
Chapter 15

Counting

I’m gonna close my eyes
And count to ten
I’m gonna close my eyes
And when I open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

We are now in a position to apply the periodic orbit theory to the first and
the easiest problem in theory of chaotic systems: cycle counting. This
is the simplest illustration of the raison d’etre of periodic orbit theory;

we derive a duality transformation that relateslocal information - in this case the
next admissible symbol in a symbol sequence - toglobal averages, in this case
the mean rate of growth of the number of cycles with increasing cycle period. In
chapter 14 we have transformed, by means of the transition matrices/ graphs, the
topological dynamics of chapter 11 into a multiplicative operation. Here we show
that thenth power of a transition matrix counts all itineraries of length n. The
asymptotic growth rate of the number of admissible itineraries is therefore given
by the leading eigenvalue of the transition matrix; the leading eigenvalue is in turn
given by the leading zero of the characteristic determinantof the transition matrix,
which is - in this context - called thetopological zeta function.

For flows with finite transition graphs this determinant is a finite topological
polynomialwhich can be read off the graph. However, (a) even something as
humble as the quadratic map generically requires an infinitepartition (sect. 15.5),
but (b) the finite partition approximants converge exponentially fast.

The method goes well beyond the problem at hand, and forms thecore of the
entire treatise, making tangible the abstract notion of “spectral determinants” yet
to come.
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15.1 How many ways to get there from here?

In the 3-disk system of example 11.1 the number of admissibletrajectories dou-
bles with every iterate: there areKn = 3·2n distinct itineraries of lengthn. If disks
are too close and a subset of trajectories is pruned, this is only an upper bound and
explicit formulas might be hard to discover, but we still might be able to establish
a lower exponential bound of the formKn ≥ Cenĥ. Bounded exponentially by
3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by thetopological entropy:

h = lim
n→∞

1
n

ln Kn . (15.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix elementTi j ∈ {0, 1} in (14.1) indicates whether the tran-
sition from the starting partitionj into partitioni in one step is allowed or not, and
the (i, j) element of the transition matrix iteratedn times exercise 15.1

(Tn)i j =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . .Tkn−1 j (15.2)

receives a contribution 1 from every admissible sequence oftransitions, so (Tn)i j

is the number of admissiblen symbol itineraries starting withj and ending withi.

Example 15.1 3-disk itinerary counting. The (T2)13 = T12T23 = 1 element of T2 for
the 3-disk transition matrix (14.8)
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corresponds to path 3→ 2→ 1, the only 2-step path from 3 to 1, while (T2)33 = T31T13+

T32T23 = 2 counts the two returning, periodic paths 31 and 32. Note that the trace
tr T2 = (T2)11 + (T2)22 + (T2)33 = 2T13T31 + 2T21T12 + 2T32T23 has a contribution from
each 2-cycle 12, 13, 23 twice, one contribution from each periodic point.

The total number of admissible itineraries ofn symbols is

Kn =
∑

i j

(Tn)i j = ( 1, 1, . . . , 1 ) Tn
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We can also count the number of prime cycles and pruned periodic points, but
in order not to break up the flow of the argument, we relegate these pretty results
to sect. 15.7. Recommended reading if you ever have to compute lots of cycles.

A finite [N×N] matrix T has eigenvalues{λ0, λ1, · · · , λm−1} and (right) eigen-
vectors{ϕ0, ϕ1, · · · , ϕm−1} satisfyingTϕα = λαϕα. Expressing the initial vector in
(15.4) in this basis (which might be incomplete, withm≤ N eigenvectors),

Tn
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∑
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and contracting with( 1, 1, . . . , 1 ), we obtain

Kn =

m−1
∑

α=0

cαλ
n
α .

exercise 15.3

The constantscα depend on the choice of initial and final partitions: In this ex-
ample we are sandwichingTn between the vector( 1, 1, . . . , 1 ) and its transpose,
but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvectorϕ0. In an experiment the vector( 1, 1, . . . , 1 ) would be re-
placed by a description of the initial state, and the right vector would describe the
measurement timen later.

Perron theoremstates that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvalueλ0 > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefore asn increases, the sum
is dominated by the leading eigenvalue of the transition matrix, λ0 > |Reλα|,
α = 1, 2, · · · ,m− 1, and the topological entropy (15.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[

1+
c1

c0

(

λ1

λ0

)n

+ · · ·
]

= ln λ0 + lim
n→∞

[

ln c0

n
+

1
n

c1

c0

(

λ1

λ0

)n

+ · · ·
]

= ln λ0 . (15.5)

What have we learned? The transition matrixT is a one-step,short timeoperator,
advancing the trajectory from one partition to the next admissible partition. Its
eigenvalues describe the rate of growth of the total number of trajectories at the
asymptotic times. Instead of painstakingly countingK1,K2,K3, . . . and estimating
(15.1) from a slope of a log-linear plot, we have theexacttopological entropy if
we can compute the leading eigenvalue of the transition matrix T. This is reminis-
cent of the way free energy is computed from transfer matrices for 1-dimensional
lattice models with finite range interactions. Historically, it is this analogy with
statistical mechanics that led to introduction of evolution operator methods into
the theory of chaotic systems.
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15.2 Topological trace formula

There are two standard ways of computing eigenvalues of a matrix - by evaluating
the trace trTn =

∑

λn
α, or by evaluating the determinant det (1− zT). We start by

evaluating the trace of transition matrices. The main lesson will be that the trace
receives contributions only from itineraries that return to the initial partition, i.e.,
periodic orbits.

Consider anM-step memory transition matrix, like the 1-step memory exam-
ple (14.10). The trace of the transition matrix counts the number of partitions that
map into themselves. More generally, each closed walk through n concatenated
entries ofT contributes to trTn the product (15.2) of the matrix entries along the
walk. Each step in such a walk shifts the symbolic string by one symbol; the trace
ensures that the walk closes on a periodic stringc. Definetc to be thelocal trace,
the product of matrix elements along a cyclec, each term being multiplied by a
book keeping variablez. In chapters that follow, the ‘local trace’tc will take a con-
tinuum of values, so for the remainder of this chapter we stick to the ‘tc’ notation
rather than to the 0 orzn values specific to the counting problem.

The quantityzntr Tn is then the sum oftc for all cycles of periodn. The tc
= (product of matrix elements along cyclec is manifestly cyclically invariant,
t100 = t010 = t001, so a prime cyclep of periodnp contributesnp times, once for
each periodic point along its orbit. For the purposes of periodic orbit counting,
the local trace takes values

tp =

{

znp if p is an admissible cycle
0 otherwise, (15.6)

i.e., (settingz = 1) the local trace istp = 1 if the cycle is admissible, andtp = 0
otherwise.

Example 15.2 Traces for binary symbolic dynamics. For example, for the [8×8]
transition matrix Ts1s2s3,s0s1s2 version of (14.10), or any refined partition [2n×2n] transition
matrix, n arbitrarily large, the periodic point 100contributes t100 = z3T100,010T010,001T001,100

to z3tr T3. This product is manifestly cyclically invariant, t100 = t010 = t001, so a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its
orbit. exercise 11.7

For the binary labeled non–wandering set the first few traces are given by (con-
sult tables 15.1 and 15.2)

ztr T = t0 + t1,

z2tr T2 = t20 + t21 + 2t10,

z3tr T3 = t30 + t31 + 3t100+ 3t101,

z4tr T4 = t40 + t41 + 2t210+ 4t1000+ 4t1001+ 4t1011. (15.7)

In the binary case the trace picks up only two contributions on the diagonal, T0···0,0···0 +
T1···1,1···1, no matter how much memory we assume. We can even take infinite memory
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Table 15.1: Prime cycles for the binary symbolic dynamics up to length 9.The numbers
of prime cycles are given in table 15.3.

np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

Table 15.2: The total numbersNn of periodic points of periodn for binary symbolic dy-
namics. The numbers of contributing prime cycles illustrates the preponderance of long
prime cycles of periodn over the repeats of shorter cycles of periodsnp, wheren = rnp.
Further enumerations of binary prime cycles are given in tables 15.1 and 15.3. (L. Ron-
doni)

n Nn # of prime cycles of periodnp

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

CHAPTER 15. COUNTING 308

M → ∞, in which case the contributing partitions are shrunk to the fixed points, tr T =
T0,0 + T1,1.

If there are no restrictions on symbols, the symbolic dynamics is complete, and
all binary sequences are admissible (or allowable) itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in table 15.1.exercise 11.2

Hence trTn = Nn counts the number ofadmissible periodic pointsof period
n. The nth order trace (15.7) picks up contributions from all repeats of prime
cycles, with each cycle contributingnp periodic points, soNn, the total number of
periodic points of periodn is given by

znNn = zntr Tn =
∑

np|n
npt

n/np
p =

∑

p

np

∞
∑

r=1

δn,npr t
r
p . (15.8)

Herem|n means thatm is a divisor ofn. An example is the periodic orbit counting
in table 15.2.

In order to get rid of the awkward divisibility constraintn = npr in the above
sum, we introduce the generating function for numbers of periodic points

∞
∑

n=1

znNn = tr
zT

1− zT
. (15.9)

The right hand side is the geometric series sum ofNn = tr Tn. Substituting (15.8)
into the left hand side, and replacing the right hand side by the eigenvalue sum
tr Tn =

∑

λn
α, we obtain our first example of a trace formula, thetopological trace

formula

∑

α=0

zλα
1− zλα

=
∑

p

nptp

1− tp
. (15.10)

A trace formula relates the spectrum of eigenvalues of an operator - here the tran-
sition matrix - to the spectrum of periodic orbits of a dynamical system. It is a
statement of duality between the short-time, local information - in this case the
next admissible symbol in a symbol sequence - to long-time, global averages, in
this case the mean rate of growth of the number of cycles with increasing cycle
period.

Thezn sum in (15.9) is a discrete version of the Laplace transform (see sect. 18.1.2),
and the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (18.10) and (18.23).We shall now use this result to compute the
spectral determinant of the transition matrix.
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15.3 Determinant of a graph

Our next task is to determine the zeros of thespectral determinantof an [m×m]
transition matrix

det (1− zT) =
m−1
∏

α=0

(1− zλα) . (15.11)

We could now proceed to diagonalizeT on a computer, and get this over with. It
pays, however, to dissect det (1−zT) with some care; understanding this computa-
tion in detail will be the key to understanding the cycle expansion computations of
chapter 20 for arbitrary dynamical averages. ForT a finite matrix, (15.11) is just
the characteristic polynomial forT. However, we shall be able to compute this ob-
ject even when the dimension ofT and other such operators becomes infinite, and
for that reason we prefer to refer to (15.11) loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix;we will view the
determinant as a sum over all possible permutation cycles composed of the traces
tr Tk, in the spirit of the determinant–trace relation (1.16): exercise 4.1

det (1− zT) = exp(tr ln(1− zT)) = exp
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
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−
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zn

n
tr Tn
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


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

= 1− ztr T − z2

2

(

(tr T)2 − tr T2
)

− . . . (15.12)

This is sometimes called acumulantexpansion. Formally, the right hand is a
Taylor series inzaboutz= 0. If T is an [m×m] finite matrix, then the characteristic
polynomial is at most of orderm. In that case the coefficients ofzn must vanish
exactlyfor n > m.

We now proceed to relate the determinant in (15.12) to the corresponding
transition graph of chapter 14: toward this end, we start with the usual textbook
expression for a determinant as the sum of products of all permutations

detM =
∑

{π}
(−1)πM1,π1M2,π2 · · ·Mm,πm (15.13)

whereM = 1 − zT is a [m×m] matrix, {π} denotes the set of permutations ofm
symbols,πk is the permutationπ applied tok, and (−1)π = ±1 is the parity of
permutationπ. The right hand side of (15.13) yields a polynomial inT of orderm
in z: a contribution of ordern in z picks upm− n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)πTs1πs1 · · ·Tsnπsn (15.14)
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whereπ is the permutation of the subset ofn distinct symbolss1 · · · sn indexingT
matrix elements. As in (15.7), we refer to any combinationtc = Ts1skTs3s2 · · ·Ts2s1,
for a given itineraryc = s1s2 · · · sk, as thelocal traceassociated with a closed loop
c on the transition graph. Each term of the form (15.14) may be factored in terms
of local tracestc1tc2 · · · tck, i.e., loops on the transition graph. These loops are non-
intersecting, as each node may only be reached byone link, and they are indeed
loops, as if a node is reached by a link, it has to be the starting point of another
singlelink, as eachsj must appear exactlyonceas a row and column index.

So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the caseof loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appearin (15.14), i.e.,
only the diagonal elements ofT are picked up. We havek = m loops and an even
permutationπ so the sign is given by (−1)k, wherek is the number of loops. Now
take the case in which we havei single loops andj loops of lengthn = 2 j + i.
The parity of the permutation gives (−1) j and the first factor in (15.14) gives
(−1)n = (−1)2 j+i . So once again these terms combine to (−1)k, wherek = i + j is
the number of loops. Letf be the maximal number of non-intersecting loops. Weexercise 15.4

may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions π of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace tp carrying a minus sign:

det (1− zT) =
f

∑

k=0

∑′

π

(−1)ktp1 · · · tpk (15.15)

Any self-intersecting loop isshadowedby a product of two loops that share the
intersection point. As both the long looptab and its shadowtatb in the case at hand
carry the same weightzna+nb, the cancelation is exact, and the loop expansion
(15.15) is finite. In the case that the local traces count prime cycles (15.6),tp = 0
or zn, we refer to det (1− zT) as thetopological polynomial.

We refer to the set of all non-self-intersecting loops{tp1, tp2, · · · tpf } as thefun-
damental cycles(for an explicit example, see the loop expansion of example 15.6).
This is not a very good definition, as transition graphs are not unique –the most we
know is that for a given finite-grammar language, there existtransition graph(s)
with the minimal number of loops. Regardless of how cleverlya transition graph
is constructed, it is always true that for any finite transition graph the number of
fundamental cyclesf is finite. If the graph hasm nodes, no fundamental cycle is
of period longer thanm, as any longer cycle is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traces is most easily
grasped by working through a few examples. The complete binary dynamics tran-
sition graph of figure 14.4 is a little bit too simple, but let us start humbly and
consider it anyway.
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Example 15.3 Topological polynomial for complete binary dynamics: (continu-
ation of example 14.2) There are only two non-intersecting loops, yielding

det (1− zT) = 1− t0 − t1 − (t01 − t0t1) = 1− 2z (15.16)

0 1 = 1− 0 − 1 −
(

0 1 − 1 0

)

.

Due to the symmetry under 0↔ 1 interchange, this is a redundant graph (the 2-cycle
t01 is exactly shadowed by the 1-cycles). Another way to see is that itineraries are
labeled by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-links
and 2 out-links, they can be identified, and a more economical presentation is in terms
of the [1×1] adjacency matrix (14.12)

det (1− zA) = 1− t0 − t1 = 1− 2z (15.17)

A=B=C

= 1− 0 − 1 .

The leading (and only) zero of this characteristic polynomial yields the topological en-
tropy eh = 2. As there are Kn = 2n binary strings of length N, this comes as no
surprise.

Similarly, for the complete symbolic dynamics ofN symbols the transition graph
has one node andN links, yielding

det (1− zT) = 1− Nz, (15.18)

which gives the topological entropyh = ln N.

Example 15.4 Golden mean pruning: The “golden mean” pruning of example 14.5
has one grammar rule: the substring 11 is forbidden. The corresponding transitionexercise 15.5
graph non-intersecting loops are of length 1 and 2, so the topological polynomial is
given by

det (1− zT) = 1− t0 − t01 = 1− z− z2 (15.19)

0 1 = 1− 0 − 0 1 .

The leading root of this polynomial is the golden mean, so the entropy (15.5) is the
logarithm of the golden mean, h = ln 1+

√
5

2 .

fast track:

sect. 15.4, p. 313
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Figure 15.1: (a) The region labels in the nodes
of transition graph figure 14.3 can be omitted, as
the links alone keep track of the symbolic dynam-
ics. (b)-(j) The fundamental cycles (15.23) for the
transition graph (a), i.e., the set of its non-self-
intersecting loops. Each loop represents a local
tracetp, as in (14.5).

(a) (b)

010

1

(c)

1

011

001

(d)

0011

01

1

(e)

0

0111

(f)

00111

01

(g)

001101

1

(h)

001011

1

(i)

0010111

(j)

0011101

Example 15.5 Nontrivial pruning: The non-self-intersecting loops of the transition
graph of figure 14.6 (d) are indicated in figure 14.6 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1− zT) = 1− t0 − t0011− t0001− t00011

+t0t0011+ t0011t0001. (15.20)

With tp = znp, where np is the period of the p-cycle, the smallest root of

0 = 1− z− 2z4 + z8 (15.21)

yields the topological entropy h = − ln z, z= 0.658779. . ., h = 0.417367. . ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
with topological entropy h = ln 2 = 0.693. . . exercise 15.9

Example 15.6 Loop expansion of a transition graph. (continued from exam-
ple 14.7) Consider a state space covered by 7 neighborhoods (14.11), with the topo-
logical time evolution given by the transition graph of figure 14.3.
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The determinant det (1− zT) of the transition graph in figure 14.3 can be read
off the graph, and expanded as a polynomial in z, with coefficients given by products of
non-intersecting loops (traces of powers of T) of the transition graph figure 15.1:

det (1− zT) = 1− (t0 + t1)z− (t01 − t0t1) z2 − (t001+ t011− t01t0 − t01t1) z3

− (t0011+ t0111− t001t1 − t011t0 − t011t1 + t01t0t1) z4

− (t00111− t0111t0 − t0011t1 + t011t0t1) z5 (15.22)

− (t001011+ t001101− t0011t01 − t001t011) z6

− (t0010111+ t0011101− t001011t1 − t001101t1 − t00111t01 + t0011t01t1 + t001t011t1) z7 .

Twelve cycles up to period 7 are fundamental cycles:

0, 1, 01, 001, 011, 0011, 0111, 00111, 001011, 001101, 0010111, 0011101, (15.23)

out of the total of 41 prime cycles (listed in table 15.1) up to cycle period 7. The
topological polynomial tp → znp

1/ζtop(z) = 1− 2z− z7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological
entropy is only a bit smaller than the binary h = ln 2. Not exactly obvious from the
partition (14.11).

15.4 Topological zeta function

What happens if there is no finite-memory transition matrix,if the transition graph
is infinite? If we are never sure that looking further into thefuture will reveal no
further forbidden blocks? There is still a way to define the determinant, and this
idea is central to the whole treatise: the determinant is then defined by itscumulant
expansion (15.12) exercise 4.1

det (1− zT) = 1−
∞
∑

n=1

ĉnzn . (15.24)

Example 15.7 Complete binary det (1− zT) expansion. (continuation of exam-
ple 14.6) consider the loop expansion of the binary 1-step memory transition graph
(14.10)

01

10

1100 = 1− 0 − 1 −
(

0 1 − 1 0

)

= 1− t0 − t1 − [(t01− t1t0)] − [(t001− t01t0) + (t011− t01t1)]

−[(t0001− t0t001) + (t0111− t011t1)

+(t0011− t001t1 − t0t011+ t0t01t1)]

= 1−
∑

f

t f −
∑

n

ĉn = 1− 2z. (15.25)

count - 10apr2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 15. COUNTING 314

For finite dimensional matrices the expansion is a finite polynomial, and (15.24)
is an identity; however, for infinite dimensional operatorsthe cumulant expansion
coefficientsĉn definethe determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary transi-
tion matrix. In order to obtain an expression for the spectral determinant (15.11)
in terms of cycles, substitute (15.8) into (15.24) and sum over the repeats of prime
cycles using ln(1− x) = −∑

r xr/r ,

det (1− zT) = exp

















−
∑

p

∞
∑

r=1

trp
r

















= exp

















∑

p

ln(1− tp)

















∏

α

(1− zλα) =
∏

p

(1− tp) , (15.26)

where for the topological entropy the weight assigned to a prime cyclep of period
np is tp = znp if the cycle is admissible, ortp = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazurzeta function, conventionally denoted
by

1/ζtop(z) =
∏

p

(1− znp) = 1−
∑

n=1

ĉnzn . (15.27)

Counting cycles amounts to giving each admissible prime cycle p weighttp = znp

and expanding the Euler product (15.27) as a power series inz. The number of
prime cyclesp is infinite, but if T is an [m×m] finite matrix, then the number of
rootsλα is at mostm, the characteristic polynomial is at most of orderm, and the
coefficients ofzn vanish forn > m. As the precise expression for the coefficientsĉn

in terms of local tracestp is more general than the current application to counting,
we postpone its derivation to chapter 20.

The topological entropyh can now be determined from the leading zeroz =
e−h of the topological zeta function. For a finite [m×m] transition matrix, the
number of terms in the characteristic equation (15.15) is finite, and we refer to
this expansion as thetopological polynomialof order≤ m. The utility of defining
the determinant by its cumulant expansion is that it works even when the partition
is infinite,m→ ∞; an example is given in sect. 15.5, and many more later on.

fast track:

sect. 15.5, p. 315

15.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (18.23) to the
problem of deriving the topological zeta functions for flows. The time-weighted
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density of prime cycles of periodt is

Γ(t) =
∑

p

∑

r=1

Tp δ(t − rTp) . (15.28)

The Laplace transform smooths the sum over Dirac delta spikes (see (18.22))
and yields thetopological trace formula

∑

p

∑

r=1

Tp

∫ ∞

0+
dt e−st δ(t − rTp) =

∑

p

Tp

∞
∑

r=1

e−sTpr (15.29)

and thetopological zeta functionfor flows:

1/ζtop(s) =
∏

p

(

1− e−sTp
)

, (15.30)

related to the trace formula by

∑

p

Tp

∞
∑

r=1

e−sTpr = − ∂
∂s

ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta function
(15.27) for maps; its leading zeros= −h yields the topological entropy for a flow.

15.5 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanović)

To understand the need for topological zeta function (15.24), we turn a
dynamical system with (as far as we know - there is no proof) aninfinite partition,
or an infinity of ever-longer pruning rules. Consider the 1-dimensional quadratic
map (11.3)

f (x) = Ax(1− x) , A = 3.8 .

Numerically the kneading sequence (the itinerary of the critical point x = 1/2
(11.13)) is exercise 15.20

K = 1011011110110111101011110111110. . .
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Figure 15.2: The logarithm ln|z(n)
0 − z0| of the dif-

ference between the leading zero of then-th polyno-
mial approximation to topological zeta function and
our best estimate (15.33), as a function of order of the
polynomialn (the topological zeta function evaluated
for the closest value ofA to A = 3.8 for which the
quadratic map has a stable cycle of periodn). (from
K.T. Hansen [12.22])

Figure 15.3: The 90 zeroes of the topological zeta
function for the quadratic map forA = 3.8 approxi-
mated by the nearest topological zeta function with a
stable cycle of length 90. (from K.T. Hansen [12.22])

where the symbolic dynamics is defined by the partition of figure 11.12. How this
kneading sequence is converted into a series of pruning rules is a dark art.For the
moment it suffices to state the result, to give you a feeling for what a “typical”
infinite partition topological zeta function looks like. For example, approximating
the dynamics by a transition graph corresponding to a repeller of the period 29
attractive cycle close to theA = 3.8 strange attractor yields a transition graph with
29 nodes and the characteristic polynomial

1/ζ(29)
top = 1− z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11− z12− z13+ z14− z15+ z16− z17 − z18+ z19+ z20

−z21+ z22− z23+ z24+ z25− z26+ z27 − z28 . (15.31)

The smallest real root of this approximate topological zetafunction is

z= 0.62616120. . . (15.32)

Constructing finite transition graphs of increasing lengthcorresponding toA →
3.8 we find polynomials with better and better estimates for thetopological en-
tropy. For the closest stable period 90 orbit we obtain our best estimate of the
topological entropy of the repeller:

h = − ln 0.62616130424685. . . = 0.46814726655867. . . . (15.33)

Figure 15.2 illustrates the convergence of the truncation approximations to the
topological zeta function as a plot of the logarithm of the difference between the
zero of a polynomial and our best estimate (15.33), plotted as a function of the
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period of the stable periodic orbit. The error of the estimate (15.32) is expected
to be of orderz29 ≈ e−14 because going from period 28 to a longer truncation
typically yields combinations of loops with 29 and more nodes giving terms±z29

and of higher order in the polynomial. Hence the convergenceis exponential,
with an exponent of−0.47 = −h, the topological entropy itself. In figure 15.3
we plot the zeroes of the polynomial approximation to the topological zeta func-
tion obtained by accounting for all forbidden strings of length 90 or less. The
leading zero giving the topological entropy is the point closest to the origin. Most
of the other zeroes are close to the unit circle; we conclude that for infinite state
space partitions the topological zeta function has a unit circle as the radius of
convergence. The convergence is controlled by the ratio of the leading to the
next-to-leading eigenvalues, which is in this case indeedλ1/λ0 = 1/eh = e−h.

15.6 Shadowing

The topological zeta function is a pretty function, but the infinite product (15.26)
should make you pause. For finite transition matrices the left hand side is a deter-
minant of a finite matrix, therefore a finite polynomial; so why is the right hand
side an infinite product over the infinitely many prime periodic orbits of all peri-
ods?

The way in which this infinite product rearranges itself intoa finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at the
full cycle expansion (20.7) of chapter 20; all cycles beyondthe fundamentalt0
andt1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···smtsm+1···sn .

For subshifts of finite type such shadowing combinations cancelexactly, if we are
counting cycles as we do in (15.16) and (15.25), or if the dynamics is piecewise
linear, as in exercise 19.3. As we argue in sect. 1.5.4, for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shadowing combina-
tionsalmostcancel, and the spectral determinant is dominated by the fundamental
cycles from (15.15), with longer cycles contributing only small “curvature” cor-
rections.

These exact or nearly exact cancelations depend on the flow being smooth and
the symbolic dynamics being a subshift of finite type. If the dynamics requires
an infinite state space partition, with pruning rules for blocks of increasing length,
most of the shadowing combinations still cancel, but the fewcorresponding to new
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant, as depicted in figure 15.3.

One striking aspect of the pruned cycle expansion (15.31) compared to the
trace formulas such as (15.9) is that coefficients are not growing exponentially -
indeed they all remain of order 1, so instead having a radius of convergencee−h, in
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the example at hand the topological zeta function has the unit circle as the radius
of convergence. In other words, exponentiating the spectral problem from a trace
formula to a spectral determinant as in (15.24) increases the analyticity domain:
the pole in the trace (15.10) atz= e−h is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

This sensitive dependence of spectral determinants on whether or not the sym-
bolic dynamics is a subshift of finite type is bad news. If the system is generic and
not structurally stable (see sect. 12.2), a smooth parameter variation is in no sense
a smooth variation of topological dynamics - infinities of periodic orbits are cre-
ated or destroyed, and transition graphs go from being finiteto infinite and back.
That will imply that the global averages that we intend to compute are generi-
cally nowhere differentiable functions of the system parameters, and averaging
over families of dynamical systems can be a highly nontrivial enterprise; a simple
illustration is the parameter dependence of the diffusion constant computed in a
remark in chapter 25.

You might well ask: What is wrong with computing the entropy from (15.1)?
Does all this theory buy us anything? An answer: If we countKn level by level, we
ignore the self-similarity of the pruned tree - examine for example figure 14.5, or
the cycle expansion of (15.35) - and the finite estimates ofhn = ln Kn/n converge
nonuniformly toh, and on top of that with a slow rate of convergence,|h− hn| ≈
O(1/n) as in (15.5). The determinant (15.11) is much smarter, as byconstruction
it encodes the self-similarity of the dynamics, and yields the asymptotic value of
h with no need for any finiten extrapolations.

fast track:

sect. 16, p. 329

15.7 Counting cycles

Chaos is merely order waiting to be deciphered
— José Saramago,The Double

In what follows, we shall occasionally need to compute all cycles up to
topological periodn, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the street, and probably best
skipped on the first reading.
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15.7.1 Counting periodic points

The number of periodic points of periodn is denotedNn. It can be computed from
(15.24) and (15.9) as a logarithmic derivative of the topological zeta function

∑

n=1

Nnzn = tr

(

−z
d
dz

ln(1− zT)

)

= −z
d
dz

ln det (1− zT)

=
−z d

dz(1/ζtop)

1/ζtop
. (15.34)

Observe that the trace formula (15.10) diverges atz→ e−h, because the denomi-
nator has a simple zero there.

Example 15.8 Complete N-ary dynamics: To check formula (15.34) for the finite-
grammar situation, consider the complete N-ary dynamics (14.7) for which the number
of periodic points of period n is simply tr Tn

c = Nn. Substituting

∞
∑

n=1

zn

n
tr Tn

c =

∞
∑

n=1

(zN)n

n
= − ln(1− zN) ,

into (15.24) we verify (15.18). The logarithmic derivative formula (15.34) in this case
does not buy us much either, it simply recovers

∑

n=1

Nnzn =
Nz

1− Nz
.

Example 15.9 Nontrivial pruned dynamics: Consider the pruning of figure 14.6 (e).
Substituting (15.34) we obtain

∑

n=1

Nnzn =
z+ 8z4 − 8z8

1− z− 2z4 + z8
. (15.35)

The topological zeta function is not merely a tool for extracting the asymptotic growth
of Nn; it actually yields the exact numbers of periodic points. In case at hand it yields
a nontrivial recursive formula N1 = N2 = N3 = 1, Nn = 2n + 1 for n = 4, 5, 6, 7, 8, and
Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

15.7.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number ofprimecyclesMn for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findingMn is classical in combinatorics
(counting necklaces made out ofn beads ofN different kinds) and is easily solved.
There areNn possible distinct strings of lengthn composed ofN letters. These
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Table 15.3: Number of prime cycles for various alphabets and grammars upto period
10. The first column gives the cycle period, the second gives the formula (15.37) for the
number of prime cycles for completeN-symbol dynamics, and columns three through five
give the numbers of prime cycles forN = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

Nn strings include allMd primed-cycles whose periodd equals or dividesn. A
prime cycle is a non-repeating symbol string: for example,p = 011 = 101 =
110 = . . .011011. . . is prime, but0101 = 010101. . . = 01 is not. A primed-
cycle contributesd strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of periodn
is therefore related to the number of prime cycles by

Nn =
∑

d|n
dMd , (15.36)

whereNn equals trTn. The number of prime cycles can be computed recursively

Mn =
1
n

















Nn −
d<n
∑

d|n
dMd

















,

or by theMöbius inversion formula exercise 15.10

Mn = n−1
∑

d|n
µ

(n
d

)

Nd . (15.37)

where the Möbius functionµ(1) = 1, µ(n) = 0 if n has a squared factor, and
µ(p1p2 . . . pk) = (−1)k if all prime factors are different.

We list the number of prime cycles up to period 10 for 2-, 3- and4-letter
complete symbolic dynamics in table 15.3, obtained by Möbius inversion (15.37).

exercise 15.11

Example 15.10 Counting N-disk periodic points: A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
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points that are mapped back onto themselves after n iterations is given by Nn = tr Tn.
The pruning of self-bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the
number of the N-disk periodic points is

Nn = tr Tn
N−disk = (N − 1)n + (−1)n(N − 1) . (15.38)

Here Tc is the complete symbolic dynamics transition matrix (14.7). For the N-disk
pruned case (15.38), Möbius inversion (15.37) yields

MN−disk
n =

1
n

∑

d|n
µ

(n
d

)

(N − 1)d +
N − 1

n

∑

d|n
µ

(n
d

)

(−1)d

= M(N−1)
n for n > 2 . (15.39)

There are no fixed points, so MN−disk
1 = 0. The number of periodic points of period 2

is N2 − N, hence there are MN−disk
2 = N(N − 1)/2 prime cycles of period 2; for periods

n > 2, the number of prime cycles is the same as for the complete (N−1)-ary dynamics
of table 15.3.

Example 15.11 Pruning individual cycles: Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (15.39). To obtain the topological zeta function, just divide out the binary 1-
and 2-cycles (1 − zt0)(1 − zt1)(1 − z2t01) and multiply with the correct 3-disk 2-cycles
(1− z2t12)(1− z2t13)(1− z2t23): exercise 15.14

exercise 15.15

1/ζ3−disk = (1− 2z)
(1− z2)3

(1− z)2(1− z2)

= (1− 2z)(1+ z)2 = 1− 3z2 − 2z3 . (15.40)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (21.25).
As we shall see in chapter 21, symmetries lead to factorizations of topological polyno-
mials and topological zeta functions.

Example 15.12 Alphabet {a, cbk; b}: (continuation of exercise 15.16) In the cycle
counting case, the dynamics in terms of a→ z, cbk → z+ z2 + z3 + · · · = z/(1− z) is a
complete binary dynamics with the explicit fixed point factor (1− tb) = (1− z): exercise 15.19

1/ζtop = (1− z)
(

1− z− z
1− z

)

= 1− 3z+ z2 .

Résum é

The main result of this chapter is the cycle expansion (15.27) of the topological
zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1−
∑

k=1

ĉkz
k .
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Table 15.4: List of 3-disk prime cycles up to period 10. Heren is the cycle period,Mn is
the number of prime cycles,Nn is the number of periodic points, andSn the number of
distinct prime cycles underD3 symmetry (see chapter 21 for further details). Column 3
also indicates the splitting ofNn into contributions from orbits of periods that dividen.
The prefactors in the fifth column indicate the degeneracymp of the cycle; for example,
3·12 stands for the three prime cycles12, 13 and23 related by 2π/3 rotations. Among
symmetry-related cycles, a representative ˆp which is lexically lowest is listed. The cycles
of period 9 grouped with parentheses are related by time reversal symmetry, but not by
anyD3 transformation.

n Mn Nn Sn mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213+ 3·121323
7 18 126=18·7 3 6·1212123+ 6·1212313+ 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213+ 3·12121313+ 6·12121323

+ 6·12123123+ 6·12123213+ 3·12132123
9 56 510=2·3+56·9 10 6·121212123+ 6·(121212313+ 121212323)

+ 6·(121213123+ 121213213)+ 6·121231323
+ 6·(121231213+ 121232123)+ 2·121232313
+ 6·121321323

10 99 1022 18

Table 15.5: The 4-disk prime cycles up to period 8. The symbols is the sameas shown
in table 15.4. Orbits related by time reversal symmetry (butno C4v symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have been omitted.

n Mn Nn Sn mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12+ 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213+ 4·1214+ 2·1234+ 4·1243
5 48 240=48·5 6 8·(12123+ 12124)+ 8·12313

+ 8·(12134+ 12143)+ 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213+ 8·121214+ 8·121234

+ 8·121243+ 8·121313+ 8·121314
+ 4·121323+ 8·(121324+ 121423)
+ 4·121343+ 8·121424+ 4·121434
+ 8·123124+ 8·123134+ 4·123143
+ 4·124213+ 8·124243

7 312 2184 39
8 810 6564 108
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For subshifts of finite type, the transition matrix is finite,and the topological zeta
function is a finite polynomial evaluated by the loop expansion (15.15) of det (1−
zT). For infinite grammars the topological zeta function is defined by its cycle
expansion. The topological entropyh is given by the leading zeroz = e−h. This
expression for the entropy isexact; in contrast to the initial definition (15.1), no
n→ ∞ extrapolations of lnKn/n are required.

What have we accomplished? We have related the number of topologically
distinct paths from one state space region to another regionto the leading eigen-
value of the transition matrixT. The spectrum ofT is given by topological zeta
function, a certain sum over traces trTn, and in this way the periodic orbit theory
has entered the arena through the trace formula (15.10), already at the level of the
topological dynamics.

The main lesson of learning how to count well, a lesson that will be constantly
reaffirmed, is that while trace formulas are a conceptually essential step in deriving
and understanding periodic orbit theory, the spectral determinant is the right object
to use in actual computations. Instead of summing all of the exponentially many
periodic points required by trace formulas at each level of truncation, spectral det-
erminants incorporate only the small incremental corrections to what is already
known - and that makes them a more powerful tool for computations.

Contrary to claims one all too often encounters in the literature, “exponential
proliferation of trajectories” is notthe problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules,or the “algorithmic
complexity,” as illustrated by sect. 15.5, and figure 15.3 inparticular. Nice, finite
grammar leads to nice, discrete spectrum; infinite grammar leads to analyticity
walls in the complex spectral plane.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to theproblem of computation
of dynamical averages for chaotic flows. The key result was the dynamical zeta
function to be derived in chapter 18, a weighted generalization of the topological
zeta function.

Commentary

Remark 15.1 Artin-Mazur zeta functions. Motivated by A. Weil’s zeta function for
the Frobenius map [15.8], Artin and Mazur [19.11] introduced the zeta function (15.27)
that counts periodic points for diffeomorphisms (see also ref. [15.9] for their evaluation
for maps of the interval). Smale [15.10] conjectured rationality of the zeta functions for
Axiom A diffeomorphisms, later proved by Guckenheimer [15.11] and Manning [15.12].
See remark 19.4 on page 397 for more zeta function history.

Remark 15.2 “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead to an invariant characterization of the
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dynamics, as the choice of symbolic dynamics is largely arbitrary: the same caveat ap-
plies to other entropies.In order to obtain invariant characterizations we will have to work
harder. Mathematicians like to define the (impossible to evaluate) supremum over all pos-
sible partitions. The key point that eliminates the need forsuch searches is the existence
of generators, i.e., partitions that under the dynamics are able to probe the whole state
space on arbitrarily small scales. A generator is a finite partitionM = {M1 . . .MN} with
the following property: consider the partition built upon all possible intersections of sets
f n(Mi), where f is dynamical evolution andn takes all possible integer values (positive
as well as negative), then the closure of such a partition coincides with the ‘algebra of all
measurable sets.’ For a thorough (and readable) discussionof generators and how they
allow a computation of the Kolmogorov entropy, see ref. [15.1].

Remark 15.3 Perron-Frobenius matrices. For a proof of the Perron theorem on the
leading eigenvalue see ref. [1.26]. Appendix A4.1 of ref. [15.2] offers a clear discussion
of the spectrum of the transition matrix.

Remark 15.4 Determinant of a graph. Many textbooks offer derivations of the
loop expansions of characteristic polynomials for transition matrices and their transition
graphs, see for example refs. [15.3, 15.4, 15.5].

Remark 15.5 Ordering periodic orbit expansions. In sect. 20.6 we will introduce
an alternative way of hierarchically organizing cumulant expansions, in which the order
is dictated by stability rather than cycle period: such a procedure may be better suited to
perform computations when the symbolic dynamics is not wellunderstood.

Remark 15.6 T is not trace class. Note to the erudite reader: the transition matrix
T (in the infinite partition limit (15.24)) isnot trace class. Still the trace is well defined in
then→ ∞ limit.

Remark 15.7 Counting prime cycles. Duval has an efficient algorithm for generating
Lyndon words (non-periodic necklaces, i.e., prime cycle itineraries).

Exercises

15.1. A transition matrix for 3-disk pinball.

a) Draw the transition graph corresponding to the 3-
disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding

to the graph. Show that iteration of the transi-
tion matrix results in two coupled linear differ-
ence equations, - one for the diagonal and one for
the off diagonal elements. (Hint: relate trTn to
tr Tn−1 + . . ..)
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b) Solve the above difference equation and obtain the
number of periodic orbits of lengthn. Compare
your result with table 15.4.

c) Find the eigenvalues of the transition matrixT for
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamics{0, 1}.

15.2. 3-disk prime cycle counting. A prime cycle p
of lengthnp is a single traversal of the orbit; its label is
a non-repeating symbol string ofnp symbols. For ex-
ample,12 is prime, but2121 is not, since it is21= 12
repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9,· · · prime
cycles of length 2, 3, 4, 5, 6,· · ·.

15.3. Sum of Ai j is like a trace. Let A be a matrix with
eigenvaluesλk. Show that

Γn :=
∑

i, j

[An] i j =
∑

k

ckλ
n
k .

(a) Under what conditions do ln|tr An| and ln|Γn| have
the same asymptotic behavior asn→ ∞, i.e., their
ratio converges to one?

(b) Do eigenvaluesλk need to be distinct,λk , λl for
k , l? How would a degeneracyλk = λl affect
your argument for (a)?

15.4. Loop expansions. Prove by induction the sign rule in
the determinant expansion (15.15):

det (1− zT) =
∑

k≥0

∑

p1+···+pk

(−1)ktp1tp2 · · · tpk .

15.5. Transition matrix and cycle counting. Suppose you
are given the transition graph




0
 1
a


b


c

This diagram can be encoded by a matrixT, where the
entryTi j means that there is a link connecting nodei to
node j. The value of the entry is the weight of the link.

a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[

a c
b 0

]

.

b) Enumerate all the walks of length three on the
transition graph. Now computeT3 and look at the
entries. Is there any relation between the terms in
T3 and all the walks?

c) Show thatTn
i j is the number of walks from point

i to point j in n steps. (Hint: one might use the
method of induction.)

d) Estimate the numberKn of walks of lengthn for
this simple transition graph.

e) The topological entropyh measures the rate of ex-
ponential growth of the total number of walksKn

as a function ofn. What is the topological entropy
for this transition graph?

15.6. Alphabet {0,1}, prune 00 . The transition graph ex-
ample 14.9 implements this pruning rule which implies
that “0” must always be bracketed by “1”s; in terms of a
new symbol 2 := 10, the dynamics becomes unrestricted
symbolic dynamics with with binary alphabet{1,2}. The
cycle expansion (15.15) becomes

1/ζ = (1− t1)(1− t2)(1− t12)(1− t112) . . .

= 1− t1 − t2 − (t12 − t1t2) (15.41)

−(t112− t12t1) − (t122− t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1− t1 − t10 − (t110− t1t10) (15.42)

−(t1110− t110t1) − (t11010− t110t10) . . .

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-
modal maps this symbolic dynamics is realized by the
tent map of exercise 11.6.

15.7. “Golden mean” pruned map. (continuation of exer-
cise 11.6) Show that the total number of periodic orbits
of lengthn for the “golden mean” tent map is

(1+
√

5)n + (1−
√

5)n

2n
.

Continued in exercise 19.2. See also exercise 15.8.

15.8. A unimodal map with golden mean pruning. Con-
sider the unimodal map

for which the critical point maps into the right hand fixed
point in three iterations,S+ = 1001. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood of0 fixed point, and
00 pruned from the recurrent set. (K.T. Hansen)
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15.9. Glitches in shadowing. (medium difficulty) Note
that the combinationt00011minus the “shadow”t0t0011 in
(15.20) cancels exactly, and does not contribute to the
topological zeta function (15.21). Are you able to con-
struct a smaller transition graph than figure 14.6 (e)?

15.10. Whence Möbius function? To understand the origin
of the Möbius function (15.37), consider the function

f (n) =
∑

d|n
g(d) (15.43)

whered|n stands for sum over all divisorsd of n. Invert
recursively this infinite tower of equations and derive the
Möbius inversion formula

g(n) =
∑

d|n
µ(n/d) f (d) . (15.44)

15.11. Counting prime binary cycles. In order to get com-
fortable with Möbius inversion reproduce the results of
the second column of table 15.3.

Write a program that determines the number of prime
cycles of lengthn. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

15.12. Counting subsets of cycles. The techniques de-
veloped above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynami-
cal system with a complete binary tree, a repeller map
(11.4) with two straight branches, which we label 0 and
1. Every cycle weight for such map factorizes, with a
factor t0 for each 0, and factort1 for each 1 in its sym-
bol string. Prove that the transition matrix traces (15.7)
collapse totr(Tk) = (t0 + t1)k, and 1/ζ is simply

∏

p

(

1− tp

)

= 1− t0 − t1 (15.45)

Substituting (15.45) into the identity

∏

p

(

1+ tp

)

=
∏

p

1− tp
2

1− tp

we obtain

∏

p

(

1+ tp

)

=
1− t20 − t21
1− t0 − t1

= 1+ t0 + t1 +
2t0t1

1− t0 − t1
= 1+ t0 + t1

+

∞
∑

n=2

n−1
∑

k=1

2

(

n− 2
k− 1

)

tk0tn−k
1 .

Hence forn ≥ 2 the number of terms in the cumulant
expansion withk 0’s andn − k 1’s in their symbol se-
quences is 2

(

n−2
k−1

)

.

In order to count the number of prime cycles in each
such subset we denote withMn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n− 1 for n ≥ 2) the number
of prime n-cycles whose labels containk zeros. Show
that

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n−

nMn,k =
∑

m
∣

∣

∣

n
k

µ(m)

(

n/m
k/m

)

where the sum is over allm which divide bothn andk.
(continued as exercise 20.7)

15.13. Logarithmic periodicity of ln Nn. (medium diffi-
culty) Plot (lnNn, nh) for a system with a nontrivial fi-
nite transition graph. Do you see any periodicity? If yes,
why?

15.14. Symmetric 4-disk pinball topological zeta function.
Show that the 4-disk pinball topological zeta function
(the pruning affects only the fixed points and the 2-
cycles) is given by

1/ζ4−disk
top = (1− 3z)

(1− z2)6

(1− z)3(1− z2)3

= (1− 3z)(1+ z)3

= 1− 6z2 − 8z3 − 3z4 . (15.46)

15.15. Symmetric N-disk pinball topological zeta function.
Show that for anN-disk pinball, the topological zeta
function is given by

1/ζN−disk
top = (1− (N − 1)z) ×

(1− z2)N(N−1)/2

(1− z)N−1(1− z2)(N−1)(N−2)/2

= (1− (N − 1)z) (1+ z)N−1 .(15.47)

The topological zeta function has a rootz−1 = N − 1,
as we already know it should from (15.38) or (15.18).
We shall see in sect. 21.4 that the other roots reflect the
symmetry factorizations of zeta functions.

15.16. Alphabet {a, b, c}, prune ab . Write down the
topological zeta function for this pruning rule.

15.17. Alphabet {0,1}, prune n repeats of “0” 000. . .00 .
This is equivalent to then symbol alphabet{1, 2, . . .,
n} unrestricted symbolic dynamics, with symbols corre-
sponding to the possible 10. . .00 block lengths: 2:=10,
3:=100,. . ., n:=100. . .00. Show that the cycle expansion
(15.15) becomes

1/ζ = 1− t1 − t2 . . . − tn − (t12− t1t2) . . .

−(t1n − t1tn) . . . .
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15.18. Alphabet {0,1}, prune 1000 , 00100, 01100.
Show that the topological zeta function is given by

1/ζ = (1− t0)(1− t1 − t2 − t23− t113) (15.48)

with the unrestricted 4-letter alphabet{1, 2, 23, 113}.
Here 2 and 3 refer to 10 and 100 respectively, as in ex-
ercise 15.17.

15.19. Alphabet {0,1}, prune 1000 , 00100, 01100,
10011. (This grammar arises from Hénon map

pruning, see remark 12.3.) The first three pruning rules
were incorporated in the preceeding exercise.

(a) Show that the last pruning rule10011 leads (in a
way similar to exercise 15.18) to the alphabet{21k, 23,
21k113; 1, 0}, and the cycle expansion

1/ζ = (1− t0)(1− t1− t2− t23+ t1t23− t2113) .(15.49)

Note that this says that 1, 23, 2, 2113 are the fundamen-
tal cycles; not all cycles up to length 7 are needed, only
2113.

(b) Show that the topological zeta function is

1/ζtop = (1− z)(1− z− z2 − z5 + z6 − z7) (15.50)

and that it yields the entropyh = 0.522737642. . ..

15.20. Alphabet {0,1}, prune only the fixed point 0 . This
is equivalent to theinfinite alphabet{1, 2, 3, 4, . . .}
unrestricted symbolic dynamics. The prime cycles are
labeled by all non-repeating sequences of integers, or-
dered lexically: tn, n > 0; tmn, tmmn, . . . , n > m > 0;
tmnr, r > n > m > 0, . . . (see sect. 24.3). Now the num-
ber of fundamental cycles is infinite as well:

1/ζ = 1−
∑

n>0

tn −
∑

n>m>0

(tmn− tntm)

−
∑

n>m>0

(tmmn− tmtmn)

−
∑

n>m>0

(tmnn− tmntn) (15.51)

−
∑

r>n>m>0

(tmnr + tmrn− tmntr

− tmrtn − tmtnr + tmtntr ) · · ·

. As shown in table 24.1, this grammar plays an im-
portant role in description of fixed points of marginal
stability.
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