Chapter 15

Counting

I’'m gonna close my eyes

And count to ten

I’'m gonna close my eyes

And when | open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

the easiest problem in theory of chaotic systems: cycle taaynThis

is the simplest illustration of the raison d’etre of permdirbit theory;
we derive a duality transformation that relatesal information - in this case the
next admissible symbol in a symbol sequence glabal averages, in this case
the mean rate of growth of the number of cycles with incregasytle period. In
chapter 14 we have transformed, by means of the transitidnomsy graphs, the
topological dynamics of chapter 11 into a multiplicativeeogtion. Here we show
that thenth power of a transition matrix counts all itineraries ofdémn. The
asymptotic growth rate of the number of admissible itinesais therefore given
by the leading eigenvalue of the transition matrix; the iegeigenvalue is in turn
given by the leading zero of the characteristic determipnétite transition matrix,
which is - in this context - called th®pological zeta function

WE ARE Now in a position to apply the periodic orbit theory to the firstian

For flows with finite transition graphs this determinant israt@ topological
polynomialwhich can be readfbthe graph. However, (a) even something as
humble as the quadratic map generically requires an infatgtion (sect. 15.5),
but (b) the finite partition approximants converge expoiaditfast.

The method goes well beyond the problem at hand, and formsottecof the
entire treatise, making tangible the abstract notion oét$@al determinants” yet
to come.

303



CHAPTER 15. COUNTING 304

15.1 How many ways to get there from here?

In the 3-disk system of example 11.1 the number of admissibjectories dou-
bles with every iterate: there akg = 3-2" distinct itineraries of length. If disks

are too close and a subset of trajectories is pruned, thigysam upper bound and
explicit formulas might be hard to discover, but we still imigpe able to establish

a lower exponential bound of the foriy, > Ce™. Bounded exponentially by
3¢""2 > K, > Cé&™M, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by ttwoological entropy

h=lim SinK, . (15.1)

n—oo N

We shall now relate this quantity to the spectrum of the itexms matrix, with
the growth rate of the number of topologically distinct é@&pries given by the
leading eigenvalue of the transition matrix.

The transition matrix elemet; € {0, 1} in (14.1) indicates whether the tran-
sition from the starting partitiof into partitioni in one step is allowed or not, and

the (, j) element of the transition matrix iteratedimes exercise 15.1
(Tij = Z Tiks Thako - - - Thaj (15.2)
ki.Kz,....Kn-1

receives a contribution 1 from every admissible sequen¢ensitions, soT");;
is the number of admissiblesymbol itineraries starting withand ending with.

Example 15.1 3-disk itinerary counting. The (T?)13 = T12T23 = 1 element of T2 for
the 3-disk transition matrix (14.8)

01 1% (211

[1 0 1] =[1 2 1]. (15.3)
110 11 2

corresponds to path3 — 2 — 1, the only 2-step path from 3 to 1, while (T?)z3 = T3 T13+

Ts2To3 = 2 counts the two returning, periodic paths 31 and 32. Note that the trace
tr72 = (T2)11 + (T?)22 + (T?)33 = 2T13Ta1 + 2T21T1z + 2T3,T23 has a contribution from

each 2-cycle 12, 13, 23 twice, one contribution from each periodic point.

The total number of admissible itinerariesrofymbols is

Kn:Z(Tn)ij =(L1,...,1)T"[ . |. (15.4)
ij :
1
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CHAPTER 15. COUNTING 305

We can also count the number of prime cycles and pruned peipoihts, but
in order not to break up the flow of the argument, we relegatselpretty results
to sect. 15.7. Recommended reading if you ever have to cagistof cycles.

A finite [N x N] matrix T has eigenvaluellg, 11, - - -, Am_1} and (right) eigen-
vectors{yg, ¢1, - - -, em-1} satisfyingTe, = 1,¢,. EXpressing the initial vector in
(15.4) in this basis (which might be incomplete, with< N eigenvectors),

1
. 1 nm—l m-1 .
T [=T" ) beta = D bodiigas
i a=0 a=0

and contracting witl{1,1,...,1), we obtain

m-1
Kn = Z Ca/lg .
a=0

The constantg, depend on the choice of initial and final partitions: In this e
ample we are sandwiching" between the vectqfl, 1,...,1) and its transpose,
but any other pair of vectors would do, as long as they are ribbgonal to the

leading eigenvectopg. In an experiment the vectdrd, 1,...,1) would be re-

placed by a description of the initial state, and the rigltteewould describe the
measurement time later.

exercise 15.3

Perron theoremstates that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvalulgy > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefora mereases, the sum
is dominated by the leading eigenvalue of the transitionrimaiy > |ReAd,l,
a=12---,m-1, and the topological entropy (15.1) is given by

n
c
Co \ o
. [In 1cy (A1)"
In Ao + lim [—CO+——1(_1) +]
n—oo n Nncoy /10

Ino. (15.5)

=y
Il

-1
lim - In codg

n—oo

What have we learned? The transition mafriis a one-stepshort timeoperator,
advancing the trajectory from one partition to the next ahibie partition. Its
eigenvalues describe the rate of growth of the total numbé&agectories at the
asymptotic timesinstead of painstakingly countiri€y, Ko, Ks, . .. and estimating
(15.1) from a slope of a log-linear plot, we have #acttopological entropy if
we can compute the leading eigenvalue of the transitionixnatrThis is reminis-
cent of the way free energy is computed from transfer matrice1l-dimensional
lattice models with finite range interactions. Historigalt is this analogy with
statistical mechanics that led to introduction of evolat@perator methods into
the theory of chaotic systems.
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CHAPTER 15. COUNTING 306

15.2 Topological trace formula

There are two standard ways of computing eigenvalues of axndty evaluating
the trace tT" = ) A0, or by evaluating the determinant det{ZT). We start by
evaluating the trace of transition matrices. The main lesgid be that the trace
receives contributions only from itineraries that retwritte initial partition, i.e.,
periodic orbits.

Consider arM-step memory transition matrix, like the 1-step memory exam
ple (14.10). The trace of the transition matrix counts theber of partitions that
map into themselves. More generally, each closed walk girouconcatenated
entries ofT contributes to tT" the product (15.2) of the matrix entries along the
walk. Each step in such a walk shifts the symbolic string by symbol; the trace
ensures that the walk closes on a periodic stanBefinet. to be thelocal trace
the product of matrix elements along a cyclesach term being multiplied by a
book keeping variable In chapters that follow, the ‘local tracg will take a con-
tinuum of values, so for the remainder of this chapter we&kgtiche t.’ notation
rather than to the 0 & values specific to the counting problem.

The quantityZ'tr T" is then the sum of; for all cycles of periodh. Thet,
= (product of matrix elements along cycteis manifestly cyclically invariant,
t100 = to10 = too1, SO a prime cyclep of periodn, contributesn, times, once for
each periodic point along its orbit. For the purposes ofqukci orbit counting,
the local trace takes values

(= { Z% if pis an admissible cycle (15.6)

0 otherwise,

l.e., (settingz = 1) the local trace i$p = 1 if the cycle is admissible, arg = 0
otherwise.

Example 15.2 Traces for binary symbolic dynamics. For example, for the [8x8]
transition matrix Ts,s,s,.s5,5, Version of (14.10), or any refined partition [2"x2"] transition
matrix, n arbitrarily large, the periodic point 100 contributes tiop = mememem
to Z2tr T3. This product is manifestly cyclically invariant, tioo0 = to10 = too1, SO a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its
orbit. exercise 11.7

For the binary labeled non—wandering set the first few traces are given by (con-
sult tables 15.1 and 15.2)

ztrT = to+1tg,
27?2 = 5+t + 24,
ZrT? = 5+t + 3tio0+ 3tion,
2T = tg + t‘ll + ZtEO + 4t1000 + 4t1001 + 4t1011 (15.7)

In the binary case the trace picks up only two contributions on the diagonal, To..00.-0 +
T1..1.1..1, NO matter how much memory we assume. We can even take infinite memory
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Table 15.1: Prime cycles for the binary symbolic dynamics up to lengtfTBe numbers

of prime cycles are given in table 15.3.

Np p | nmp p Np p Np p Np p
1 0] 7 0001001| 8 00001111} 9 000001101 9 001001111
1 0000111 00010111 000010011 001010111
2 01 0001011 00011011 000010101 001011011
3 001 0001101 00011101 000011001 001011101
011 0010011 00100111 000100011 001100111
4 0001 0010101 00101011 000100101 001101011
0011 0001111 00101101 000101001 001101101
0111 0010111 00110101 000001111 001110101
5 00001 0011011 00011111 000010111 010101011
00011 0011101 00101111 000011011 000111111
00101 0101011 00110111 000011101 001011111
00111 0011111 00111011 000100111 001101111
01011 0101111 00111101 000101011 001110111
01111 0110111 01010111 000101101 001111011
6 000001 0111111 01011011 000110011 001111101
000011 8 00000001 00111111 000110101 010101111
000101 00000011 01011111 000111001 010110111
000111 00000101 01101111 001001011 010111011
001011 00001001 01111111 001001101 001111111
001101 00000111 9 000000001 001010011 010111111
001111 00001011 000000011 001010101 011011111
010111 00001101 000000101 000011111 011101111
011111 00010011 000001001 000101111 011111111
7 0000001 00010101 000010001 000110111
0000011 00011001 000000111 000111011
0000101 00100101 000001011 000111101

Table 15.2: The total numbers\, of periodic points of perioah for binary symbolic dy-
namics. The numbers of contributing prime cycles illugtsathe preponderance of long
prime cycles of perioah over the repeats of shorter cycles of periogswheren = rnp,.
Further enumerations of binary prime cycles are given ife&5.1 and 15.3. (L. Ron-

doni)

=)

# of prime cycles of period,

1 2 3 4 5 6 7 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 25 2 1
9 512 2 2 56
10 1024 2 1 6 99
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M — oo, in which case the contributing partitions are shrunk to the fixed points, tr T =
Tf)’(—) + TII.
If there are no restrictions on symbols, the symbolic dynamics is complete, and

all binary sequences are admissible (or allowable) itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in table 15.8xercise 11.2

Hence tiT" = N, counts the number afdmissible periodic pointsf period
n. The nth order trace (15.7) picks up contributions from all repeatt prime
cycles, with each cycle contributing, periodic points, siN,, the total number of
periodic points of periodh is given by

PNy = 20T = gty ™ = > np > St (15.8)
r=1

Npin p

Heremn means thain is a divisor ofn. An example is the periodic orbit counting
in table 15.2.

In order to get rid of the awkward divisibility constraint= npr in the above
sum, we introduce the generating function for numbers abgder points

O zT
2Nn = t . 15.9
; s (15.9)

The right hand side is the geometric series sup& tr T". Substituting (15.8)
into the left hand side, and replacing the right hand sidehieyeigenvalue sum
trT" = 3 A7, we obtain our first example of a trace formula, tbeological trace

formula

z1, Npt

> = i (15.10)
1-2z1, 1-t,

a=0 p

A trace formula relates the spectrum of eigenvalues of aret@e- here the tran-
sition matrix - to the spectrum of periodic orbits of a dyneatisystem. It is a
statement of duality between the short-time, local infdrama- in this case the
next admissible symbol in a symbol sequence - to long-tinahal averages, in
this case the mean rate of growth of the number of cycles witreasing cycle
period.

TheZz"sumin (15.9) is a discrete version of the Laplace transfeer gect. 18.1.2),
and the resolvent on the left hand side is the antecedeneahtre sophisticated
trace formulas (18.10) and (18.23).We shall now use thigltrés compute the
spectral determinant of the transition matrix.
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CHAPTER 15. COUNTING 309

15.3 Determinant of a graph

Our next task is to determine the zeros of fpectral determinandf an [mxm]|
transition matrix

m-1
det (1-zT) = ]_[ 1-2z1,) . (15.11)
a=0

We could now proceed to diagonaliZeon a computer, and get this over with. It
pays, however, to dissect det{2T) with some care; understanding this computa-
tion in detail will be the key to understanding the cycle exgian computations of
chapter 20 for arbitrary dynamical averages. Fa finite matrix, (15.11) is just
the characteristic polynomial far. However, we shall be able to compute this ob-
ject even when the dimension ©fand other such operators becomes infinite, and
for that reason we prefer to refer to (15.11) loosely as tpectal determinant.”

There are various definitions of the determinant of a matvwill view the
determinant as a sum over all possible permutation cyclegposed of the traces
tr T, in the spirit of the determinant—trace relation (1.16): exercise 4.1

det(1- zT)

exp(tr In(1-zT)) = exp[— Z %trT”)

n=1

2
1-ztrT - E((trT)Z—trTZ)—... (15.12)

This is sometimes called eumulantexpansion. Formally, the right hand is a
Taylor series irzaboutz = 0. If T is an jmxm] finite matrix, then the characteristic
polynomial is at most of ordem. In that case the cdiécients ofz" must vanish
exactlyfor n> m.

We now proceed to relate the determinant in (15.12) to theesponding
transition graph of chapter 14: toward this end, we starthwie usual textbook
expression for a determinant as the sum of products of athpetions

detM = > (=1)"M1, M2y, -+ Mrn, (15.13)
{m}

whereM = 1 - zT is a [mxm| matrix, {n} denotes the set of permutationsrof
symbols,rrx is the permutationr applied tok, and ¢1)" = +1 is the parity of
permutationr. The right hand side of (15.13) yields a polynomiallirof orderm
in z a contribution of orden in z picks upm — n unit factors along the diagonal,
the remaining matrix elements yielding

(2"(~1) Teprs, - - Teursn (15.14)
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CHAPTER 15. COUNTING 310

wherer is the permutation of the subsetrflistinct symbolss; - - - s, indexingT
matrix elements. Asin (15.7), we refer to any combination Ts s Ts;s, - - Tsysys

for agivenitineranc = s, - - - &, as thdocal traceassociated with a closed loop

c on the transition graph. Each term of the form (15.14) mayaotofed in terms

of local traces,tc, - - - tg,, i.€., loops on the transition graph. These loops are non-
intersecting, as each node may only be reachedrn®fink, and they are indeed
loops, as if a node is reached by a link, it has to be the stppwint of another
singlelink, as eacts; must appear exactignceas a row and column index.

So the general structure is clear, a little more thinkingnky eequired to get
the sign of a generic contribution. We consider only the addeops of length
1 and 2, and leave to the reader the task of generalizing #udt ey induction.
Consider first a term in which only loops of unit length appia(l15.14), i.e.,
only the diagonal elements @fare picked up. We have= mloops and an even
permutationr so the sign is given by<1)¥, wherek is the number of loops. Now
take the case in which we havesingle loops and loops of lengthn = 2j +i.
The parity of the permutation gives—{)! and the first factor in (15.14) gives
(-1)" = (-1)%*'. So once again these terms combine-th)f, wherek = i + j is
the number of loops. Let be the maximal number of non-intersecting loops. \Wercise 15.4
may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions m of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace tp carrying a minus sign:

f
det(1-2T) = 3 (-1t -1, (15.15)
k=0 m

Any self-intersecting loop ishadoweddy a product of two loops that share the
intersection point. As both the long lodg, and its shadowvsty, in the case at hand
carry the same weight=*™  the cancelation is exact, and the loop expansion
(15.15) is finite. In the case that the local traces count @iytles (15.6)t, = 0

or 2", we refer to det (+ zT) as thetopological polynomial

We refer to the set of all non-self-intersecting logRs, tp,, - - - tp, } as thefun-
damental cycle§for an explicit example, see the loop expansion of examplé)1l
This is not a very good definition, as transition graphs ateinmue —the most we
know is that for a given finite-grammar language, there dxistsition graph(s)
with the minimal number of loops. Regardless of how clevartyansition graph
is constructed, it is always true that for any finite trawsitgraph the number of
fundamental cycles is finite. If the graph has nodes, no fundamental cycle is
of period longer tham, as any longer cycle is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traccesost easily
grasped by working through a few examples. The completeyohanamics tran-
sition graph of figure 14.4 is a little bit too simple, but let start humbly and
consider it anyway.
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Example 15.3 Topological polynomial for complete binary dynamics: (continu-
ation of example 14.2) There are only two non-intersecting loops, yielding

det(1- zT)

1-tg—t; - (t()]_ - totl) =1-2z (1516)

1 o= (o o= o).

Due to the symmetry under O < 1 interchange, this is a redundant graph (the 2-cycle
to1 is exactly shadowed by the 1-cycles). Another way to see is that itineraries are
labeled by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-links
and 2 out-links, they can be identified, and a more economical presentation is in terms
of the [1x 1] adjacency matrix (14.12)

det(1-zA

e = 1=

1-to-tp=1-2z (15.17)

The leading (and only) zero of this characteristic polynomial yields the topological en-
tropy € = 2. As there are K, = 2" binary strings of length N, this comes as no
surprise.

Similarly, for the complete symbolic dynamics Mfsymbols the transition graph
has one node and links, yielding

det(1-zT) =1- Nz, (15.18)
which gives the topological entrogy= In N.

Example 15.4 Golden mean pruning: The “golden mean” pruning of example 14.5

has one grammar rule: the substring _11_is forbidden. The corresponding trarsiiaise 15.5
graph non-intersecting loops are of length 1 and 2, so the topological polynomial is
given by

det(1-zT) = 1-to—-tp=1-z-7 (15.19)

(ol o= 1 e W

Sy

The leading root of this polynomial is the golden mean, so the entropy (15.5) is the
logarithm of the golden mean, h = In 1+T‘/§

fast track:
W sect. 15.4, p. 313
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>

AN s
001011
A A 1 A 1

a0
Figure 15.1: (a) The region labels in the nodes(Q) @ (h)
of transition graph figure 14.3 can be omitted, as
the links alone keep track of the symbolic dynam-
ics. (b)-(j) The fundamental cycles (15.23) for the

>

transition graph (a), i.e., the set of its non-self- g
intersecting loops. Each loop represents a local 0010111
tracetp, as in (14.5).
() >
Example 15.5 Nontrivial pruning: The non-self-intersecting loops of the transition

graph of figure 14.6 (d) are indicated in figure 14.6 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det(1-zT) = 1-to~ toor1— tooo1— tooo11
+totoo11 + too11tooo1 - (15.20)

With t, = 2%, where ny is the period of the p-cycle, the smallest root of
0=1-z-22+7 (15.21)

yields the topological entropy h = —Inz, z= 0.658779..., h =0.417367.. ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
with topological entropyh =1n2 = 0.693... exercise 15.9

Example 15.6 Loop expansion of a transition graph. (continued from exam-
ple 14.7) Consider a state space covered by 7 neighborhoods (14.11), with the topo-
logical time evolution given by the transition graph of figure 14.3.
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The determinant det (1— zT) of the transition graph in figure 14.3 can be read
off the graph, and expanded as a polynomial in z, with coefficients given by products of
non-intersecting loops (traces of powers of T) of the transition graph figure 15.1:

det(1-zT) = 1— (to + t1)z— (o1 — tot1) Z — (too1 + to11 — tosto — tosts) Z°
— (too11+ tor11 — tooits — toasto — torats + toatots) Z*
— (too111— tor1ato — toouats + toratots) 2° (15.22)
— (too1011+ too1101— too1stor — tooatorr) 2°

7
— (too10111+ too11101— too101d1 — toor10ds — too11dtor + tooritosts + tooatorats) Z° .

Twelve cycles up to period 7 are fundamental cycles:

out of the total of 41 prime cycles (listed in table 15.1) up to cycle period 7. The
topological polynomial t, — z%

1/étop@ =1-22-7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological
entropy is only a bit smaller than the binary h = In2. Not exactly obvious from the
partition (14.11).

15.4 Topological zeta function

What happens if there is no finite-memory transition matfithe transition graph
is infinite? If we are never sure that looking further into theure will reveal no
further forbidden blocks? There is still a way to define theedainant, and this
idea is central to the whole treatise: the determinant is ttedined by itsumulant

expansion (15.12) exercise 4.1
det(1-zT) = 1- Z &2 (15.24)
n=1
Example 15.7 Complete binary det(1- zT) expansion. (continuation of exam-
ple 14.6) consider the loop expansion of the binary 1-step memory transition graph
(14.10)

= 1-{Jo-)- (e o- 0)

= 1-to—ty —[(tos — tsto)] — [(toor — to1to) + (to11 — toats)]
—[(tooo1 — totoo) + (tor11 — to1ats)
+(too11 — tooits — totor1 + totoits)]

= 1—th—26n=1—22. (15.25)
f n
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For finite dimensional matrices the expansion is a finite pogial, and (15.24)
is an identity; however, for infinite dimensional operattivs cumulant expansion
codlicientsc, definethe determinant.

Let us now evaluate the determinant in terms of traces forlaitrary transi-
tion matrix. In order to obtain an expression for the spéctederminant (15.11)
in terms of cycles, substitute (15.8) into (15.24) and sueT tive repeats of prime
cycles using In(+ x) = - X, X'/r,

exp[— Zp: 2, Tp) = exp[zp: In(1- tp)]

[]a-t), (15.26)
p

—

det (1- zT)

[ Ja-21)

where for the topological entropy the weight assigned taragcyclep of period
np istp = z™ if the cycle is admissible, dy, = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazurzeta function, conventionally denoted

by

1/4iop(2) = l_[(l —Z%)=1- Z & . (15.27)
n=1

p

Counting cycles amounts to giving each admissible priméeqyeveightt, = z'

and expanding the Euler product (15.27) as a power series Tine number of
prime cyclesp is infinite, but if T is an mxm] finite matrix, then the number of
roots A, is at mostm, the characteristic polynomial is at most of orderand the
codficients ofZ" vanish fom > m. As the precise expression for the fioEentsc;,

in terms of local tracet, is more general than the current application to counting,
we postpone its derivation to chapter 20.

The topological entropy can now be determined from the leading zere
e of the topological zeta function. For a finitenk m] transition matrix, the
number of terms in the characteristic equation (15.15) itefirand we refer to
this expansion as thepological polynomiabf order< m. The utility of defining
the determinant by its cumulant expansion is that it worlenevhen the partition
is infinite, m — oo; an example is given in sect. 15.5, and many more later on.

fast track:
W sect. 15.5, p. 315
15.4.1 Topological zeta function for flows

,
J We now apply the method that we shall use in deriving (18.23the
problem of deriving the topological zeta functions for flovilhe time-weighted

count - 10apr2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 15. COUNTING 315

density of prime cycles of periods

TR = > > Tpolt—rTp). (15.28)
p r=1

The Laplace transform smooths the sum over Dirac delta sgidee (18.22))
and yields theopological trace formula

2.2 fom dtesto(t—rTp) = > Tp i e STof (15.29)
por=l i p r=1

and thetopological zeta functioffor flows:

Yaop(s) = | |(1-€e°7), (15.30)
p

related to the trace formula by

Z Tp Z g ST = _aﬁ In 1/Ztop(9) -
p r=1 S

This is the continuous time version of the discrete time kogical zeta function
(15.27) for maps; its leading zeso= —hyields the topological entropy for a flow.

15.5 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanovit)

,
J To understand the need for topological zeta function (15.84 turn a
dynamical system with (as far as we know - there is no proofipfanite partition,

or an infinity of ever-longer pruning rules. Consider theihehsional quadratic
map (11.3)

f(X)=Ax1-Xx), A=38.

Numerically the kneading sequence (the itinerary of thcati point x = 1/2
(11.13)) is exercise 15.20

K =1011011110110111101011110111110
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Figure 15.3: The 90 zeroes of the topological zet:
function for the quadratic map fok = 3.8 approxi-
mated by the nearest topological zeta function with -1.
stable cycle of length 90. (from K.T. Hansen [12.22])

-1 F
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Figure 15.2: The logarithm Iz — 7| of the dif- S — l T -
ference between the leading zero of tiv¢h polyno- 0F O g |
mial approximation to topological zeta function anc %
our best estimate (15.33), as a function of order of tt ~ ~2°T o 4 1
polynomialn (the topological zeta function evaluatec  _5, | ° g ]
for the closest value oA to A = 3.8 for which the °°‘%®
quadratic map has a stable cycle of perigd (from L . . \ ,%%5
K.T. Hansen [12.22]) 0 20 40 60 80

length

1.5 T T !0 T T
1F 80%%90 E
L - .

N & : v

T 0% :

A %
-0.5 &
g™ -

1O

5 1 1 | 1 i

-1.5 -1 -0.5 0 0.5 1 1.5
Re(z)

where the symbolic dynamics is defined by the partition ofregll.12. How this
kneading sequence is converted into a series of pruning sk dark art.For the
moment it sifiices to state the result, to give you a feeling for what a “@gidic
infinite partition topological zeta function looks like. Fexample, approximating
the dynamics by a transition graph corresponding to a repefl the period 29
attractive cycle close to thi = 3.8 strange attractor yields a transition graph with
29 nodes and the characteristic polynomial

1/§t(§3) = 1-2-2+2-2-2+P-7+2-2P-7°
+Z A2 A3 A A A AT A8, A% 2O
N R SR oy L SR A o (15.31)
The smallest real root of this approximate topological fetetion is
z=0.62616120.. (15.32)

Constructing finite transition graphs of increasing lengbhresponding t&A —
3.8 we find polynomials with better and better estimates forttp®logical en-
tropy. For the closest stable period 90 orbit we obtain owt lestimate of the
topological entropy of the repeller:

h=-1In0.62616130424685 . = 0.46814726655867. . . (15.33)

Figure 15.2 illustrates the convergence of the truncatigor@aimations to the
topological zeta function as a plot of the logarithm of thEedence between the
zero of a polynomial and our best estimate (15.33), plotted &unction of the

count - 10apr2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 15. COUNTING 317

period of the stable periodic orbit. The error of the esten@ds.32) is expected
to be of orderz?® ~ e because going from period 28 to a longer truncation
typically yields combinations of loops with 29 and more nede/ing terms+z2°
and of higher order in the polynomial. Hence the convergasaxponential,
with an exponent 0f0.47 = —h, the topological entropy itself. In figure 15.3
we plot the zeroes of the polynomial approximation to theotogical zeta func-
tion obtained by accounting for all forbidden strings ofdén 90 or less. The
leading zero giving the topological entropy is the pointselst to the origin. Most
of the other zeroes are close to the unit circle; we conclbdefor infinite state
space partitions the topological zeta function has a unifecias the radius of
convergence. The convergence is controlled by the ratih®fleading to the
next-to-leading eigenvalues, which is in this case indegdg = 1/€" = e M.

15.6 Shadowing

The topological zeta function is a pretty function, but thinite product (15.26)
should make you pause. For finite transition matrices thdbaid side is a deter-
minant of a finite matrix, therefore a finite polynomial; soyik the right hand
side an infinite product over the infinitely many prime perodrbits of all peri-
ods?

The way in which this infinite product rearranges itself iatiinite polynomial
is instructive, and crucial for all that follows. You caneddy take a peek at the
full cycle expansion (20.7) of chapter 20; all cycles beydimel fundamentaty
andt; appear in the shadowing combinations such as

g5 ~ torssmlsmeasn -

For subshifts of finite type such shadowing combinationsebexactly if we are
counting cycles as we do in (15.16) and (15.25), or if the dyina is piecewise
linear, as in exercise 19.3. As we argue in sect. 1.5.4, fo hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shdilg combina-
tionsalmostcancel, and the spectral determinant is dominated by trdafuental
cycles from (15.15), with longer cycles contributing onipal “curvature” cor-
rections.

These exact or nearly exact cancelations depend on the fiag §mooth and
the symbolic dynamics being a subshift of finite type. If ty@amics requires
an infinite state space partition, with pruning rules forckkoof increasing length,
most of the shadowing combinations still cancel, but thedewesponding to new
forbidden blocks do not, leading to a finite radius of coneaie for the spectral
determinant, as depicted in figure 15.3.

One striking aspect of the pruned cycle expansion (15.3f)peved to the
trace formulas such as (15.9) is that fiméents are not growing exponentially -
indeed they all remain of order 1, so instead having a radiosnvergence™, in
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the example at hand the topological zeta function has thecirnie as the radius
of convergence. In other words, exponentiating the spgatoklem from a trace
formula to a spectral determinant as in (15.24) increasearihlyticity domain
the pole in the trace (15.10) at e " is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

This sensitive dependence of spectral determinants orhethet not the sym-
bolic dynamics is a subshift of finite type is bad news. If thetem is generic and
not structurally stable (see sect. 12.2), a smooth paravatiation is in no sense
a smooth variation of topological dynamics - infinities ofipédic orbits are cre-
ated or destroyed, and transition graphs go from being fiaitefinite and back.
That will imply that the global averages that we intend to poie are generi-
cally nowhere dterentiable functions of the system parameters, and aveyragi
over families of dynamical systems can be a highly nontrietderprise; a simple
illustration is the parameter dependence of theudion constant computed in a
remark in chapter 25.

You might well ask: What is wrong with computing the entropgrh (15.1)7?
Does all this theory buy us anything? An answer: If we cdGnlevel by level, we
ignore the self-similarity of the pruned tree - examine fxarmaple figure 14.5, or
the cycle expansion of (15.35) - and the finite estimatds, of In K,,/n converge
nonuniformly toh, and on top of that with a slow rate of convergenbe; h,| ~
O(1/n) as in (15.5). The determinant (15.11) is much smarter, ahgtruction
it encodes the self-similarity of the dynamics, and yielis asymptotic value of
h with no need for any finite extrapolations.

fast track:
W sect. 16, p. 329
15.7 Counting cycles

Chaos is merely order waiting to be deciphered
— José Saramagdhe Double

,
J In what follows, we shall occasionally need to compute atlley up to
topological periodh, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the straed probably best
skipped on the first reading.
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15.7.1 Counting periodic points

The number of periodic points of periods denoted\,,. It can be computed from
(15.24) and (15.9) as a logarithmic derivative of the togalal zeta function

DN
n=1

d d
tr (—zd—z In(1- zT)) = —zd—Z Indet(1-2zT)

—z401
_ “ZmL/dop) (15.34)

1/&op

Observe that the trace formula (15.10) diverges at e ", because the denomi-
nator has a simple zero there.

Example 15.8 Complete N-ary dynamics: To check formula (15.34) for the finite-
grammar situation, consider the complete N-ary dynamics (14.7) for which the number

of periodic points of period n is simply tr T} = N". Substituting

o

S Zump= 3 @Y o,
n=1

n=1

into (15.24) we verify (15.18). The logarithmic derivative formula (15.34) in this case

does not buy us much either, it simply recovers

Nz
Z NnZ" = 1-Nz
n=1

Example 15.9 Nontrivial pruned dynamics: Consider the pruning of figure 14.6 (e).

Substituting (15.34) we obtain

z+ 82 -84
; NZ'= 2. (15.35)

The topological zeta function is not merely a tool for extracting the asymptotic growth
of Ny, it actually yields the exact numbers of periodic points. In case at hand it yields
a nontrivial recursive formulaN; = N, = N3 =1, N, =2n+ 1 forn = 4,5,6,7,8, and

Nn = Np—1 + 2Nn—s4 — Np—g forn > 8.

15.7.2 Counting prime cycles

Having calculated the number of periodic points, our nejédtive is to evaluate
the number oprimecyclesMy for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findinlyl,, is classical in combinatorics
(counting necklaces made outrobeads oN different kinds) and is easily solved.
There areN" possible distinct strings of lengtihhcomposed oN letters. These
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Table 15.3: Number of prime cycles for various alphabets and grammar ygeriod
10. The first column gives the cycle period, the second givesdrmula (15.37) for the
number of prime cycles for complei&e symbol dynamics, and columns three through five
give the numbers of prime cycles fbdk= 2,3 and 4.

n Mn(N) Mn(2)  Mn(3) Mn(4)
1 N 2 3 4
2 N(N -1)/2 1 3 6
3 N(N? - 1)/3 2 8 20
4 N2(N? - 1)/4 3 18 60
5 (N> -N)/5 6 48 204
6 (N® —N°® - N? + N)/6 9 116 670
7 (N"=N)/7 18 312 2340
8 N4(N*-1)/8 30 810 8160
9 N3(N® - 1)/9 56 2184 29120
10 (N*0-N°-N2+N)/10 99 5880 104754

N" strings include alMqy prime d-cycles whose period equals or divides. A
prime cycle is a non-repeating symbol string: for examples 011 = 101 =
110 = ...011011.. is prime, but0101 = 010101.. = 01 is not. A primed-
cycle contributesd strings to the sum of all possible strings, one for each cycli
permutation. The total number of possible periodic symbgugnces of period

is therefore related to the number of prime cycles by

Ny = Z dMy, (15.36)
din

whereN, equals tiT". The number of prime cycles can be computed recursively

1 d<n
M, = H[Nn_dzml dMy

’

or by theMobius inversion formula exercise 15.10

M=ty ﬂ(g) Nq. (15.37)
din

where the Mobius functiom(1) = 1, u(n) = 0 if n has a squared factor, and
w(p1pz ... pe) = (1)K if all prime factors are dferent.

We list the number of prime cycles up to period 10 for 2-, 3- dAltter
complete symbolic dynamics in table 15.3, obtained by M8élversion (15.37).

exercise 15.11

3

Example 15.10 Counting N-disk periodic points: J A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
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points that are mapped back onto themselves after n iterations is given by N, = tr T".
The pruning of self-bounces eliminates the diagonal entries, Tn_disk = Tc — 1, so the
number of the N-disk periodic points is

Ny =trT0 g = (N = 1)+ (=1)(N = 1). (15.38)

Here T. is the complete symbolic dynamics transition matrix (14.7). For the N-disk
pruned case (15.38), Mébius inversion (15.37) yields

e = A ) o

din
= MND for n>2. (15.39)
n

There are no fixed points, so MN-91k = 0. The number of periodic points of period 2
is N2 — N, hence there are Mg“ isk = N(N — 1)/2 prime cycles of period 2; for periods
n > 2, the number of prime cycles is the same as for the complete (N — 1)-ary dynamics
of table 15.3.

.

Example 15.11 Pruning individual cycles: J Consider the 3-disk game

of pinball. The prohibition of repeating a symbol affects counting only for the fixed

points and the 2-cycles. Everything else is the same as counting for a complete binary

dynamics (15.39). To obtain the topological zeta function, just divide out the binary 1-

and 2-cycles (1 — ztp)(1 — zt,)(1 — Zto1) and multiply with the correct 3-disk 2-cycles

- Zztlz)(l - 22t13)(1 - 22t23).' exercise 15.14
exercise 15.15

o (1-2)?3
1/{3disk = (1- Zz)m
= 1-29(1+2%*=1-32-27. (15.40)

The factorization reflects the underlying 3-disk symmetry; we shall rederive itin (21.25).
As we shall see in chapter 21, symmetries lead to factorizations of topological polyno-
mials and topological zeta functions.

Example 15.12 Alphabet {a,cb’; b}: (continuation of exercise 15.16) In the cycle
counting case, the dynamics in terms ofa — z, cb » z+ 2+ 2 +---=z/(1-2 isa
complete binary dynamics with the explicit fixed point factor (1 —t,) = (1 - 2):  exercise 15.19

1/§top=(1—2)(1—2—1%2)=1—3Z+22.

Résumé

The main result of this chapter is the cycle expansion ()502the topological
zeta function (i.e., the spectral determinant of the ttarsimatrix):

Yiop@ = 1= ) &
k=1
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Table 15.4: List of 3-disk prime cycles up to period 10. Hamés the cycle period\M, is
the number of prime cycle$y, is the number of periodic points, ai®} the number of

distinct prime cycles unddd; symmetry (see chapter 21 for further details). Column 3

also indicates the splitting dfi, into contributions from orbits of periods that divide
The prefactors in the fifth column indicate the degeneragyf the cycle; for example,

3-12 stands for the three prime cycl#®, 13 and23 related by 2/3 rotations. Among

symmetry-related cycles, a representapweghich is lexically lowest is listed. The cycles

of period 9 grouped with parentheses are related by timeasaveymmetry, but not by

any D3 transformation.

n M, N Shn my-p

1 0 O 0

2 3 632 1 312

3 2 623 1 2123

4 3 1832+34 1 31213

5 6 30=65 1 612123

6 9 66=32+23+9-6 2 6121213+ 3121323

7 18 126187 3 61212123+ 6-:1212313+ 6-:1213123

8 30 25832+34+308 6 612121213+3-12121313+6-12121323
+ 612123123+ 6:12123213+ 3-12132123

9 56 516-23+569 10 6121212123+ 6-(121212313+ 121212323)
+6-(121213123- 121213213} 6-:121231323
+6-(121231213- 121232123} 2-:121232313
+6:121321323

10 99 1022 18

Table 15.5: The 4-disk prime cycles up to period 8. The symbols is the sasnghown
in table 15.4. Orbits related by time reversal symmetry (m€,, symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have beetteaimi

n My, N Sh my-p

1 0 O 0

2 6 1262 2 412+ 213

3 8 2483 1 8123

4 18 846-2+184 4 81213+ 41214+ 21234+ 41243

5 48 246-485 6 8(12123+ 12124)+ 812313
+8(12134+ 12143)+ 812413

6 116 7326-2+83+1166 17 8121213+ 8121214+ 8121234
+ 8121243+ 8121313+ 8121314
+4.121323+ 8-(121324+ 121423)
+ 4121343+ 8121424+ 4-121434
+ 8123124+ 8123134+ 4123143
+ 4124213+ 8124243

7 312 2184 39

8 810 6564 108
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For subshifts of finite type, the transition matrix is finitmd the topological zeta
function is a finite polynomial evaluated by the loop expangil5.15) of det (+
ZT). For infinite grammars the topological zeta function is wiedi by its cycle
expansion. The topological entropyis given by the leading zero= e™". This
expression for the entropy e&xact in contrast to the initial definition (15.1), no
n — oo extrapolations of i, /n are required.

What have we accomplished? We have related the number dbtppally
distinct paths from one state space region to another regitime leading eigen-
value of the transition matriX. The spectrum of is given by topological zeta
function, a certain sum over tracedtt, and in this way the periodic orbit theory
has entered the arena through the trace formula (15.18adrat the level of the
topological dynamics.

The main lesson of learning how to count well, a lesson thibeiconstantly
redfirmed, is that while trace formulas are a conceptually esdestép in deriving
and understanding periodic orbit theory, the spectralrdetant is the right object
to use in actual computations. Instead of summing all of Kp@erentially many
periodic points required by trace formulas at each levelwfdation, spectral det-
erminants incorporate only the small incremental coroastito what is already
known - and that makes them a more powerful tool for compurtati

Contrary to claims one all too often encounters in the liteg “exponential
proliferation of trajectories” is nothe problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rutesthe “algorithmic
complexity,” as illustrated by sect. 15.5, and figure 15.Banticular. Nice, finite
grammar leads to nice, discrete spectrum; infinite grameeld to analyticity
walls in the complex spectral plane.

Historically, these topological zeta functions were thapimation for applying
the transfer matrix methods of statistical mechanics t@tbblem of computation
of dynamical averages for chaotic flows. The key result wasdynamical zeta
function to be derived in chapter 18, a weighted generadimaif the topological
zeta function.

Commentary

Remark 15.1 Artin-Mazur zeta functions.  Motivated by A. Weil’s zeta function for
the Frobenius map [15.8], Artin and Mazur [19.11] introdditiee zeta function (15.27)
that counts periodic points for filéomorphisms (see also ref. [15.9] for their evaluation
for maps of the interval). Smale [15.10] conjectured radidy of the zeta functions for
Axiom A diffeomorphisms, later proved by Guckenheimer [15.11] and Neii5.12].
See remark 19.4 on page 397 for more zeta function history.

Remark 15.2 “Entropy” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead tovaniamt characterization of the
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dynamics, as the choice of symbolic dynamics is largelyteatyi: the same caveat ap-
plies to other entropies.In order to obtain invariant chazations we will have to work
harder. Mathematicians like to define the (impossible tduata) supremum over all pos-
sible partitions. The key point that eliminates the needstarh searches is the existence
of generatorsi.e., partitions that under the dynamics are able to prbbenthole state
space on arbitrarily small scales. A generator is a finitétpar M = {M;... My} with
the following property: consider the partition built updhossible intersections of sets
f"(M;), wheref is dynamical evolution and takes all possible integer values (positive
as well as negative), then the closure of such a partitiomoddés with the ‘algebra of all
measurable sets.” For a thorough (and readable) discus§igenerators and how they
allow a computation of the Kolmogorov entropy, see ref.115.

Remark 15.3 Perron-Frobenius matrices.  For a proof of the Perron theorem on the
leading eigenvalue see ref. [1.26]. Appendix A4.1 of reb.P] offers a clear discussion
of the spectrum of the transition matrix.

Remark 15.4 Determinant of a graph. Many textbooks ffer derivations of the
loop expansions of characteristic polynomials for traosimatrices and their transition
graphs, see for example refs. [15.3, 15.4, 15.5].

Remark 15.5 Ordering periodic orbit expansions. In sect. 20.6 we will introduce
an alternative way of hierarchically organizing cumulaxpansions, in which the order
is dictated by stability rather than cycle period: such acpdure may be better suited to
perform computations when the symbolic dynamics is not wedlerstood.

Remark 15.6 T is not trace class.  Note to the erudite reader: the transition matrix
T (in the infinite partition limit (15.24)) ismottrace class. Still the trace is well defined in
then — oo limit.

Remark 15.7 Counting prime cycles. Duval has anficient algorithm for generating
Lyndon words (non-periodic necklaces, i.e., prime cydteitaries).

Exercises

15.1. A transition matrix for 3-disk pinball. to the graph. Show that iteration of the transi-
tion matrix results in two coupled linear ftkr-
ence equations, - one for the diagonal and one for
the df diagonal elements. (Hint: relateTf to
trT"t+ )

a) Draw the transition graph corresponding to the 3-
disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
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b) Solve the above fierence equation and obtain the
number of periodic orbits of length. Compare
your result with table 15.4.

¢) Find the eigenvalues of the transition matffifor
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamicg), 1}.

15.2. 3-disk prime cycle counting. A primecycle p
of lengthn, is a single traversal of the orbit; its label is

a non-repeating symbol string of, symbols. For ex- 15.6.

ample,12 is prime, bu121 is not, since it i21 = 12
repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9,- prime
cycles of length 2, 3, 4, 5, 6;-.

15.3. Sum of A;j is like atrace.  Let A be a matrix with

eigenvaluegy. Show that
I'h = Z[An]ij = ZCkﬂE.
ij k

(a) Under what conditions do |tr A"| and In|[,| have
the same asymptotic behaviorras> o, i.e., their
ratio converges to one?

(b) Do eigenvaluedy need to be distinctl # 4, for
k # I? How would a degeneracy, = 4, affect
your argument for (a)?

15.4. Loop expansions. Prove by induction the sign rule in
the determinant expansion (15.15):

det(1-ZT) = Z Z (_1)ktp1tpz o lp

k>0 pr+-+pk

15.7.

15.5. Transition matrix and cycle counting.
are given the transition graph
b

LSOO

c
This diagram can be encoded by a mafrixwhere the
entry T;; means that there is a link connecting node
nodej. The value of the entry is the weight of the link.

Suppose you

a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

a C

T=lp o

b) Enumerate all the walks of length three on the
transition graph. Now compuf® and look at the
entries. Is there any relation between the terms in
T2 and all the walks?
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c) Show thatTi’]? is the number of walks from point
i to pointj in n steps. (Hint: one might use the
method of induction.)

d) Estimate the numbeéf, of walks of lengthn for
this simple transition graph.

e) The topological entropymeasures the rate of ex-
ponential growth of the total number of walks,
as a function oh. What is the topological entropy
for this transition graph?

Alphabet {0,1}, prune _.00_.  The transition graph ex-
ample 14.9 implements this pruning rule which implies
that “0” must always be bracketed by “1”s; in terms of a
new symbol 2= 10, the dynamics becomes unrestricted
symbolic dynamics with with binary alphabiét2}. The
cycle expansion (15.15) becomes

1/¢ (1-t)A-t)(1-t2)(1-t112)...
1-t-tb - (t]_z - tltg) (1541)

—(t112 — t1ot1) — (tr22 — tioto) . ..

In the original binary alphabet this corresponds to:

1/ = 1-t3—1t0— (t110— tat10) (15.42)

—(t1110— taaot1) — (tra010— taaotio) - - -
This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-

modal maps this symbolic dynamics is realized by the
tent map of exercise 11.6.

“Golden mean” pruned map. (continuation of exer-
cise 11.6) Show that the total number of periodic orbits
of lengthn for the “golden mean” tent map is

(1+ VBY + (1~ VB
2n ’

Continued in exercise 19.2. See also exercise 15.8.

A unimodal map with golden mean pruning. Con-

sider the unimodal map

075 10
o

fix)

025 0.5

d

0.0 0.25 05 075 1.0 1
X

for which the critical point maps into the right hand fixed
point in three iterationsS* = 100L. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood®fixed point, and
_00_ pruned from the recurrent set. (K.T. Hansen)
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15.9. Glitches in shadowing. (medium dificulty) Note
that the combinatiotygg11 minus the “shadowtptggi1in
(15.20) cancels exactly, and does not contribute to the
topological zeta function (15.21). Are you able to con-
struct a smaller transition graph than figure 14.6 (e)?

15.10. Whence Mobius function? To understand the origin
of the Mdbius function (15.37), consider the function

f(n) = Z 9(d) (15.43)

din

whered|n stands for sum over all divisodsof n. Invert
recursively this infinite tower of equations and derive the
Mobius inversion formula 15.13.

o) = > u(n/df(d). (15.44)

din

15.11. Counting prime binary cycles. In order to get com-
fortable with Mobius inversion reproduce the results
the second column of table 15.3.

Write a program that determines the number of prime
cycles of lengtm. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

]6?'14'

15.12. Counting subsets of cycles. The techniques de-
veloped above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynami-
cal system with a complete binary tree, a repeller map
(11.4) with two straight branches, which we label 0 an8.15.
1. Every cycle weight for such map factorizes, with a
factorty for each 0, and factay for each 1 in its sym-
bol string. Prove that the transition matrix traces (15.7)
collapse tar(TK) = (to + t1)¥, and /¢ is simply

l_[(l—tp) =1-to—t; (15.45)
P
Substituting (15.45) into the identity

1-tp2
I_l(1+tp)=l:l 11,

p

we obtain
15.16.
1-t3—t2

l_[(1+tp) = m

p 15.17.
2toty
1-tp—1t;

= l+to+1t;+

= 1+to+t;
o n-1 n 2
- kin—k
+ZZz(k_ 1)tot2 .
n=2 k=1
Hence forn > 2 the number of terms in the cumulant
expansion withk 0’s andn — k 1's in their symbol se-
quences is £°%).

326

In order to count the number of prime cycles in each
such subset we denote witl,x (n = 1,2,...; k =
{0,1} forn=1; k=1,...,n—1 for n > 2) the number
of prime n-cycles whose labels contaknzeros. Show
that

Mo = Mz =1, n>=2,k=1,...,n-1
n/m
e = 3% )
m|E

where the sum is over ath which divide bothn andk.
(continued as exercise 20.7)

Logarithmic periodicity of In Np. (medium difi-
culty) Plot (InN, nh) for a system with a nontrivial fi-
nite transition graph. Do you see any periodicity? If yes,
why?

Symmetric 4-disk pinball topological zeta function.
Show that the 4-disk pinball topological zeta function
(the pruning &ects only the fixed points and the 2-
cycles) is given by

(1-2)°
1-2%1-2)3
= (1-37(1+2°
= 1-62-82-37. (15.46)

Yiop™ = (1-32)

Symmetric N-disk pinball topological zeta function.
Show that for anN-disk pinball, the topological zeta
function is given by
Yifog™ = (1-(N-1)2 x
(1 _ Z2)N(N—1)/2
(1-2NI(1 - 2)N-DN-22
(1-(N-1)2 1+2N 1 .(15.47)

The topological zeta function has a raot = N - 1,

as we already know it should from (15.38) or (15.18).
We shall see in sect. 21.4 that the other roots reflect the
symmetry factorizations of zeta functions.

Alphabet {a, b, c}, prune _ab_ . Write down the
topological zeta function for this pruning rule.

Alphabet {0,1}, prune n repeats of “0” _000...00_ .
This is equivalent to the@ symbol alphabetl, 2, ...,

n} unrestricted symbolic dynamics, with symbols corre-
sponding to the possible 1000 block lengths: 210,
3:=100,...,n:=100..00. Show that the cycle expansion
(15.15) becomes

1/ = 1-ti—-th...—th—(tiz—tatp)...
—(t]_n—t]_tn)... .
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15.18. Alphabet {0,1}, prune _100Q, -0010Q, _0110Q. and that it yields the entrody= 0.522737642. ..

Show that the topological zeta function is given by 15.20. Alphabet {0,1}, prune only the fixed point0 This

1/=(A-to)(1—-t1 —to—trz—t113)  (15.48) is equivalent to thdnfinite alphabet{l, 2, 3, 4,...}
unrestricted symbolic dynamics. The prime cycles are
labeled by all non-repeating sequences of integers, or-
dered lexically: t,,n > 0; tmn, tmmn--.,N > m > 0O;

with the unrestricted 4-letter alphabt, 2, 23 113.
Here 2 and 3 refer to 10 and 100 respectively, as in ex-

ercise 15.17. tmnr, T > N> m> 0,... (see sect. 24.3). Now the num-
15.19. Alphabet {0,1}, prune _100Q, _0010Q, _0110Q, ber of fundamental cycles is infinite as well:
~10011. (This grammar arises from Hénon map
pruning, see remark 12.3.) The first three pruning rules 1/ = 1- Z th — Z (tmn — tatm)
were incorporated in the preceeding exercise. n>0 n>m>0
(a) Show that the last pruning rul¢0011 leads (in a - Z (tmmn = tmtmn)
way similar to exercise 15.18) to the alphatt, 23, n>m>0
21¥113 1,0}, and the cycle expansion - Z (tmnn — tmntn) (15.51)
1/¢ = (1-to) (-t —ta—ta3+t1trz—t2119) .(15.49) "
- Z (tmnr + tmrn — tmntr
Note that this says that 1, 23, 2, 2113 are the fundamen- r>n>m>0
tal cycles; not all cycles up to length 7 are needed, only — tmrtn — tmtnr + tmtnty) - - -
2113.

. As shown in table 24.1, this grammar plays an im-
portant role in description of fixed points of marginal
1/&op=(1-2)(1-2z-7Z -7 + 2 - 7') (15.50) stability.

(b) Show that the topological zeta function is
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