.8) (Y. Lan)

(@) (b) (©

Example 9.11 Ds-invariant cycles: In the example at hand there is only one G-
invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.4 (a). As
reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 9.16, and work out the symbolic dynamics
of such reflection symmetric systems in example 12.5.

In the literature the symmetry group of a solution is oftetiechstabilizer
or isotropy subgroup Saying thaiG,, is the symmetry of the solutiop, or that
the orbit M, is ‘Gp-invariant,” accomplishes as much without confusing yothwi
all these names (see remark 9.1). In what follows we say ‘yhensetry of the
periodic orbitp is C; = {e R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbitshisirt symmetry.
We note three types of solutions: (i) fully asymmetric siolns a, (ii) subgroup
Gg set-wise invariant cycles built by repeats of relative cycle segmestsafid
(iii) isotropy subgroupGeo-invariant equilibria or point-wis&,-fixed cyclesb.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {Xa} N {gX%} = 0 for anyg € G, where{x,} is the set of periodic points
belonging to the cycle. Thusg € G generatdG| distinct orbits with the same
number of points and the same stability properties.

Example 9.12 Group D; - a reflection symmetric 1d map: Consider the bimodal
‘sawtooth’ map of example 9.4, with the state space M = [-1, 1] split into three regions
M = (M, Mc, Mg} which we label with a 3-letter alphabet L (eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L, C, R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D;-equivariance of the map,
D1 = {e o}, implies that if {xn} is a trajectory, S0 is {o-%n}.

Fix (G), the set of points invariant under group action of Dy, MnoM, is just
this fixed point x = O, the reflection symmetry point. If a is an asymmetric cycle, o maps
it into the reflected cycle o-a, with the same period and the same stability properties,
see the fixed points pair {L, R} and the 2-cycles pair {LC,CR} in figure 9.4 (c).

The next illustration brings in the non-abelian, noncomatiué group struc-
ture: for the 3-disk game of pinball of sect. 1.3, exampleghdl example 9.17,
the symmetry group has elements that do not commute. exercise 9.5
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Example 9.13 3-disk game of pinball - cycle symmetries: (continued from exam-
ple 9.9) The Cs subgroup Gy, = {e, C¥/3,C%3} invariance is exemplified by the two cy-
cles 123and 132 which are invariant under rotations by 2r/3 and 4 /3, but are mapped
into each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gp| = 2.

The C, type of a subgroup is exemplified by the symmetries of p = 1213 This
cycle is invariant under reflection 0»3{1213 = 1312= 1213 so the invariant subgroup
is Gp = {€, 023}, with multiplicity is my = |G|/|Gp| = 3; the cycles in this class, 1213 1232
and 1323 are related by 2r/3 rotations, figure 9.7 (b).

A cycle of no symmetry, such as 12123 has Gy, = {€} and contributes in all six

copies (the remaining cycles in the class are 12132 12313 12323 13132and 13232,
figure 9.7 (c).

Figure 9.5: Lorenz attractor of figure 3.4, the full ste
space coordinatexly, z], with the unstable manifol
orbitsWY(EQy). (Green) is a continuation of the uns
ble e of EQy, and (brown) is itsr-rotated symmetric
partner. Compare with figure 9.6. (E. Simin

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
313212121= 121213132Wwhich have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.17)

Figure 9.6: (a) Lorenz attractor plotted inx[y, ],
the doubled-polar angle coordinates (9.24), with
points related byt-rotation in the k, y] plane iden-
tified. Stable eigenvectors &Qy: €3 ande®?),

along thez axis (9.23). Unstable manifold orbit
WH(EQ) (green) is a continuation of the unstable
e® of EQy. (b) Blow-up of the region nedEQ;:
The unstable eigenplane BQ, defined by Re®
and Ime®, the stable eigenvectef®). The descent

Consider next perhaps the simplest 3-dimensional flow wikrametry, the
iconic flow of Lorenz. The example is long but worth workingdhg: the symmetry-

reduced dynamics is much simpler than the original Lorena. flo exercise 9.7 of the EQy unstable manifold (green) defines the Re e
exercise 98 innermost edge of the strange attractor. As it is
o . . exercise 9.9 clear from (a), it also defines its outermost edge.
Example 9.14 Desymmetrization of Lorenz flow: (continuation of example 9.5) Lorenz (E. Siminos)
equation (2.12) is equivariant under (9.9), the action of order-2 group C, = {e,CY/?}, @ Im e

where CY/2 is [x, y]-plane, half-cycle rotation by = about the z-axis:

(%,Y.2) = CY2(x,y,2) = (-x, -V, 2). (9.20) plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
(CY2)2 = 1 condition decomposes the state space into two linearly irreducible sub- symbolic dynamics.
spaces M = M*®&M", the z-axis M* and the [x, y] plane M", with projection operators

. The M~ subspace is, however, not flow-invariant, as the nonlinear terms z =
onto the two subspaces given by (see sect. ??)

xy—bzin the Lorenz equation (2.12) send all initial conditions within M~ = (x(0), y(0), 0)
into the full, z(t) # O state space M/M®.

0 0O 100
pt = %(1 +CY?) = [ 000 ] p = %(1 -CY?) = [ 010 ) . (9.21) By taking as a Poincaré section any CY/2-equivariant, non-self-intersecting sur-
00 1 0 00 face that contains the z axis, the state space is divided into a half-space fundamental

domain M = M/ G, and its 18 rotation CY2M. An example is afforded by the P plane
section of the Lorenz flow in figure 3.4. Take the fundamental domain M to be the half-
space between the viewer and . Then the full Lorenz flow is captured by re-injecting

As the flow is Cy-invariant, so is its linearization x = Ax. Evaluated at EQy, A com-
mutes with C*/2, and, as we have already seen in example 4.7, the EQy stability matrix

decomposes into [x,y] and z blocks.

The 1-dimensional M* subspace is the fixed-point subspace, with the z-axis
points left point-wise invariant under the group action

M = Fix(C) = {xe M:gx=xforge (e,C*?)) (9.22)

(here x = (x,Y, 2) is a 3-dimensional vector, not the coordinate x). A C,-fixed point x(t)
in Fix (C,) moves with time, but according to (9.15) remains within x(t) € Fix (C,) for all
times; the subspace M* = Fix (G,) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x,y, 2) = (0,0, 2) the full state space Lorenz equation (2.12) is
reduced to the exponential contraction to the EQy equilibrium,

7=-bz. (9.23)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
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back into M any trajectory that exits it, by a rotation of = around the z axis.

As any such CY2-invariant section does the job, a choice of a ‘fundamental
domain’ is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M explicit, through any
state space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (x,y) in polar
coordinates (x,y) = (rcosd,rsind), and then plotting the flow in the ‘doubled-polar

angle representation:’ section 9.5
exercise 9.8
(%.9.2) = (rcosd,rsind,2) = (- y2)/r,2xy/1.2), (9.24)

as in figure 9.6 (a). In contrast to the original G-equivariant coordinates [x,Y, Z], the
Lorenz flow expressed in the new coordinates [%, Y, Z] is G-invariant, see example 9.18.
In this representation the M= M/ C, fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [%,§] plane. (continued in example 11.4)
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(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as thélddepolar angle
representation (9.24) amot required to implement the symmetry quotienting
M/G.We deploy them only as a visualization aid that might hekrémader dis-
entangle 2-dimensional projections of higher-dimendidluavs. All numerical
calculations can still be carried in the initial, full stagace formulation of a flow,
with symmetry-related points identified kipear symmetry transformations.

in depth:
” appendix H, p. 841

9.3 Relative periodic orbits A
So far we have demonstrated that symmetry relates classebitf. Now we II &

show that a symmetry reduces computation of periodic otbitspeats of shorter,
‘relative periodic orbit’ segments.

Equivariance of a flow under a symmetry means that the symyriratige of
a cycle is again a cycle, with the same period and stabilitye few orbit may be
topologically distinct (in which case it contributes to tieiltiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetricunder symmetry operatioge G,, if the operation
acts on it as a shift in time, advancing a cycle point to a cpcliat on the sym-
metry related segment. The cygecan thus be subdivided into, repeats of a
relative periodic orbit segmenftprime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry ti®n of a periodic
orbit is replaced by the notion of the shortest segment ofttthstate space cycle
which tiles the cycle under the action of the group. In whibfes we refer to this
segment as eelative periodic orbit In the literature this is sometimes referred to
as ashort periodic orbit or, for finite symmetry groups, aspge-periodicorbit.

Relative periodic orbits (oequivariant periodic orbitsare orbitsx(t) in state
spaceM which exactly recur

XO) =gxt+T) (9.25)

for the shortest fixecelative period Tand a fixed group actioge G,. Parameters

of this group action are referred to as ‘phases’ or ‘shiffsdr a discrete group
g™ = e for some finitem, by (9.6), so the corresponding full state space orbit is
periodic with periodnT.

The period of the full orbit is given by the, x (period of the relative periodic
orbit), Tp = |GplTp, and theith Floquet multiplierA,; is given byAgf’ of the
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Figure 9.7: Cycle 121212313 has multiplicity 6; 1541212313 121313132 121231313
shown here i421313132= 0,3121212313. How-
ever,121231313 which has the same stability an
period is related td21313132 by time reversal,
but not by any G, symmetry.

relative periodic orbit. The elements of the quotient sgaeeG/G,, generate the
copiesbp, so the multiplicity of the full state space cyqgbds mp = |G|/|Gp|.

Example 9.15 Relative periodic orbits of Lorenz flow: (continuation of exam-
ple 9.14) The relation between the full state space periodic orbits, and the fundamen-
tal domain (9.24) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rpmaps into a single cycle p in the fundamental domain, and
any self-dual cycle p = Rp= PR} is a repeat of a relative periodic orbit p.

9.4 Dynamics reduced to fundamental domain

o\ ¢
I submit my total lack of apprehension of fundament
concepts.

—John F. Gibson

So far we have used symmetry tfiext a reduction in the number of independent
cycles, by separating them into classes, and slicing theaviprime’ relative orbit
segments. The next step achieves much more: it replacesckeshby a single
(typically shorter) prime cycle segment.

1. Discrete symmetry tessellates the state space into dgaiyrequivalent
domains, and thus induces a natural partition of state spitbe dynamics
is invariant under a discrete symmetry, the state spd@an be completely
tiled by afundamental domain¥l and its symmetry imagezf/(a = aM,
My = bM, ... under the action of the symmetry groGp= {e a,b, .. .},

M=MUMaUMp--U Mg . (9.26)

2. Discrete symmetriy can be used to restrict all computatio the funda-
mental domaimM = M/G, the reduced state space quotient of the full state
spaceM by the group actions db.

We can use the invariance condition (9.7) to move the stagint x into
the fundamental domair = a%, and then use the relatiar’b = h™! to
also relate the endpoigte My to its image in the fundamental domai.
While the global trajectory runs over the full spak€ the restricted trajec-
tory is brought back into the fundamental domai]‘]any time it exits into
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Figure 9.8: The bimodal Ulam sawtooth map of
figure 9.4 with the @ symmetryf(-x) = —f(x)
restricted to the fundamental domaif(x) is in-

f(x)

f(x)

170

dicated by the thin line, and fundamental domair
map f(%) by the thick line. (a) Boundary fixed
pointC is the fixed poinD. The asymmetric fixed
point pair {L,R} is reduced to the fixed poir,
and the full state space symmetric 2-cytlR is
reduced to the fixed poirit. (b) The asymmetric
2-cycle paif{LC,CR is reduced to 2-cycl®1. (c)
All fundamental domain fixed points and 2-cycles
(Y. Lan)

[¢
LR

@)

(b)

Z

(©)
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an adjoining tile; the two trajectories are related by th@s\etry operation
h which maps the global endpoint into its fundamental domaiage.

. Cycle multiplicities induced by the symmetry are remowsdreduction
of the full dynamics to the dynamics on a fundamental domaitach
symmetry-related set of global cycl@scorresponds to precisely one fun-
damental domain (or relative) cycfe ~

. Conversely, each fundamental domain cyglgates out a segment of the
global cyclep, with the end point of the cyclp happed into the irreducible
segment ofp with the group elemertts. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundataledomain.

. The group elements = {e,gy,...,gg} Which map the fundamental do-
main M into its copiesgM, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symetsee sect. 10.4.

exercise 9.6

Example 9.16 Group D: and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f(-x) = —f(X) of exam-
ple 9.12, with symmetry group Dy = {e, o}. The state space M = [-1,1] can be tiled by
half-line M = [0, 1], and oM = [-1, 0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain % € M = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using o .

In figure 9.8 the fundamental domain map f (X) is obtained by reflecting x < 0
segments of the global map f(X) into the upper right quadrant. f is also bimodal and
piecewise-linear, with M= [0, 1] split into three regions M= lMo, Ml,Mgl which we
label with a 3-letter alphabet A =10,1,2). The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0.

The asymmetric fixed point pair (LR} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
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@

Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwisel21232313 and the clockwise
131323212 correspond to (b) one fundamental do-

main 3-cycle001.

9.5

(b)

2-cycle pair {LC,CR) is reduced to the 2-cycle OL Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c).

Example 9.17 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk—disk
increments g;, where g; is the discrete group element that maps disk i—1 into diski. For
3-disk system g is either reflection o~ back to initial disk (symbol ‘0’) or 2r/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N—1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.3(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13 and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples of
such orbits are shown in figures 9.7 and 9.9.  (continued in example 12.7)

Invariant polynomials

O

Physical laws should have the same form in symmetry-ecerivaoordinate frames,
so they are often formulated in terms of functions (Hamilos, Lagrangians,
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--+) invariant under a given set of symmetries. The key resuh®fepresentation identify all symmetry-equivalenk € M on each group orbit, thus replacing the
theory of invariant functions is: full state space dynamical system( f) by the symmetry-reduced\, f). The
main result of this chapter can be stated as follows:

Hilbert-Weyl theorem.  For a compact grou there exists a finit&-invariant In presence of a discrete symme@y associated with each full state space
homogenous polynomial bagis;, Uy, . . ., Un}, m > d, such that ang-invariant solution p is the group of its symmetrieSy, € G of order 1< |Gp| < |G|, whose
polynomial can be written as a multinomial elements leave the orbM{,, invariant. The elements @, act onp as shifts, tiling

it with |G| copies of its shortest invariant segment, the relativeopiorbit p.
The elements of the coskte G/G, generatam, = |G|/|Gp| equivalent copies of

h() = p(u1(), (¥, ..., um(x)),  x€ M. (9.27) p.
These polynomials are linearly independent, but can betibmaily dependent Once you grasp the relation between the full state spelcand the desym-
through nonlinear relations callsyzygies metrized G-quotiented reduced state spakegG, you will find the life as a funda-

mentalist so much simpler that you will never return to yaur $tate space ways

of yesteryear. The reduction to the fundamental dorvein= M/G simplifies
Example 9.18 Polynomials invariant under discrete operationson ~ R3. (continued symbolic dynamics and eliminates symmetry-induced degeies. For the short
from example 9.2) o is a reflection through the [x.y] plane. Any (e, c}-invariant orbits the labor saving is dramatic. For example, for thésk-dame of pinball
function can be expressed in the polynomial basis {uy, Uz, Us) = (XY, 2. there are 256 periodic points of length 8, but reduction édftindamental domain

C"2 is a [x,y]-plane rotation by = about the z-axis. Any {e, C"/?}-invariant func- non-degenerate prime cycles reduces this number to 30elnekt chapter con-

tion can be expressed in the polynomial basis {uy, Uz, Us, Us} = 0, xy.y? 2}, with one tinuous symmetries will induce relative periodic orbitatthever close a periodic
syzygy between the basis polynomials, (x*)(y) - (x)* = 0. orbit, and in the chapter 25 they will tile the infinite periodtate space, and re-
duce calculation of diusion constant in an infinite domain to a calculation on a
compact torus.

P is an inversion through the point (0,0, 0). Any {e, P}-invariant function can be
expressed in the polynomial basis {uy, -+, Us} = (X%,¥?, 22, Xy, Xz Y2}, with three syzy-
gies between the basis polynomials, (x?)(y?) — (xy)? = 0, and its 2 permutations.

For the D, dihedral group G = {e, o, CY2 P} the G-invariant polynomial basis
is {Uy, Up, Uz, Us} = {X2,y2, 22, xy}, with one syzygy, (x?)(y?) — (xy)? = 0. (continued in
example 10.13)

In practice, explicit construction dB-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few derpw-dimensional
cases, such as the 5-dimensional example of sect. 10.5. &fr po apply the
symmetry to the system as given, rather than undertake essgfrnonlinear co-
ordinate transformations that the theorem suggests. (Wiaipact’ in the above
refers to will become clearer after we have discussed comti® symmetries. For
now, it sufices to know that any finite discrete group is compact.) exercise 9.1

Résumé

A groupG is asymmetryof the dynamical system\(, f) if its ‘law of motion’
retains its form under all symmetry-group actioh§) = g~ f(gx) . A mappingu
is said to benvariant if gu = u, whereg is any element o6. If the mapping and
the group actions commutgu = ug, u is said to beequivariant The governing
dynamical equations are equivariant with respe¢ to

We have shown here that if a dynamical systei, f) has a symmetrg,
the symmetry should be deployed to ‘quotient’ the statespad( = M/G, i.e.,
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Commentary

Remark 9.1 Literature. We found Tinkham [9.1] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic conceptsroByand Fuller [9.2], the last
chapter of volume two, fers an introduction even more compact than Tinkham’s. For
a summary of the theory of discrete groups see, for examefe[9.3]. Chapter 3 of
Rebecca Hoyle [9.4] is a very student-friendly overview o€ tgroup theory a non-
linear dynamicist might need, with exception of the qudiiey reduction of dynam-

ics to a fundamental domain, which is not discussed at all. fovmd sites such as
en.wikipedia.orgwiki/Quotientgroup helpful. Curiously, we have not read any of the
group theory books that Hoyle recommends as backgrounéhggadhich just confirms
that there are way too many group theory books out there. ¥ample, one that you
will not find useful at all is ref. [9.5]. The reason is presuniyethat in the 20th century
physics (which motivated much of the work on the modern griiery) the focus is onappendix A.2.3
the linear representations used in quantum mechanicgattoggaphy and quantum field
theory. We shall need these techniques in Chapter 21, whereduce the linear action

of evolution operators to irreducible subspaces. Howéwane we are looking at nonlin-
ear dynamics, and the emphasis is on the symmetries of cttigis reduced state space
sisters, and the isotypic decomposition of their linedbitityg matrices.

In ChaosBook we focus on chaotic dynamics, and skirt therthefbifurcations, the
landscape between the boredom of regular motions and thie tfrchaos. Chapter 4
of Rebecca Hoyle [9.4] is a student-friendly introductioritie treatment of bifurcations
in presence of symmetries, worked out in full detail and gality in monographs by
Golubitsky, Stewart and Schider [9.6], Golubitsky and Stewart [9.7] and Chossat and
Lauterbach [9.8]. Term ‘stabilizer’ is used, for examplg Broeret al.[9.9] to refer to a
periodic orbit withZ, symmetry; they say that the relative or pre-periodic segriseim
this case called a ‘short periodic orbit.’ In Efstathioul[8} a subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropgyogp or stabilizer” Chap. 8
of Govaerts [9.11] fiers a review of numerical methods that employ equivariarite w
respect to compact, and mostly discrete groups. (contimuemnark 10.1)

Remark 9.2 Symmetries of the Lorenz equation: ~ (continued from remark 2.3) Af-
ter having studied example 9.14 you will appreciate WhyosBook . org starts out with
the symmetry-less Rossler flow (2.17), instead of the b&ttewn Lorenz flow (2.12).
Indeed, getting rid of symmetry was one of Rossler’s maitives. He threw the baby out
with the water; for Lorenz flow dimensionalities of stahliestable manifolds make pos-
sible a robust heteroclinic connection absent from Rogkles, with unstable manifold
of an equilibrium flowing into the stable manifold of anotleguilibrium. How such con-
nections are forced upon us is best grasped by perusing émeestl3 ‘Heteroclinic tan-
gles’ of the inimitable Abraham and Shaw illustrated cla§8i12]. Their beautiful hand-
drawn sketches elucidate the origin of heteroclinic cotinaes in the Lorenz flow (and
its high-dimensional Navier-Stokes relatives) bettenthay computer simulation. Mi-
randa and Stone [9.13] were first to quotient thesgmmetry and explicitly construct the
desymmetrized, ‘proto-Lorenz system,’ by a nonlinear dowate transformation into the
Hilbert-Weyl polynomial basis invariant under the actidrtlee symmetry group [9.14].
For in-depth discussion of symmetry-reduced (‘imagest) sgmmetry-extended (‘cov-
ers’) topology, symbolic dynamics, periodic orbits, ineat polynomial bases etc., of
Lorenz, Rossler and many other low-dimensional systeraeetis no better reference
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than the Gilmore and Letellier monograph [9.15]. They iptet [9.16] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the @as of ‘amplitudes,’ and call
quotiented flows such as (Loreyi@) ‘images.” Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, irdggthe flow and construct
Poincaré sections and return maps in the original Lorgng £ coordinates, without any
nonlinear coordinate transformations. The Poincaré@metap figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paged the one plotted in a
radial coordinate by Gilmore and Letellier. Neverthelésis profoundly diferent: our
return maps are from unstable manifelditself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [9.17]. This constructiomiscessary for high-dimensional
flows in order to avoid problems such as double-valuednesstwifn map projections on
arbitrary 1-dimensional coordinates encountered alréadlye Rossler example of fig-
ure 3.3. More importantly, as we know the embedding of thealbls manifold into the
full state space, a periodic point of our return nigpregardless of the length of the cycle
- the periodic point in the full state space, so no additidwelton searches are needed.
In homage to Lorenz, we note that his return map was alreaayr®try-reduced: as
belongs to the symmetry invariant Ri®) subspace, one can replace dynamics in the full
space by, 7, - --. That isG-invariant by construction [9.15].

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow
of interest is symmetric in some way or other: the list of epéen is endless, we list
here a handful that we found interesting. One has ay@metry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensionalatnipic Kepler potential [9.18,
9.19, 9.20], aD, = Ca4 symmetry in quartic oscillators [9.21, 9.22], in the pus?
potential [9.23, 9.24] and in hydrogen in a magnetic fiel@$, and aD, = Cyp, = V4 =
C, x C; symmetry in the stadium billiard [9.26]. A very nice nontal/desymmetrization
is carried outin ref. [9.27]. An example of a system with©Cgz, symmetry is provided
by the motion of a particle in the Hénon-Heiles potentia[® 9.29, 9.30, 9.31]

V(r,6) = %rz + %r3sin(39) .

Our 3-disk coding is indficient for this system because of the existence of ellipkaniss
and because the three orbits that run along the symmetrycarisot be labeled in our
code. As these orbits run along the boundary of the fundaahdonmain, they require
the special treatment. A partial classification of the 67sfilie symmetries of solutions
of the plane Couette flow of example 9.7, and their reductioorjugate classes is given
in ref. [9.32].
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EXERCISES

Exercises

9.1. Polynomials invariant under discrete operations on

RS, Prove that thele, o}, {e C¥?}, {e,P} and
{e, o, CY/2, P}-invariant polynomial basis and syzygies
are those listed in example 9.18.

9.2. Gx c G. Prove that the sdby, as defined in (9.17) is a
subgroup ofs. 9.7.

Assume thag, g2, g3 €
G and bothg; andg, are conjugate tgs. Prove thag;
is conjugate tay,.

9.4. Isotropy subgroup of gx. Prove that foig € G, x and

gxhave conjugate isotropy subgroups:

Ggx = g G« 971

9.5. D3: symmetries of an equilateral triangle. Consider

group Dy = Cg,, the symmetry group of an equilateral
triangle:

9.8.

2 3

(a) Listthe group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group.D

(c) Find the classes offand the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups af D
(continued as exer:FractRot)

9.6. Reduction of 3-disk symbolic dynamics to binary.

(continued from exercise 1.1)

(@) Verify that the 3-disk cycles

{12,13,23},{123,132, {1213+ 2 perms},
{121232313+ 5 perms}, {121323% 2 perms},

correspond to the fundamental domain cy@les,

01,001,011, - - respectively.

Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.

(b

=

176

(c) Optional: Can you see how the group elements
listed in table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 12.6)

C,-equivariance of Lorenz system.
vector field in Lorenz equations (2.12)

Verify that the

X o(y-%)
X:v(x):[ y|= px—y—xz} (9.28)
z xy— bz

is equivariant under the action of cyclic group G
{e, C%2} acting onR? by ax rotation about the axis,

CY(xy,2) = (-x.-¥,2),
as claimed in example 9.5. (continued in exercise 9.8)

Lorenz system in polar coordinates: group the-
ory. Use (6.7), (6.8) to rewrite the Lorenz equa-
tion (9.28) in polar coordinates, @, z), where & y) =

(r cosd, r siné).

1. Show that in the polar coordinates Lorenz flow

takes form
Po= %(—o’—l+(a’+p—z)sin29
+(1- o) cos )
0 = %(—a+p—z+((r—1)sin29
+(o +p -2 cosd)
z = —bz+;sin29. (9.29)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Showthatthis is the (Loren4}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation in the k, y] plane.

4. Rewrite (9.28) in the invariant polynomial basis of
example 9.18 and exercise 9.29.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (9.29) is either a periodic or-
bit or a relative periodic orbit (9.25) of the Lorenz
flow in the (x,y, 2) representation.
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9.9.

By going to polar coordinates we have quotiented out the
n-rotation .y, 2) — (=X, -, 2) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

Proto-Lorenz system.  Here we quotient out the C
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.13].

1. Rewrite the Lorenz equation (2.12) in terms of
variables

U, v,2) = (¢ -y, 2xy,2), (9.30)

show that it takes form

Vv/2-bz

N = Vuz+\2.

2. Show thatthis is the (Loren&}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation (9.20).

3. Show that (9.30) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.31)
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for the Lorenz parameter values= 10,b = 8/3
p = 28. Topologically, does it resemble more
Lorenz, or the Rossler attractor, or neither?
by J. Halcrow)

—(c+u+ (o —r)v+ (1-0)N+vz 7.]Show that a periodic orbit of the proto-Lorer
(r=o)u=(o+1)v+(r+o)N-uz—uN |either a periodic orbit or a relative periodic o

of the Lorenz flow.

(981Bhow that if a periodic orbit of the proto-Lor
is also periodic orbit of the Lorenz flow, their F
quet multipliers are the same. How do the Flo
multipliers of relative periodic orbits of the Lore
flow relate to the Floquet multipliers of the prc
Lorenz?

9 What does the volume contraction formula (4
look like now? Interpret.

10. Show thatthe coordinate change (9.30) is the
as rewriting (9.29) in variables
(u,v) = (r>cos @, r?sin %),
i.e., squaring a complex number= x + iy, 2 =
u+iv.

11. How is (9.31) related to the invariant polynor
basis of example 9.18 and exercise 9.29?
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