Chapter 25

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanovit)

Boltzmann’s mechanical formulation of statistical meahanSinai, Ruelle

and Bowen (SRB) have generalized Boltzmann’s notion ofdigiy for a
constant energy surface for a Hamiltonian system in eqilib to dissipative sys-
tems in nonequilibrium stationary states. In this more gareetting the attractor
plays the role of a constant energy surface, and the SRB meeabeect. 16.1 is
a generalization of the Liouville measure. Such measuepaely microscopic
and indiferent to whether the system is at equilibrium, close to dagium or far
from it. “Far for equilibrium” in this context refers to syshs with large devia-
tions from Maxwell’s equilibrium velocity distribution. thermore, the theory
of dynamical systems has yielded new sets of microscopiarjcs formulas for
macroscopic observables such agudion constants and the pressure, to which
we turn now.

THE ADVANCEs in the theory of dynamical systems have brought a new life to

We shall apply cycle expansions to the analysigrahsport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assionptare made, and
the all correlations are taken into account by the inclusibeycles of all periods.
The infinite extent systems for which the periodic orbit tlyegelds formulas for
diffusion and other transport d@ieients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The matiow are physical
problems such as beam defocusing in particle acceleratatsaotic behavior of
passive tracers in 2-dimensional rotating flows, problerglvcan be described
as deterministic diusion in periodic arrays.

In sect. 25.1 we derive the formulas foffdision codficients in a simple phys-
ical setting, the 2-dimensional periodic Lorentz gas. Bystem, however, is not
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Figure 25.1: Deterministic dffusion in a finite horizon ;
periodic Lorentz gas. (T. Schreiber);

the best one to illustrate the theory, due to its complicatgdbolic dynamics.
Therefore we apply the theory first tofidision induced by a 1-dimensional maps
in sect. 25.2.

25.1 Df#fusion in periodic arrays

Chaos happens - let's make a better use of it.
— Edward Tenner

The 2-dimensiondlorentz gass an infinite scatterer array in whichffilision of a
light molecule in a gas of heavy scatterers is modeled by thteomof a point par-
ticle in a plane bouncingfban array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of anoynber of pointlike
fast “light molecules” interacting only with the statiogdtheavy molecules” and
not among themselves. As the scatterer array is built up foalm defocusing
concave surfaces, it is a pure hyperbolic system, and onkeo$itnplest non-
trivial dynamical systems that exhibits deterministiffukion, figure 25.1. We
shall now show that theeriodic Lorentz gas is amenable to a purely determin-
istic treatment. In this class of open dynamical systemsiifies characterizing
global dynamics, such as the Lyapunov exponent, pressdrdiéinsion constant,
can be computed from the dynamics restricted to the elemyecd¢sl. The method
applies to any hyperbolic dynamical system that is a pecitilitng M = User Ma

of the dynamical state spa(z& by translatesM; of anelementary cellM, with

T the abelian group of lattice translations. If the scattg@anray has further dis-
crete symmetries, such as reflection symmetry, each elenyergll may be built
from afundamental domaim by the action of a discrete (not necessarily abelian)
groupG. The symboIM refers here to the full state space, i.e.,, both the spatial
coordinates and the momenta. The spatial componez\f’( of the complement of
the disks in thevholespace.
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Figure 25.2: Tiling of M, a periodic lattice of reflect-
ing disks, by the fundamental domaM. Indicated is
an example of a global trajectorftf together with the
corresponding elementary cell trajectoxft) and the
fundamental domain trajector(t). (Courtesy of J.-P.

s Y Y Y

We shall now relate the dynamics M to diffusive properties of the Lorentz
gas inM.

These concepts are best illustrated by a specific exampleremtz gas based
on the hexagonal lattice Sinai billiard of figure 25.2. Wetidguish two types
of diffusive behavior; thénfinite horizoncase, which allows for infinite length
flights, and thefinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our ciolesation to the finite
horizon case, with disks fiiciently large so that no infinite length free flight is
possible. In this case thefHlision is normal, withx(t)?> growing liket. We shall
discuss the anomalousfidision case in sect. 25.3.

As we will work with three kinds of state spaces, good mannegsiire that
we repeat what tildes, nothings and hats atop symbols gignif

fundamental domain, triangle in figure 25.2
elementary cell, hexagon in figure 25.2
full state space, lattice in figure 25.2 (25.1)

It is convenient to define an evolution operator for each ef 3hcases of fig-
ure 25.2.x(t) = fY(X) denotes the point in the global spa&e reached by the
flow in timet. x(t) = f!(Xy) denotes the corresponding flow in the elementary
cell; the two are related by

A(x0) = f'(x0) = f'(x0) € T, (25.2)
the translation of the endpoint of the global path into treredntary cellM. The

quantity X(t) = f'(%) denotes the flow in the fundamental domaty (%) is
related tof!(X) by a discrete symmetny € G which mapsx(t) € Mtox(t) € M. chapter 21

Fix a vector8 € RY, whered is the dimension of the state space. We will
compute the dfusive properties of the Lorentz gas from the leading eigeevaf
the evolution operator (17.11)

) = fim Tlog& 00, (253)
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where the average is over all initial points in the elemgntail, x € M.

If all odd derivatives vanish by symmetry, there is no drifidethe second
derivatives

2dD;j = iis7(,3)

0Bi 9B - tli—>no]o %«)A((t) = X)i(X(t) = X)j>m »

=0

yield a difusion matrix. This symmetric matrix can, in general, be @nigpic
(i.e., haved distinct eigenvalues and eigenvectors). The spatitglon constant
is then given by the Einstein relation (17.13)

ZdZ S(ﬂ)‘ = Jim (@) ~

where thé sum is restricted to the spatial componeptsf the state space vectors
x = (g, p), i.e., if the dynamics is Hamiltonian, the sum is over thihe degrees
of freedom.

We now turn to the connection between (25.3) and periodi¢soi the ele-
mentary cell. As the fulM — M reduction is complicated by the non-abeliamark 25.5
nature ofG, we discuss only the abeliahl - M reduction.

25.1.1 Reduction fromM to M

The key idea follows from inspection of the relation

(@COx) = | L o dxdy @05(9 - (%) .

IM| = fM dxis the volume of the elementary céll. Due to translational symme-
try, it suffices to start with a density of trajectories defined over dsialgmentary
cell M. Asin sect. 17.2, we have used the identity ]fMdyé(y X(t)) to moti-
vate the introduction of the evolution operat6i(y, x). There is a unique lattice
translationn"such thaty™= y — i, with the endpoiny € M translated back to the
elementary cell, and!(x) given by (25.2). The dierence is a translation by a
constant lattice vectarn, ‘and the Jacobian for changing integration frdfro dy
equals unity. Therefore, and this is the main point, trdimslanvariance can be
used to reduce this average to the elementary cell:

1 dxdy & (" 0950y — f(x)) . (25.4)
| X,ye M

<eﬁ (x®- X)>

As this is a translation, the Jacobiand$/dy| = 1. In this way the globaf!(x)
flow, infinite volume state space averages can be computedllbwing the flow
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f(xo) restricted to the compact, finite volume elementary adll The equation
(25.4) suggests that we study the evolution operator

Ly, %) = 005y - £1(x), (25.5)

wherex(t) = f!(x) e Mis the displacement in the full space, butft(x), y € M.
It is straightforward to check that this operator satisfles semigroup property
(17.18),

f dZ.Ltz (y’ Z).Ltl (Z, X) — Lt2+t1(y, X) .
M

ForB = 0, the operator (25.5) is the Perron-Frobenius operataflQ}6with the
leading eigenvalue® = 1 because there is no escape from this system (see the
flow conservation sum rule (20.17)).

The rest is old hat. The spectrum 6fis evaluated by taking the trace section 18.2
tr Lt = f dx éMMs(x — (1)) .
M

Hereri(X) is the discrete lattice translation defined in (25.2). Twalk of orbits
periodic in the elementary cell contribute. A periodic orisi calledstanding

if it is also periodic orbit of the infinite state space dynasyif '°(x) = x, and it

is calledrunning if it corresponds to a lattice translation in the dynamicstlos
infinite state spacef Tp(x) = x + Np. We recognize the shortest repeating segment
of a running orbit as our old ‘relative periodic orbit’ fridrirom chapter 9. In the
theory of area—preserving maps such as the standard mapmifpéx 7.7 these
orbits are callecdccelerator modess the dtusion takes place along the momen-
tum rather than the position coordinate. The traveled wegtd, = i (Xo) is
independent of the starting poirg, as can be easily seen by continuing the path
periodically in M.

The final result is the spectral determinant (19.6)

© -Ap—STp)r
det(s(g) - A) = [ | exp —Zle(ﬁp—p , (25.6)
b =" |det(1- mp)
or the corresponding dynamical zeta function (19.15)
elBhp=sTp)
1/¢(B,9) = 1-———|. 25.7
6.9 = [[1- ) 25.7

p
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The dynamical zeta function cycle averaging formula (2Df4 the difusion
constant (17.13), zero mean dr®) = 0, is given by

(%), 11 5 (~1f (g + -+ + Ny )2

T 2d(M,  2d(T), Apy - Apl

(25.8)

where the sum is over all distinct non-repeating combimadioprime cycles. The
derivation is standard, still the formula is strangeff8ion is unbounded motion
across an infinite lattice; nevertheless, the reductiohd@etementary cell enables
us to compute relevant quantities in the usual way, in teripeidodic orbits.

A sleepy reader might protest thgfl ;) — x(0) is manifestly equal to zero for
a periodic orbit. That is correcty,in the above formula refers to a displacement
X(Tp) on theinfinite periodic lattice, whilep refers to closed orbit of the dynamics
f'(X) reduced to the elementary cell, with a periodic point in the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodibitsrhavex% =0,
and contribute only to the time normalizatigi),. The mean square displace-

ment<>‘<2>{ gets contributions only from the periodic runaway trajeiets they

are closed in the elementary cell, but on the periodic kt&ach one grows like

K(t)? = (Ap/Tp)*t? = V3t2. So the orbits that contribute to the trace formulas

and spectral determinants exhibit either ballistic transpr no transport at all:

diffusion arises as a balance between the two kinds of motiomghtesl by the

1/|Apl measure. If the system is not hyperbolic such weights mayheranally

large, with Y|Ap| = 1/T, rather than 2|A | ~ e "»1, whereA is the Lyapunov
exponent, and they may lead to anomalouBudion - accelerated or slowed down
depending on whether the probabilities of the running orstiamding orbits are
enhanced. section 25.3

We illustrate the main idea, tracking of a globallyffdsing orbit by the as-
sociated confined orbit restricted to the elementary cath & class of simple
1-dimensional dynamical systems where all transportfcoents can be evalu-
ated analytically.

25.2 D#ftusion induced by chains ofl-dimensional maps

In a typical deterministic diusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers irbonece, and then the
process is repeated. As was shown in chapter 11, the esgmntiaf this pro-
cess is the stretching along the unstable directions of tve find in the crud-
est approximation the dynamics can be modeled by 1-dimealsiexpanding
maps. This observation motivates introduction of a claspasficularly simple
1-dimensional systems.

diffusion - 12jan2009 ChaosBook.org version14, Dec 31 2012



CHAPTER 25. DETERMINISTIC DIFFUSION 517

)T
Figure 25.3:(a) f (%), the full space sawtooth map 7
(25.9), A > 2. (b) f(x), the sawtooth map re- R A U
stricted to the unit circle (25.12)\, = 6. X s
(a) (b) ©
Example 25.1 Chains of piecewise linear maps. We start by defining the map f on
the unit interval as

~ov | AR X €[0,1/2)

(%) = { AR+1-A Re(21] @ N2 (25.9)
and then extending the dynamics to the entire real line, by imposing the translation
property

f(x+n) = f(R+n nPeZ. (25.10)

As the map is discontinuous at X = 1/2, fl (1/2) is undefined, and the x = 1/2 point
has to be excluded from the Markov partition. The map is antisymmetric under the
X-coordinate flip

f® = -f(-%), (25.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the generating function
(17.11) with respect to 8, evaluated at B = 0O, will vanish.

The map (25.9) is sketched in figure 25.3 (a). Initial points sufficiently close to
either of the fixed points in the initial unit interval remain in the elementary cell for one
iteration; depending on the slope A, other points jump f cells, either to the right or to
the left. Repetition of this process generates a random walk for almost every initial
condition.

The translational symmetry (25.10) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand, the unit
interval curled up into a circle. Associated to f (X) we thus also consider the circle map

f=f®R-[f®]. x=x-[Me0.1] (25.12)

figure 25.3 (b), where [-- -] stands for the integer part (25.2). For the piecewise linear
map of figure 25.3 we can evaluate the dynamical zeta function in closed form. Each
branch has the same value of the slope, and the map can be parameterized by a single
parameter, for example its critical value a = f (1/2), the absolute maximum on the
interval [0, 1] related to the slope of the map by a = A/2. The larger A is, the stronger
is the stretching action of the map.
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As noted in sect. 25.1.1, the elementary cell cycles coomspo either stand-
ing or running orbits for the map on the full line: we shalleefon, € Z as the
jumping numbenpof the p cycle, and take as the cycle weight

tp = 2% /|A . (25.13)

The difusion constant formula (25.8) for 1-dimensional maps is

1),

= 25.14
27, ( )
where the “mean cycle time” is given by (20.25)
knpl -+ Np,
n - , 25.15
(= 25 g(o 3l =->"(-1) A Apk| (25.15)
and the “mean cycle displacement squared” by (20.28)
2 A cee 4 An )2
(@) =2 2| Y- ot + n” (25.16)

the primed sum indicating all distinct non-repeating camakions of prime cy-
cles. The evaluation of these formulas for the simple systeexample 25.1 will
require nothing more than pencil and paper.

Example 25.2 Unrestricted symbolic dynamics. Whenever A is an integer num-
ber, the symbolic dynamics is exceedingly simple. For example, for the case A = 6 illus-
trated in figure 25.3 (b), the elementary cell map consists of 6 full branches, with uniform
stretching factor A = 6. The branches have different jumping numbers: for branches 1
and 2 we have f = 0, for branch 3 we have i = +1, for branch 4 i = -1, and finally for
branches 5 and 6 we have respectively i = +2 and i = —2. The same structure reap-
pears whenever A is an even integer A = 2a: all branches are mapped onto the whole
unit interval and we have two f = 0 branches, one branch for which i = +1 and one for
which i = =1, and so on, up to the maximal jump |A| = a— 1. The symbolic dynamics
is thus full, unrestricted shift in 2a symbols {04, 1., ..., (a-1),, (a—1)_, ..., 1, 0.},
where the symbol indicates both the length and the direction of the corresponding jump.

For the piecewise linear maps with uniform stretching the weight associated
with a given symbol sequence is a product of weights for individual steps, tsq = tstq. For

the map of figure 25.3 there are 6 distinct weights (25.13):

ty
t3

b = z/A
/N, tu=ePz7A, t5=PzA, tg=ePzA.
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The piecewise linearity and the simple symbolic dynamics lead to the full cancelation
of all curvature corrections in (20.7). The exact dynamical zeta function (15.15) is given
by the fixed point contributions:

1/{B,2 = 1-to, —to —---—tau1), —tau).

a-1
1- §[1+Zcoshﬁj)]. (25.17)
=1

The leading (and only) eigenvalue of the evolution operator (25.5) is

a-1
s(B) = |og{%l [1 + Z coshg j)]} . A=2a ainteger. (25.18)
=1

The flow conservation (20.17) sum rule is manifestly satisfied, so S(0) = 0. The first
derivative S(0) vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift (X) = 0. The second derivative S(B)” yields the diffusion constant

(25.14):
1 o\ S0P 12 22 (a-1)?
(M =2a+ =1, <X>z‘2X+2X+2X+”'+2 (25.19)
Using the identity ¥p_; k* = n(n+ 1)(2n+ 1)/6 we obtain
1
D = ﬂ(A -1)(A-2), A even integer. (25.20)
Similar calculation for odd integer A = 2k — 1 yields exercise 25.1
D= 2—14(/\2— 1), A odd integer. (25.21)
25.2.1 Higher order transport codficients
The same approach yields higher order transporffictents
B L d s(B) B,=D (25.22)
kK = 7o ) 2=D, .
k! dgk 5-0

known fork > 2 as the Burnett cdicients. The behavior of the higher or-
der codficients yields information on the relaxation to the asymiptdistribution
function generated by theflisive process. Herg is the relevant dynamical
variable andBy’s are related to momen(s‘({‘) of arbitrary order.

Were the ditusive process purely Gaussian

1 f+oo X Ch ’
is(8) _ X —%2/(4Dt) _ B°Dt
gsh) = dg Xe =é (25.23)
V47TDt —00

the only By codficient diferent from zero would b&, = D. Hence, nonvan-
ishing higher order cdgcients signal deviations of deterministidfdision from a
Gaussian stochastic process.
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Figure 25.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
Ax) I = {0,,1,,2,,2.,1,0_}. The partition is
Markov, as the critical point is mapped onto the
right border ofM,, . (b) The transition graph for
this partition. (c) The transition graph in the com-
pact notation of (25.26) (introduced by Vadim Mo-
roz).
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Example 25.3 B4 Burnett coefficient. For the map under consideration the first
Burnett coefficient coefficient B, is easily evaluated. For example, using (25.18) in the
case of even integer slope A = 2a we obtain exercise 25.2

I TR _160(a— 1)(2a— 1)(4a® - 9a + 7). (25.24)

We see that deterministicftlision is nota Gaussian stochastic process. Higher
order even ca@cients may be calculated along the same lines.

25.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtainedheviee the critical

points are mapped in finite numbers of iterations onto pamtiboundary points,
or onto unstable periodic orbits. We will work out here anragée for which

this occurs in two iterations, leaving other cases as esesci The key idea
is to construct aviarkov partition (11.2), with intervals mappednto unions of

intervals.

Example 25.4 A finite Markov patrtition. As an example we determine a value
of the parameter 4 < A < 6 for which f (f(1/2)) = 0. As in the integer A case,
we partition the unit interval into six intervals, labeled by the jumping number A(X) €
{Mo,, M1, , Mo, , Mz , M1, Mo _}, ordered by their placement along the unit interval,
figure 25.4 (a).

In general the critical value a = f (1/2) will not correspond to an interval border,
but now we choose a such that the critical point is mapped onto the right border of
Ma,. Equating f(1/2) with the right border of My,, X = 1/A, we obtain a quadratic
equation with the expanding solution A = 2(V2+1). For this parameter value f(My,) =
Mo, UMy1,, T(Mz2) = Mo_ U Ma_, while the remaining intervals map onto the whole
unit interval M. The transition matrix (14.1) is given by

do,
o1,
¢2,
6 | (25.25)
1
do_

R

1l

_4

ASS

1l
PR R R RR
PR RRRR
OO0 ORE
PR OOOO
PR RPRRRR
e e
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One could diagonalize (25.25) on a computer, but, as we saw in chapter 14, the tran-
sition graph of figure 25.4 (b) corresponding to map figure 25.4 (a) offers more insight
into the dynamics. Figure 25.4(b) can be redrawn more compactly as transition graph
figure 25.4 (c) by replacing parallel lines in a graph by their sum

@ — o> rm e =lith+ls. (25.26)

The dynamics is unrestricted in the alphabet
A=1{0,,1,,20,,2,1,,2.1,20.,1,0}.

Applying the loop expansion (15.15) of sect. 15.3, we are led to the dynamical zeta
function

1/¢B,2) = 1-to, —t1, —tro —to1, —ta1 —tho —t1 —to

1- ZXZ (1 + coshp)) — i_zzz (cosh(3) + cosh(B)) . (25.27)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dynam-
ical zeta function we verify that

4 4
1/£(0,1) =1 N 0,
as required by the flow conservation (20.17). Conversely, we could have started by
picking the desired Markov partition, writing down the corresponding dynamical zeta
function, and then fixing A by the 1/(0, 1) = O condition. For more complicated transi-
tion graphs this approach, together with the factorization (25.35), is helpful in reducing
the order of the polynomial condition that fixes A.

The diffusion constant follows from (25.14) exercise 25.3
1 2 "2 12 22 3?
<n>( = 4X + 4? N <n >{ = ZX + ZF + ZF
_ 15422 (25.28)
16+ 8V2

It is by now clear how to build an infinite hierarchy of finite Kkav partitions:
tune the slope in such a way that the critical vafii&/2) is mapped into the fixed
point at the origin in a finite number of iteratiopsf™(1/2) = 0. By taking higher
and higher values op one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in whithrrals are densely
embedded in the unit interval. For example, each of the 6awyrnntervals can
be subdivided into 6 intervals obtained by the 2-nd iterdtth@® map, and for the
critical point mapping into any of those in 2 steps the gram(aad the corre-
sponding cycle expansion) is finite. So, if we can prove cwiity of D = D(A),
we can apply the periodic orbit theory to the sawtooth map9)2fer a random
“generic” value of the parametey, for exampleA = 4.5. The idea is to bracket
this value ofA by a sequence of nearby Markov values, compute the ex@iat di
sion constant for each such Markov partition, and study t@ivergence toward
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0.36) © 1
= 0.35
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Figure 25.5: The dependence @ on the map pa- 1t ,\
rametera is continuous, but not monotone. Here Il ‘ ‘ ‘ 0.805 ‘ ‘ ‘ ‘ ‘
stands for the slop& in (25.9). (Fromref. [25.9].) 6 62 64 66 68 7 5.6 5.62 5.64 5.66
a a

the value ofD for A = 4.5. Judging how dtficult such problem is already for a
tent map (see sect. 15.5), this is not likely to take only akndeavork.

Expressions like (25.20) may lead to an expectation thadliffiesion codi-
cient (and thus transport properties) are smooth functidmesmrameters control-
ling the chaoticity of the system. For example, one migheekphat the dtusion
codficient increases smoothly and monotonically as the slopéthe map (25.9)
is increased, or, perhaps more physically, that tiffeision codficient is a smooth
function of the Lyapunov exponeit This turns out not to be truéd as a func-
tion of A is a fractal, nowhere éerentiable curve illustrated in figure 25.5. The
dependence dD on the map parametex is rather unexpected - even though for
larger A more points are mapped outside the unit cell in one iteratimndifusion
constant does not necessarily grow.
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172

Figure 25.6:(a) A map with marginal fixed point.
(b) The map restricted to the unit circle.

(@)

This is a consequence of the lack of structural stabilityenesf purely hyper-
bolic systems such as the Lozi map and the 1-dimensioffalstbn map (25.9).
The trouble arises due to non-smooth dependence of theotgipal entropy on
system parameters - any parameter change, no mater how kad$ to creation
and destruction of infinitely many periodic orbits. As fardi$usion is concerned
this means that even though local expansion rate is a smonottidn of A, the
number of ways in which the trajectory can re-enter thedhitell is an irregular
function of A.

The lesson is that lack of structural stability implies ladlspectral stability,
and no global observable is expected to depend smoothlyeosystem parame-
ters. If you want to master the material, working through ofine deterministic
diffusion projects olthaosBook . org/pages is strongly recommended.

25.3 Marginal stability and anomalous dffusion

What dtect does the intermittency of chapter 24 have on transpopepties? A
marginal fixed point fiects the balance between the running and standing orbits,
thus generating a mechanism that may result in anomaldusidin.

Example 25.5 Anomalous diffusion. Consider a 1-dimensional map of the real line
on itself shown in figure 25.6 (a), with the same properties as in sect. 25.2, except for a
marginal fixed point at X = 0. The corresponding circle map is given in figure 25.6 (b).

As in sect. 24.2.1, a branch with support in M;, i = 1,2, 3,4 has constant slope A;,
while f|s, is of intermittent form. To keep you nimble, this time we take a slightly
different choice of slopes. The toy example of sect. 24.2.1 was cooked up so that the
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1/s branch cut in dynamical zeta function was the whole answer. Here we shall take a
slightly different route, and pick piecewise constant slopes such that the dynamical zeta
function for intermittent system can be expressed in terms of the Jonquiére functiemark 25.7

Jz9) = i /K. (25.29)
k=1

Once the 0 fixed point is pruned away, the symbolic dynamics is given by the
infinite alphabet {1, 2,3,4,0'1,012,03,0'4}, i, j,k, 1 = 1,2, ... (compare with table 24.1).
The parfitioning of the subinterval My is induced by A/!\Ok(right) = f(ﬁlaht) (M3 U Ma)
(where f(:ijéht) denotes the inverse of the right branch of f|,) and the same reason-

ing applies to the leftmost branch. These are regions over which the slope of f| M, IS
constant. Thus we have the following stabilities and jumping numbers associated to

letters:
Kk K _ kl+n a
03,04 Ap=Kr  fy=1
| | _ |1+n ~ _
0102 Ap=b2  fAp=-1
2.1 Ap=+A  fp=-1, (25.30)

where « = 1/s is determined by the intermittency exponent (24.1), while q is to be
determined by the flow conservation (20.17) for f:

4
A +204(e+1)=1
(where { is the Riemann zeta function), so thatq = (A —4)/(2A{(a+1)). The dynamical

zeta function picks up contributions just by the alphabet’s letters, as we have imposed
piecewise linearity, and can be expressed in terms of a Jonquiére function (25.29):

4

1/§O(Z,ﬂ) =1- XZCOShB — mzcosm . J(Z,Q’ + 1) (2531)
Its first zero z(B) is determined by

4 A-4 1

—z4+—-7-] 1) = ——.

AZ+ AZ(L+ a)z Za+1) coshs

D vanishes by the implicit function theorer;(g)|;-; = 0 whene < 1. The

physical interpretation is that a typical orbit will stickrflong times near thé
marginal fixed point, and the ‘trapping time’ will be largerfhigher values of
the intermittency parametex(recalla = 1/s). As always, we need to look more
closely at the behavior of traces of high powers of the temgperator.

The evaluation of transport cfiient requires one more derivative with re-
spect to expectation values of state space observablesdeee?5.1): if we use
the difusion dynamical zeta function (25.7), we may write thfudion codi-
cient as an inverse Laplace transform, in such a way thatigiection between
maps and flows has vanished. In the case of 1-dimensiofiasidin we thus have

2 a+ioco ’
D = lim d_ if dsétm
a

im 55 ) S (25.32)

=0
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where the”’ refers to the derivative with respect $o

The evaluation of inverse Laplace transforms for high valofethe argument
is most conveniently performed using Tauberian theorems. skl take

w(d) = j:o dxe*u(x),

with u(xX) monotone asx — oo; then, ast — 0 andx +— oo respectively (and
p € (0, c0),

- 31}
if and only if
ux) ~ l_—(p)x" L),

whereL denotes any slowly varying function with lim., L(ty)/L(t) = 1. Now

1/§Ol(e_s’ﬂ) _ (4 {(1+a/) (J(e , @ + l) + J(e (l’))) COSM
1/§O(e_s’ﬁ) B 1- —e_SCOShB A{(1+a) e—S(e— a+ 1) Cosm\] :

Taking the second derivative with respecptwe obtain

2

d
7 (Lo’ €)1 HE™h),

+ 2 (€S a + 1)+ J(€,a)) = (9. (25.33)

4
A
(1-fe=-

e sIE s a+ 1))

The asymptotic behavior of the inverse Laplace transform3@ may then be
evaluated via Tauberian theorems, once we use our estimratkef behavior of
Jonquiére functions near= 1. The deviations from normal behavior correspond
to an explicit dependence &f on time. Omitting prefactors (which can be calcu-
lated by the same procedure) we have

s72 for > 1
Oo(s) ~ { sle*D for a € (0,1)
1/(s’Ins) for a=1.
The anomalous €iusion exponents follow: exercise 25.6
t* for a €(0,1)

(X=%0)%)t ~ 4 t/Int for @=1 (25.34)
t for > 1.
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Résum é

Perfection itself is imperfection.
— Vladimir Horowitz

With initial data accuracyx = |6x(0)| and system sizk, a trajectory is predictable
only to the finite Lyapunov tim@\ yap ~ A71In|L/6x . Beyond that, chaos rules.
We have discussed the implications in sect. 1.8: chaos i@ gews for prediction
of long term observables such as transport in statisticehamscs.

The classical Boltzmann equation for evolution of 1-pdetidensity is based
on stosszahlansatzneglect of particle correlations prior to, or after a 2tjude
collision. It is a very good approximate description of thllgas dynamics, but
a difficult starting point for inclusion of systematic correcgonlin the theory
developed here, no correlations are neglected - they anecalided in the cycle
averaging formula such as the cycle expansion for tffesion constant

K+1 (npl -t ﬁpk)Z
2d (T) Z( b |Ap1 “Apl '

Such formulas arexact the issue in their applications is what are the most ef-
fective schemes of estimating the infinite cycle sums reglior their evaluation.
Unlike most statistical mechanics, here there are no phenological macro-
scopic parameters; quantities such as transpofficieats are calculable to any
desired accuracy from the microscopic dynamics.

For systems of a few degrees of freedom these results arganouis footing,
but there are indications that they capture the essentigrdics of systems of
many degrees of freedom as well.

Though superficially indistinguishable from the probaiti random walk
diffusion, deterministic dliusion is quite recognizable, at least in low dimen-
sional settings, through fractal dependence of tffeision constant on the system
parameters, and through non-Gaussion relaxation to bguith (non-vanishing
Burnett codicients).

That Smale’s “structural stability” conjecture turned ¢mte wrong is not a
bane of chaotic dynamics - it is actually a virtue, perhagsrtost dramatic ex-
perimentally measurable prediction of chaotic dynamicslahg as microscopic
periodicity is exact, the prediction is counterintuitiver fa physicist - transport
codficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere djerentiablefunctions.

Actual evaluation of transport cfigcients is a test of the techniques developed
above in physical settings. In cases of severe pruning #uoe tiormulas and er-
godic sampling of dominant cycles might be mofieetive strategy than the cycle
expansions of dynamical zeta functions and systematic eratian of all cycles.
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Commentary

Remark 25.1 Lorentz gas.  The original pinball model proposed by Lorentz [25.4]
consisted of randomly, rather than regularly placed scate

Remark 25.2 Who's dunnit?  Cycle expansions for thefllision constant of a particle
moving in a periodic array have been introduced by R. Artig®g] (exact dynamic-
al zeta function for 1-dimensional chains of maps (25.8))YN. Vance [25.6],and by
P. Cvitanovi€, J.-P. Eckmann, and P. Gaspard [25.7] (thedhjcal zeta function cycle
expansion (25.8) applied to the Lorentz gas).

Remark 25.3 Lack of structural stability for D.  Expressions like (25.20) may lead
to an expectation that theftlision codicient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized gkample, by the Lyapunov
exponentl = InA). This turns out not to be trueD as a function ofA is a fractal,
nowhere diterentiable curve shown in figure 25.5. The dependend@ ofh the map
parameterA is rather unexpected - even though for largemore points are mapped
outside the unit cell in one iteration, thefldision constant does not necessarily grow.
We refer the reader to refs. [25.15, 25.16] for early work lo@ deterministic dfusion
induced by 1-dimensional maps. The sawtooth map (25.9)mesduced by Grossmann
and Fujisaka [25.17] who derived the integer slope form{&&s20) for the difusion
constant. The sawtooth map is also discussed in refs. [R5Th@ fractal dependence of
diffusion constant on the map parameter is discussed in ref8, 5.8, 25.10]. Sect. 1.8
gives a brief summary of the experimental implications;tfer the current state of the art
of fractal transport cd@icients consult the first part of Klage’s monograph [25.1 2N

be nice if someone would eventually check these predictioegperiments... Statistical
mechanicians tend to believe that such complicated beh#vioot to be expected in
systems with very many degrees of freedom, as the additiardaaye integer dimension
of a number smaller than 1 should be as unnoticeable as asoapir perturbation of a
macroscopic quantity. No fractal-like behavior of the codiility for the Lorentz gas has
been detected so far [25.14]. (P. Cvitanovit and L. Rondoni

Remark 25.4 Symmetry factorization in one dimension. In the = 0O limit the
dynamics (25.11) is symmetric under— —x, and the zeta functions factorize into prod-
ucts of zeta functions for the symmetric and antisymmetnigspaces, as described in
sect. 21.1.1:

11 1
g(o’ Z) B gs(o’ Z) ga(o’ Z)
01 _ 101 101 2535

9z¢ (s028s  (a02Ls

The leading (material flow conserving) eigenvaiue 1 belongs to the symmetric sub-
space 174(0,1) = 0, so the derivatives (25.15) also depend only on the synwrgib-
space:

21
0z {(O’ Z) z=1

<n>g =
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| length | # cycles] £(0,0) | 1]
1 51 -1.216975 -
2 10 | -0.024823| 1.745407
3 32 | -0.021694| 1.719617
4 104 | 0.000329| 1.743494
5 351 | 0.002527| 1.760581
6 1243 | 0.000034| 1.756546

Table 25.1: Fundamental domain, 0.3 .

1 26 1
%(0,2 "0z 40,2 |,., -

(25.36)

Implementing the symmetry factorization is convenient, it essential, at this level of
computation.

Remark 25.5 Lorentz gas in the fundamental domain. The vector valued nature
of the generating function (25.3) in the case under conatasr makes it dficult to
perform a calculation of the flusion constant within the fundamental domain. Yet we
point out that, at least as regards scalar quantities, theefiuction toM leads to better
estimates. A proper symbolic dynamics in the fundamentalalo has been introduced
in ref. [25.19].

In order to perform the full reduction for filusion one should express the dynamical
zeta function (25.7) in terms of the prime cycles of the fundatal domainM of the
lattice (see figure 25.2) rather than those of the elemei(t&iigner-Seitz) cellM. This
problem is complicated by the breaking of the rotational syatry by the auxiliary vector
B, or, in other words, the non-commutativity of translatiamsl rotations: see ref. [25.7].

Remark 25.6 Anomalous diffusion. Anomalous diftusion for 1-dimensional inter-
mittent maps was studied in the continuous time random waykaach in refs. [24.10,
24.11]. The first approach within the framework of cycle exgians (based on truncated
dynamical zeta functions) was proposed in ref. [24.12]. @emtment follows methods
introduced in ref. [24.13], applied there to investigaeliehavior of the Lorentz gas with
unbounded horizon.

Remark 25.7 Jonquiere functions. In statistical mechanics Jonquiere function
(25.29) appears in the theory of free Bose-Einstein gaseseg[24.22, 24.23].
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Exercises

25.1.

25.2.

25.3.
25.4.

25.5.

25.6.

Diffusion for odd integer A. Show that when the
slopeA = 2k — 1 in (25.9) is an odd integer, the dif-
fusion constant is given b = (A% - 1)/24, as stated in
(25.21).

Fourth-order transport coefficient.
You will need the identity

Verify (25.24).

zn: K = in(n+ 1)(2n + 1)(3% + 3n—1).
e~ 30

Finite Markov partitions.  Verify (25.28).

Maps with variable peak shape: Consider the fol-

lowing piecewise linear map

Xe M
xe My (25.37)
(x—%(2+6)) X € Ms

|
—_—~
SN
ST
Nle,

() =1 3
1

where My = [0,3(1-0)], Mz = [3(1-0).3(2+9)),
Ms = |4(2+6), 3], and the map in [12, 1] is obtained

by antisymmetry with respectto= 1/2,y = 1/2, Write

the corresponding dynamical zeta function relevant to
diffusion and then show that

_ 0(2+9)
T 4(1-9)

See refs. [25.21, 25.22] for further details.

Two-symbol cycles for the Lorentz gas. Write down

all cycles labeled by two symbols, such as (0 6), (1 725.8.

(15)and (05).
ChaosBook.org/pages offers several project-length
deterministic difusion exercises.

Accelerated dffusion. (medium dificulty) Consider
a maph, such thah = f of figure 25.6 (b), but now run-
ning branches are turned into standing branches and vice

References

25.7.

versa, so that,R, 3, 4 are standing while 0 leads to both
positive and negative jumps. Build the corresponding
dynamical zeta function and show that

t for a > 2

tint for a =2
a2t ~¢ 2 for ae(1,2)

t?/Int for a=1

t? for a €(0,1)

Recurrence times for Lorentz gas with infinite hori-
zon. Consider the Lorentz gas with unbounded
horizon with a square lattice geometry, with disk ra-
dius R and unit lattice spacing. Label disks accord-
ing to the (integer) coordinates of their center: the se-
guence of recurrence timegs} is given by the set of
collision times. Consider orbits that leave the disk sit-
ting at the origin and hit a disk far away after a free
flight (along the horizontal corridor). Initial conditions
are characterized by coordinatésd) (¢ determines the
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Ni—oon=T).

Diﬂusjon reduced to the fundamental domain.

J Maps such as figure 25.3 are antisymmetric. Re-
duce such antisymmetric maps as in example 9.4, and
write down the formula (25.14) for the ftlision con-
stantD in terms of the fundamental domain cycles (rela-
tive periodic orbits) alone (P. Gaspard says it cannot be
done [25.7]).
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