
Chapter 6

Go straight

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

A Hamiltonian system is said to beintegrable if one can find a change of
coordinates to an action-angle coordinate frame where the phase-space
dynamics is described by motion on circles, one circle for each degree

of freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame where
the stable/unstable manifolds are straight lines, and the flow is along hyperbolas.
Achieving this globally for anything but a handful of contrived examples is a pipe
dream. Nevertheless, as we shall now show, we can make some headway on
straightening out the flow locally.

There is much more to this story than what we touch upon here: other tricks
and methods to construct regularizations, what kind of singularities could be reg-
ularized, etc.. Even though such nonlinear coordinate transformations are very
important, especially in celestial mechanics, we shall notuse them much in what
follows, so you can safely skip this chapter on the first reading. Except, per-
haps, you might want to convince yourself that cycle stabilities are indeed metric
invariants of flows (sect. 6.6), and you might like transformations that turn a Ke-
plerian ellipse into a harmonic oscillator (example 6.2) and regularize the 2-body
Coulomb collisions (sect. 6.3) in classical helium.
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6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not al-
ways expressed in the most convenient way. In order to simplify a given problem,
one may stretch, rotate, bend and mix the coordinates, but indoing so, the vector
field will also change. The vector field lives in a (hyper)plane tangent to state
space and changing the coordinates of state space affects the coordinates of the
tangent space as well, in a way that we will now describe.

Denote byh theconjugation functionwhich maps the coordinates of the initial
state spaceM into the reparameterized state spaceM′ = h(M), with a point
x ∈ M related to a pointy ∈ M′ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .

The change of coordinates must be one-to-one and span bothM andM′, so given
any pointy we can go back tox = h−1(y). For smooth flows the reparameterized
dynamics should support the same number of derivatives as the initial one. Ifh is
a (piecewise) analytic function, we refer toh as asmooth conjugacy.

The evolution rulegt(y0) onM′ can be computed from the evolution rule
f t(x0) onM by taking the initial pointy0 ∈ M′, going back toM, evolving, and
then mapping the final pointx(t) back toM′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (6.1)

Here ‘◦’ stands for functional compositionh ◦ f (x) = h( f (x)), so (6.1) is a
shorthand fory(t) = h( f t(h−1(y0))).

The vector field ˙x = v(x) is locally tangent to the flowf t; it is related to the
flow by differentiation (2.5) along the trajectory. The vector field ˙y = w(y), y ∈ M′
locally tangent togt, follows by the chain rule: exercise 6.2

w(y) =
dgt

dt
(y)
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= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (6.2)

In order to rewrite the right-hand side as a function ofy, note that the∂y differen-
tiation ofh(h−1(y)) = y implies
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so the equations of motion in the transformed coordinates, with the indices rein-
stated, are

ẏi = wi(y) =

[

∂h−1

∂y
(y)

]−1

i j
v j(h

−1(y)) . (6.4)

Imagine the state space as a rubber sheet with the flow lines drawn on it.
A coordinate changeh corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersectionsof the distorted rubber
sheet. Trajectories that are closed loops inM will remain closed loops in the
new manifoldM′, but their shapes will change. Globally,h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears the
tangent field by the Jacobian matrix∂ jhi , yielding the simple transformation law
(6.2) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also
be reparameterized,s = s(t), with the concomitant modification of (6.4). An
example is the 2-body collision regularization of the helium Hamiltonian (7.8), to
be undertaken in sect. 6.3 below.

fast track:

sect. 6.6, p. 121

6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conjugacies is
to use it to pick out the simplest possible representative ofan equivalence class.
These are just words, as we have no clue how to pick such ‘canonical’ represen-
tations, but for smooth flows we can always do it locally and for sufficiently short
time, by appealing to therectification theorem, a fundamental theorem of ordi-
nary differential equations. The theorem tells us that a solution exists (at least for
a short time interval) and what it looks like. The rectification theorem holds in the
neighborhood of points of the vector fieldv(x) that are not singular, that is, ev-
erywhere except for the equilibrium points (2.8), and points at whichv is infinite.
According to the theorem, in a small neighborhood of a non-singular point there
exists a change of coordinatesy = h(x) such that ˙x = v(x) in the new,canonical
coordinates takes form

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏd = 1 , (6.5)

with unit velocity flow alongyd, and no flow along any of the remaining directions.
This is an example of a one-parameter Lie group of transformations, with finite
time τ action exercise 9.8

exercise 6.1

conjug - 17feb2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 6. GO STRAIGHT 114

y′i = yi , i = 1, 2, . . . , d − 1

y′d = yd + τ .

Example 6.1 Harmonic oscillator, rectified: As a simple example of global
rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (6.6)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates y = (r, θ):

h−1 :

{

q = h−1
1 (r, θ) = r cosθ

p = h−1
2 (r, θ) = r sinθ

. (6.7)

The Jacobian matrix, ∂hi/∂x j, of the transformation is

h′ =
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(6.8)

resulting in (6.4) of rectified form exercise 5.1
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. (6.9)

In the new coordinates the radial coordinate r is constant, and the angular coordinate
θ wraps around a cylinder with constant angular velocity. There is a subtle point in this
change of coordinates: the domain of the map h−1 is not the plane R2, but rather the
plane minus the origin. We mapped a plane into a cylinder, and coordinate transforma-
tions should not change the topology of the space in which the dynamics takes place;
the coordinate transformation is not defined on the equilibrium point x = (0, 0), or r = 0.

6.3 Collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and other
curious but rather idealized dynamical systems. If you havebecome impatient and
started wondering what good are the methods learned so far insolving real life
physical problems, good news are here. We will apply here concepts of nonlinear
dynamics to nothing less than the helium, a dreaded three-body Coulomb problem.

Can we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces? It
turns out, we can, but we have to do it with care. The full problem is indeed
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Figure 6.1: Coordinates for the helium three body
problem in the plane.
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on opposite sides of the nucleus.
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not accessible in all its detail, but we are able to analyze a somewhat simpler
subsystem–collinear helium. This system plays an important role in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons of mass me and charge
−emoving about a positively charged nucleus of massmhe and charge+2e.

The helium electron-nucleus mass ratiomhe/me = 1836 is so large that we
may work in the infinite nucleus mass approximationmhe= ∞, fixing the nucleus
at the origin. Finite nucleus mass effects can be taken into account without any
substantial difficulty. We are now left with two electrons moving in three spatial
dimensions around the origin. The total angular momentum ofthe combined elec-
tron system is still conserved. In the special case of angular momentumL = 0, the
electrons move in a fixed plane containing the nucleus. The three body problem
can then be written in terms of three independent coordinates only, the electron-
nucleus distancesr1 andr2 and the inter-electron angleΘ, see figure 6.1.

This looks like something we can lay our hands on; the problemhas been
reduced to three degrees of freedom, six phase-space coordinates in all, and the
total energy is conserved. But let us go one step further; theelectrons are attracted
by the nucleus but repelled by each other. They will tend to stay as far away from
each other as possible, preferably on opposite sides of the nucleus. It is thus worth
having a closer look at the situation where the three particles are all on a line with
the nucleus being somewhere between the two electrons. If we, in addition, let the
electrons have momenta pointing towards the nucleus as in figure 6.2, then there
is no force acting on the electrons perpendicular to the common interparticle axis.
That is, if we start the classical system on the dynamical subspaceΘ = π, d

dtΘ = 0,
the three particles will remain in thiscollinear configurationfor all times.
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6.3.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a
system of two degrees of freedom with the Hamiltonian

H =
1

2me

(

p2
1 + p2

2

)

− 2e2

r1
− 2e2

r2
+

e2

r1 + r2
= E , (6.10)

whereE is the total energy. As the dynamics is restricted to the fixedenergy shell,
the four phase-space coordinates are not independent; the energy shell dependence
can be made explicit by writing

(r1, r2, p1, p2)→ (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy E. A
simple analysis of potential versus kinetic energy tells usthat if the energy is
positive both electrons can escape tor i → ∞, i = 1, 2. More interestingly, a
single electron can still escape even ifE is negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remaining inner electron has no
lower bound. Not only that, but one electronwill escape eventually for almost all
starting conditions. The overall dynamics thus depends critically on whetherE >
0 or E < 0. But how does the dynamics change otherwise with varying energy?
Fortunately, not at all. Helium dynamics remains invariantunder a change of
energy up to a simple scaling transformation; a solution of the equations of motion
at a fixed energyE0 = −1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

r i(E) =
e2

(−E)
r i , pi(E) =

√

−meE pi , i = 1, 2 ,

together with a time transformationt(E) = e2m1/2
e (−E)−3/2 t. We include the

electron mass and charge in the scaling transformation in order to obtain a non–
dimensionalized Hamiltonian of the form

H =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (6.11)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problem.

6.3.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (6.11). When-
ever two bodies come close to each other, accelerations become large, numerical
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routines require lots of small steps, and numerical precision suffers. No numerical
routine will get us through the singularity itself, and in collinear helium electrons
have no option but to collide with the nucleus. Hence aregularizationof the dif-
ferential equations of motions is a necessary prerequisiteto any numerical work
on such problems, both in celestial mechanics (where a spaceship executes close
approaches both at the start and its destination) and in quantum mechanics (where
much of semiclassical physics is dominated by returning classical orbits that probe
the quantum wave function at the nucleus).

There is a fundamental difference between two–body collisionsr1 = 0 or r2 =

0, and the triple collisionr1 = r2 = 0. Two–body collisions can be regularized,
with the singularities in equations of motion removed by a suitable coordinate
transformation together with a time transformation preserving the Hamiltonian
structure of the equations. Such regularization is not possible for the triple colli-
sion, and solutions of the differential equations can not be continued through the
singularity at the origin. As we shall see, the chaos in collinear helium originates
from this singularity of triple collisions.

A regularization of the two–body collisions is achieved by means of the Kust-
aanheimo–Stiefel (KS) transformation, which consists of acoordinate dependent
time transformation which stretches the time scale near theorigin, and a canonical
transformation of the phase-space coordinates. In order tomotivate the method,
we apply it first to the 1-dimensional Kepler problem

H =
1
2

p2 − 2
x
= E . (6.12)

Example 6.2 Keplerian ellipse, rectified: To warm up, consider the E = 0 case,
starting at x = 0 at t = 0. Even though the equations of motion are singular at the initial
point, we can immediately integrate

1
2

ẋ2 − 2
x
= 0

by means of separation of variables

√
xdx= 2dt , x = (3t)

2
3 , (6.13)

and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which
the passage through the origin is smooth.

A time transformation dt = f (q, p)dτ for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f (q, p)(H(q, p) − E). For the 1–
dimensional Coulomb problem with (6.12) we choose the time transformation dt = xdτ
which lifts the |x| → 0 singularity in (6.12) and leads to a new Hamiltonian

H = 1
2

xp2 − 2− Ex= 0. (6.14)

conjug - 17feb2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 6. GO STRAIGHT 118

The solution (6.13) is now parameterized by the fictitous time dτ through a pair of
equations

x = τ2 , t =
1
3
τ3 .

The equations of motion are, however, still singular as x→ 0:

d2x
dτ2
= − 1

2x
dx
dτ
+ xE .

Appearance of the square root in (6.13) now suggests a canonical transformation of
form

x = Q2 , p =
P

2Q
(6.15)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q,P) =
1
8

P2 − EQ2 = 2, (6.16)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idea is that one seeks
a higher-dimensional generalization of the ‘square root removal’ trick (6.15), by
introducing a new vectorQ with propertyr = |Q|2 . In this simple 1-dimensional
example the KS transformation can be implemented by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(6.17)

and reparameterization of time bydτ = dt/r1r2. The singular behavior in the
original momenta atr1 or r2 = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of the equations of motions with
respect to the new timeτ is conserved, if we consider the Hamiltonian

Hko =
1
8

(Q2
2P2

1 + Q2
1P2

2) − 2R2
12+ Q2

1Q2
2(−E + 1/R2

12) = 0 (6.18)

with R12 = (Q2
1+Q2

2)1/2, and we will takeE = −1 in what follows. The equations
of motion now have the form

Ṗ1 = 2Q1
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




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
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




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2

R4
12












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





; Q̇1 =
1
4

P1Q2
2 (6.19)

Ṗ2 = 2Q2
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






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




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1

R4
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










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
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; Q̇2 =
1
4

P2Q2
1.

conjug - 17feb2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 6. GO STRAIGHT 119

Figure 6.3: (a) A typical trajectory in the [r1, r2]
plane; the trajectory enters here along ther1 axis
and escapes to infinity along ther2 axis; (b)
Poincaré map (r2=0) for collinear helium. Strong
chaos prevails for smallr1 near the nucleus.
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Individual electron–nucleus collisions atr1 = Q2
1 = 0 or r2 = Q2

2 = 0 no longer
pose a problem to a numerical integration routine. The equations (6.19) are sin-
gular only at the triple collisionR12 = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (6.18) are very useful when calcu-
lating trajectories for collinear helium; they are, however, less intuitive as a visual-
ization of the three-body dynamics. We will therefore referto the old coordinates
r1, r2 when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a form where the
2-body collisions have been transformed away, and the phase-space trajectories
computable numerically. To appreciate the full beauty of what has been attained,
you have to fast-forward to quantum chaos part ofChaosBook.org; we are al-
ready ‘almost’ ready to quantize helium by semiclassical methods.

fast track:

chapter 5, p. 99

6.4 Rectification of maps

In sect. 6.2 we argued that nonlinear coordinate transformations can be profitably
employed to simplify the representation of a flow. We shall now apply the same
idea to nonlinear maps, and determine a smooth nonlinear change of coordinates
that flattens out the vicinity of a fixed point and makes the maplinear in an open
neighborhood. In its simplest form the idea can be implemented only for an iso-
lated nondegenerate fixed point (otherwise one needs the normal form expansion
around the point), and only in a finite neighborhood of a point, as the conjugating
function in general has a finite radius of convergence. In sect. 6.5 we will extend
the method to periodic orbits.
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6.4.1 Rectification of a fixed point in one dimension
exercise 6.3

Consider a 1-dimensional mapxn+1 = f (xn) with a fixed point atx = 0, with
stabilityΛ = f ′(0). If |Λ| , 1, one can determine the power series for a smooth
conjugationh(x) centered at the fixed point,h(0) = 0, that flattens out the neigh-
borhood of the fixed point

f (x) = h−1(Λh(x)) (6.20)

and replaces the nonlinear mapf (x) by a linear mapyn+1 = Λyn.

To compute the conjugationh we use the functional equationh−1(Λx) =
f (h−1(x)) and the expansions

f (x) = Λx+ x2 f2 + x3 f3 + . . .

h−1(x) = x+ x2h2 + x3h3 + . . . . (6.21)

Equating the coefficients of xk on both sides of the functional equation yields
hk order by order as a function off2, f3, . . .. If h(x) is a conjugation, so is any
scalingh(bx) of the function for a real numberb. Hence the value ofh′(0) is not
determined by the functional equation (6.20); it is convenient to seth′(0) = 1.

The algebra is not particularly illuminating and best left to computers. In any
case, for the time being we will not use much beyond the first, linear term in these
expansions.

Here we have assumed|Λ| , 1. If the fixed point has vanishingk−1 derivatives,
the conjugacy is to thekth normal form.

In multiple dimensions,Λ is replaced by the Jacobian matrix, and one has to
check that the eigenvaluesM are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.8). remark 6.3

6.5 Rectification of a periodic orbit

In sect. 6.4.1 we have constructed the conjugation functionfor a fixed point. Here
we turn to the problem of constructing it for periodic orbits. Each point around the
cycle has a differently distorted neighborhood, with differing second and higher
order derivatives, so we need to compute a different conjugation functionha at
each periodic pointxa. We expand the mapf around each periodic point along
the cycle,

ya(φ) = fa(φ) − xa+1 = φ fa,1 + φ
2 fa,2 + . . . (6.22)
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wherexa is a point on the cycle,fa(φ) = f (xa + φ) is centered on the periodic
orbit, and the indexk in fa,k refers to thekth order in the expansion (6.21).

For a periodic orbit the conjugation formula (6.20) generalizes to

fa(φ) = h−1
a+1( f ′a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functionsha are obtained in the same way as
before, by equating coefficients of the expansion (6.21), and assuming that the
cycle Floquet multiplierΛ =

∏n−1
a=0 f ′(xa) is not marginal,|Λ| , 1. The explicit

expressions forha in terms of f are obtained by iterating around the whole cycle,

f n(xa + φ) = h−1
a (Λha(φ)) + xa . (6.23)

evaluated at each periodic pointa. Again we have the freedom to seth′a(0) = 1 for remark 6.2

all a.

6.5.1 Repeats of cycles

We have traded our initial nonlinear mapf for a (locally) linear mapΛy and an
equally complicated conjugation functionh. What is gained by rewriting the map
f in terms of the conjugacy functionh? Once the neighborhood of a fixed point
is linearized, the iterates off are trivialized; from the conjugation formula (6.21)
one can compute the derivatives of a function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for an arbitrary iterate; the an-
swer will depend on the conjugacy functionh(x) computed for asingleapplication
of mappingf , and all the dependence on the iterate number will be carriedby fac-
tors that are polynomial functions ofΛr , a considerable simplification. The beauty
of the idea is difficult to gauge at this stage–an appreciation only sets in whenone
starts computing perturbative corrections, whether in celestial mechanics (where
the method was born), or quantum or stochastic corrections to ‘semiclassical’ ap-
proximations.

6.6 Cycle Floquet multipliers are metric invariants

In sect. 5.2 we established that for a given flow the cycle Floquet multipliers are
intrinsic to a given cycle, independent of the starting point along the cycle. Now
we can prove a much stronger statement: cycle Floquet multipliers aresmooth
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conjugacyor metric invariantsof the flow, the same inany representation of the
dynamical system.

That the cycle Floquet multipliers are an invariant property of the given dy-
namical system follows from elementary considerations of sect. 6.1: If the same
dynamical behavior is given by a mapf in x coordinates, and a mapg in the
y = h(x) coordinates, thenf andg (or any other good representation) are related
by (6.4), a reparameterization and a coordinate transformation g = h ◦ f ◦ h−1.
As both f and g are arbitrary representations of the dynamical system, theex-
plicit form of the conjugacyh is of no interest, only the properties invariant under
any transformationh are of general import. Furthermore, a good representation
should not mutilate the data; the mappingh must be asmooth conjugacywhich
maps nearby periodic points off into nearby periodic points ofg. This smooth-
ness guarantees that the cycles are not only topological invariants, but that their
linearized neighborhoods are also metric invariants. For afixed point f (x) = x of
a 1-dimensional map this follows from the chain rule for derivatives,

g′(y) = h′( f ◦ h−1(y)) f ′(h−1(y))
1

h′(x)

= h′(x) f ′(x)
1

h′(x)
= f ′(x) . (6.24)

In d dimensions the relationship between the maps in different coordinate repre-
sentations is againg ◦ h = h ◦ f . We now make the matrix structure of relation
(6.3) explicit:

Γik(x) =
∂hi

∂xk

∣

∣

∣

∣

∣

x
and Γ−1

ik (x) =
∂h−1

i

∂yk

∣

∣

∣

∣

∣

∣

h(x)

,

i.e., Γik(x) is the matrix inverse ofΓ−1
ik (x). The chain rule now relatesM′, the

Jacobian matrix of the mapg to the Jacobian matrix of mapf :

M′i j (h(x)) = Γik( f (x))Mkl(x)Γ−1
l j (x) . (6.25)

If x is a fixed point then (6.25) is asimilarity transformation and thus preserves
eigenvalues: it is easy to verify that in the case of periodnp cycle againM′p(h(x))
andMp(x) are related by a similarity transformation (note that thisis not true for
Mr(x) with r , np). As stability of a flow can always be reduced to stability of
a Poincaré return map, a Floquet multiplier of any cycle, for a flow or a map in
arbitrary dimension, is a metric invariant of the dynamicalsystem. exercise 6.3

in depth:

appendix B.4, p. 798
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Résum é

The dynamical system (M, f ) is invariant under the group of all smooth conjuga-
cies

(M, f ) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the flow and
(ii) identify a set of invariants, numbers computed within aparticular choice of
(M, f ), but invariant under allM→ h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system of D
degrees of freedom is fully foliated byD-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system, one would like to transform to a coordinate
frame in which the stable and unstable manifolds form a set oftransversally in-
tersecting hyper-planes, with the flow everywhere locally hyperbolic. That cannot
be achieved in general: Fully globally integrable and fullyglobally chaotic flows
are a very small subset of all possible flows, a ‘set of measurezero’ in the world
of all dynamical systems.

What wereally care about is developing invariant notions for a given dynam-
ical system. The totality of smooth one-to-one nonlinear coordinate transforma-
tionsh that map all trajectories of a given dynamical system (M, f t) onto all tra-
jectories of dynamical systems (M′, gt) gives us a huge equivalence class, much
larger than the equivalence classes familiar from the theory of linear transforma-
tions. In the theory of Lie groups, the full invariant specification of an object is
given by a finite set of Casimir invariants. What a good full set of invariants for a
group of general nonlinear smooth conjugacies might be is not known, but the set
of all periodic orbits and their Floquet multipliers will turn out to be a good start.

Commentary

Remark 6.1 Rectification of flows. See Section 2.2.5 of ref. [6.10] for a pedagogical
introduction to smooth coordinate reparameterizations. Explicit examples of transfor-
mations into canonical coordinates for a group of scalings and a group of rotations are
worked out.

Remark 6.2 Rectification of maps. The methods outlined above are standard in
the analysis of fixed points and the construction of normal forms for bifurcations, see for
example ref. [1.26, 12.34, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 3.11]. The geometry underlying such
methods is elegant, and we enjoyed reading, for example, Percival and Richards [6.8],
chaps. 2 and 4 of Ozorio de Almeida’s monograph [6.9], and, asalways, Arnol’d [6.1].

Recursive formulas for the evaluation of derivatives needed to evaluate (6.21) are
given, for example, in Appendix A of ref. [16.9]. Section 10.6 of ref. [6.11] describes
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in detail the smooth conjugacy that relates the Ulam map (11.5) to the tent map (11.4).
For ‘negative Schwartzian derivatives,’ families of conjugacies of Ulam-type maps, as-
sociated Lyapunov exponents, continuous measures and further pointers to literature, see
ref. [6.12].

Remark 6.3 A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet exponents may be related by ratios
of integers. That is, ifΛp,1,Λp,2, . . . ,Λp,d are the Floquet multipliers of the Jacobian
matrix, then they are in resonance if there exist integersn1, . . . , nd such that

(Λp,1)
n1(Λp,2)n2 · · · (Λp,d)nd = 1 .

If there is resonance, one may get corrections to the basic conjugation formulas in the
form of monomials in the variables of the map. (R. Mainieri)
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Exercises

6.1. Harmonic oscillator in polar coordinates: Given a
harmonic oscillator (6.6) that follows ˙p = −q andq̇ = p,
use (6.8) to rewrite the system in polar coordinates (6.7)
and find equations forr andθ.

1. Show that the 1-dimensional state space of the
rewritten system is the quotient spaceM/SO(2).

2. Construct a Poincaré section of the quotiented
flow.

6.2. Coordinate transformations. Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from con-
fusing functional relationships, such asx(t) = h−1(y(t))
with numerical relationships, such asw(y) = h′(x)v(x).
Working through an example will clear this up.

(a) The differential equation inM is ẋ = {2x1, x2}
and the change of coordinates fromM toM′ is
h(x1, x2) = {2x1+ x2, x1− x2}. Solve forx(t). Find
h−1.

(b) Show that in the transformed spaceM′, the differ-
ential equation is

d
dt

[

y1
y2

]

=
1
3

[

5y1 + 2y2
y1 + 4y2

]

.

Solve this system. Does it match the solution in
theM space?

6.3. Linearization for maps. Let f : C → C be a map
from the complex numbers into themselves, analytic at
the origin with a fixed point. By manipulating power se-
ries, find the first few terms of the maph that conjugates
f to αz, that is,

f (z) = h−1(αh(z)) .

There are conditions on the derivative off at the origin
to assure that the conjugation is always possible. For-
mulate these conditions by examining the series

(difficulty: medium) (R. Mainieri)

6.4. Ulam and tent maps. Show that the smooth conju-
gacy (6.1)

g(y0) = h ◦ f ◦ h−1(y0)

y = h(x) = sin2(πx/2) ,

conjugates the tent mapf (x) = 1 − 2|x − 1/2| into the
Ulam mapg(y) = 4y(1−y) . (continued as exercise 13.1)
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