Chapter 6

Go straight

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

HawmiLronian system is said to beintegrableif one can find a change of

A coordinates to an action-angle coordinate frame where tiasgspace
dynamics is described by motion on circles, one circle fahedegree

of freedom. In the same spirit, a natural description of aehnplic, unstable
flow would be attained if one found a change of coordinates énframe where
the stabl@unstable manifolds are straight lines, and the flow is aloygehbolas.

Achieving this globally for anything but a handful of contd examples is a pipe

dream. Nevertheless, as we shall now show, we can make somdevine on /

straightening out the flow locally.

There is much more to this story than what we touch upon heter dricks
and methods to construct regularizations, what kind ofidargties could be reg-
ularized, etc.. Even though such nonlinear coordinatesteamations are very
important, especially in celestial mechanics, we shalluset them much in what
follows, so you can safely skip this chapter on the first ne@di Except, per-
haps, you might want to convince yourself that cycle stéédiare indeed metric
invariants of flows (sect. 6.6), and you might like transfations that turn a Ke-
plerian ellipse into a harmonic oscillator (example 6.2) aggularize the 2-body
Coulomb collisions (sect. 6.3) in classical helium.

fast track:
W chapter 7, p. 127
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6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, endréhnot al-
ways expressed in the most convenient way. In order to siyrgolijiven problem,
one may stretch, rotate, bend and mix the coordinates, llging so, the vector
field will also change. The vector field lives in a (hyper)@atangent to state
space and changing the coordinates of state sp@eetsithe coordinates of the
tangent space as well, in a way that we will now describe.

Denote byh theconjugation functionvhich maps the coordinates of the initial
state spaceM into the reparameterized state spae€ = h(M), with a point
x € Mrelated to a poiny € M’ by

y=h0) = (y1(x). ¥2(X). ... Ya(x)) -

The change of coordinates must be one-to-one and spanMbathd M’, so given
any pointy we can go back tax = h™*(y). For smooth flows the reparameterized
dynamics should support the same number of derivativeseasitial one. Ifhis

a (piecewise) analytic function, we referi@s asmooth conjugacy

The evolution ruleg'(yo) on M’ can be computed from the evolution rule

f'(x) on M by taking the initial pointyy € M’, going back taM, evolving, and
then mapping the final poing(t) back toA:

y(t) = g'(yo) = ho f' o h™(yo). (6.1)

Here ‘o’ stands for functional compositioh o f(x) = h(f(x)), so (6.1) is a
shorthand fos(t) = h(f{(h~1(yo)).

The vector fieldx = v(x) is locally tangent to the flow!; it is related to the
flow by differentiation (2.5) along the trajectory. The vector figkd w(y),y € M’

locally tangent tag!, follows by the chain rule: exercise 6.2
_ d¢ A gt }
W) = o) = glhe ety
h (W) v () = P () V(9 - (6.2)

In order to rewrite the right-hand side as a functiory,afiote that they differen-
tiation of h(h~1(y)) = yimplies

-1

1
on (y)] , 6.3)
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so the equations of motion in the transformed coordinatés, tive indices rein-
stated, are

-1
). (6.4)
ij

1
§i = w(y) = [%(y)

Imagine the state space as a rubber sheet with the flow lirgndon it.

A coordinate changé corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersection$ the distorted rubber
sheet. Trajectories that are closed loopstdhwill remain closed loops in the
new manifold M’, but their shapes will change. Globallydeforms the rubber
sheet in a highly nonlinear manner, but locally it simplycadss and shears the
tangent field by the Jacobian matriyh;, yielding the simple transformation law
(6.2) for the velocity fields.

Time itself is a parametrization of points along flow linesdat can also
be reparameterizeds = s(t), with the concomitant modification of (6.4). An
example is the 2-body collision regularization of the helillamiltonian (7.8), to
be undertaken in sect. 6.3 below.

fast track:
W sect. 6.6, p. 121
6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under sthomonjugacies is
to use it to pick out the simplest possible representativenoéquivalence class.
These are just words, as we have no clue how to pick such ‘@zalbrepresen-
tations, but for smooth flows we can always do it locally andsigticiently short
time, by appealing to theectification theorema fundamental theorem of ordi-
nary diferential equations. The theorem tells us that a solutiostexat least for
a short time interval) and what it looks like. The rectificattheorem holds in the
neighborhood of points of the vector fielfx) that are not singular, that is, ev-
erywhere except for the equilibrium points (2.8), and mattwhichv is infinite.
According to the theorem, in a small neighborhood of a nogidiar point there
exists a change of coordinatgs= h(x) such thatx'= v(x) in the new,canonical
coordinates takes form

Vi=Vo=---=Vq.1 =0
pope e 69

with unit velocity flow alongyy, and no flow along any of the remaining directions.

This is an example of a one-parameter Lie group of transfoms, with finite

time  action exercise 9.8
exercise 6.1
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Y. = Vi, i=12...,d-1
y;j = Ya+T7.
Example 6.1 Harmonic oscillator, rectified: As a simple example of global

rectification of a flow consider the harmonic oscillator
q=p. p=-q. (6.6)

The trajectories X(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates 'y = (r, 6):

1. g = hi}r,6) = rcoso
h { p = hr.e) = rsing 67
The Jacobian matrix, oh;/dx;, of the transformation is
cosd  sind
h=| sino cosy (6.8)
r r
resulting in (6.4) of rectified form exercise 5.1
; cosy  sing .
r)_ i a\_( O
(9)_[_S|n6 cosH ](p)_(—l)' (6.9)
r r

In the new coordinates the radial coordinate r is constant, and the angular coordinate
6 wraps around a cylinder with constant angular velocity. There is a subtle point in this
change of coordinates: the domain of the map h™' is not the plane R?, but rather the
plane minus the origin. We mapped a plane into a cylinder, and coordinate transforma-
tions should not change the topology of the space in which the dynamics takes place;
the coordinate transformation is not defined on the equilibrium point x = (0, 0), orr = 0.

6.3 Collinear helium

(G. Tanner) (ﬁ)

So far much has been said about 1-dimensional maps, gamelfilpand other
curious but rather idealized dynamical systems. If you le@me impatient and
started wondering what good are the methods learned so fahiing real life

physical problems, good news are here. We will apply hereeats of nonlinear
dynamics to nothing less than the helium, a dreaded thrdg-Boulomb problem.

Can we really jump from three static disks directly to threarged particles
moving under the influence of their mutually attracting opeling forces? It
turns out, we can, but we have to do it with care. The full peablis indeed
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Figure 6.1: Coordinates for the helium three body

problem in the plane. 4+
He
++
He 6
Figure 6.2: Collinear helium, with the two electrons__g g ,,@ ,,,,,,, -0

on opposite sides of the nucleus. r
1

not accessible in all its detail, but we are able to analyzeraesvhat simpler
subsystem—collinear helium. This system plays an impbrtda in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons osmmasnd charge
—emoving about a positively charged nucleus of magsand charger2e.

The helium electron-nucleus mass ratiges/me = 1836 is so large that we
may work in the infinite nucleus mass approximatiog = oo, fixing the nucleus
at the origin. Finite nucleus masffects can be taken into account without any
substantial dficulty. We are now left with two electrons moving in three sglat
dimensions around the origin. The total angular momentutheo€ombined elec-
tron system is still conserved. In the special case of angudenentunL = 0, the
electrons move in a fixed plane containing the nucleus. Tireethody problem
can then be written in terms of three independent coordinaitdy, the electron-
nucleus distanceg andr, and the inter-electron ang®, see figure 6.1.

This looks like something we can lay our hands on; the probes been
reduced to three degrees of freedom, six phase-space wcatsliin all, and the
total energy is conserved. But let us go one step furtheeléwtrons are attracted
by the nucleus but repelled by each other. They will tenddg as far away from
each other as possible, preferably on opposite sides ofitleus. It is thus worth
having a closer look at the situation where the three pastiate all on a line with
the nucleus being somewhere between the two electrons,, Ihaedition, let the
electrons have momenta pointing towards the nucleus asurefi®2, then there
is no force acting on the electrons perpendicular to the comimterparticle axis.
That s, if we start the classical system on the dynamicadjsabe® = r, d%@ =0,
the three particles will remain in theollinear configuratiorfor all times.
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6.3.1 Scaling

In what follows we will restrict the dynamics to this collmesubspace. It is a
system of two degrees of freedom with the Hamiltonian

2 2¢ &
- 2 p2) - = =
H = 2me (% + P3) noTTitn E, (6.10)

wherekE is the total energy. As the dynamics is restricted to the femstgy shell,
the four phase-space coordinates are not independentehgyeshell dependence
can be made explicit by writing

(1,12, p1, P2) = (r1(E). r2(E), pa(E), p2(E)) -

We will first consider the dependence of the dynamics on theeggrE. A
simple analysis of potential versus kinetic energy tellshat if the energy is
positive both electrons can escaperto— co, i = 1,2. More interestingly, a
single electron can still escape evelkifs negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remgiiminer electron has no
lower bound. Not only that, but one electraill escape eventually for almost all
starting conditions. The overall dynamics thus dependially on whethelE >
0 or E < 0. But how does the dynamics change otherwise with varyirggs?
Fortunately, not at all. Helium dynamics remains invariantler a change of
energy up to a simple scaling transformation; a solutiome®&quations of motion
at a fixed energ¥o = —1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

n(E)z(_ez—E)n, BE) = V-mEp, =12,

together with a time transformatiofE) = e?my/*(-E)~3/2t. We include the
electron mass and charge in the scaling transformationderdo obtain a non—
dimensionalized Hamiltonian of the form

o o2 2 1
-, P 2 2 -1, 6.11
2+ 2 I I'2+I’1+I'2 ( )

The case of negative energies chosen here is the most tirigrese for us. It
exhibits chaos, unstable periodic orbits and is respoaéislthe bound states and
resonances of the quantum problem.

6.3.2 Regularization of two—body collisions

Next, we have a closer look at the singularities in the Hamitin (6.11). When-
ever two bodies come close to each other, accelerationsrigelzoge, numerical
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routines require lots of small steps, and numerical pregisiffers. No numerical
routine will get us through the singularity itself, and inlowar helium electrons
have no option but to collide with the nucleus. Henaegularizationof the dif-
ferential equations of motions is a necessary prerequisiggy numerical work
on such problems, both in celestial mechanics (where a shigcexecutes close
approaches both at the start and its destination) and irtujmamechanics (where
much of semiclassical physics is dominated by returningsital orbits that probe
the quantum wave function at the nucleus).

There is a fundamental fierence between two—body collisions= 0 orrp =
0, and the triple collisiom; = r, = 0. Two-body collisions can be regularized,
with the singularities in equations of motion removed by #afle coordinate
transformation together with a time transformation preiser the Hamiltonian
structure of the equations. Such regularization is notiptesor the triple colli-
sion, and solutions of the flierential equations can not be continued through the
singularity at the origin. As we shall see, the chaos in gelir helium originates
from this singularity of triple collisions.

A regularization of the two—body collisions is achieved bgans of the Kust-
aanheimo-Stiefel (KS) transformation, which consists obardinate dependent
time transformation which stretches the time scale neawtiilgen, and a canonical
transformation of the phase-space coordinates. In ordewtivate the method,
we apply it first to the 1-dimensional Kepler problem

H=lp_2_g. (6.12)

Example 6.2 Keplerian ellipse, rectified: To warm up, consider the E = 0O case,
starting at x = 0 att = 0. Even though the equations of motion are singular at the initial

point, we can immediately integrate
1 2
¢-2-0
2 X

by means of separation of variables

Vxdx=2dt,  x=(3)F, (6.13)

and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which

the passage through the origin is smooth.

A time transformation dt = f(q, p)dr for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f(a, p)(H(g, p) — E). For the 1—
dimensional Coulomb problem with (6.12) we choose the time transformation dt = xdr

which lifts the |x| — O singularity in (6.12) and leads to a new Hamiltonian

H = 1xp2—2—Ex:04 (6.14)

T2
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The solution (6.13) is now parameterized by the fictitous time dr through a pair of

equations

The equations of motion are, however, still singular as x — 0:

d?x 1 dx o xE
dr2 = 2xdr ’
Appearance of the square root in (6.13) now suggests a canonical transformation of
form
[=]
2
X = = —
¢ Pegg

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian
1,
HQP)= s -EQ =2 (6.16)

with all singularities completely removed.

We now apply this method to collinear helium. The basic ideghat one seeks
a higher-dimensional generalization of the ‘square rootawal’ trick (6.15), by
introducing a new vecto® with propertyr = |Q[?. In this simple 1-dimensional
example the KS transformation can be implemented by

Py Py

2 2. p=
2Q:1° 2Q;

rn = Qf, r2=Q3, p1= (6.17)

and reparameterization of time loly = dt/riro.  The singular behavior in the
original momenta at; or r, = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of thetemsof motions with
respect to the new timeis conserved, if we consider the Hamiltonian

Hio = %(Q%Pf +Q%P3) - 2R, + Q3Q(-E + 1/RZ,) = 0 (6.18)

with Ry = (Q2 + Q2)%2, and we will takeE = —1 in what follows. The equations
of motion now have the form

- PP of. S S N
P1=2Q1 2—§—Q2 1+§ ; Q1= ZPIQZ (6.19)
2
i p2 Q2 .1
m=2Q42~§—Qﬂ1+—ﬂ} Q= >PQZ
Ri 4
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a) b)

r, P
Figure 6.3: (a) A typical trajectory in therf, r5] e
plane; the trajectory enters here along thexis , o
and escapes to infinity along the axis; (b) =
Poincaré mapr{=0) for collinear helium. Strong :
chaos prevails for smali near the nucleus. ot

n 7n

Individual electron—nucleus collisions it = Qf =0orr; = Q% = 0 no longer
pose a problem to a numerical integration routine. The éoum{(6.19) are sin-
gular only at the triple collisiofR;2 = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (6.18) are veryulisdien calcu-
lating trajectories for collinear helium; they are, howeless intuitive as a visual-
ization of the three-body dynamics. We will therefore retethe old coordinates
ri, ro when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a formreviiee
2-body collisions have been transformed away, and the pszesee trajectories
computable numerically. To appreciate the full beauty oétieas been attained,
you have to fast-forward to quantum chaos parClsdosBook.org; we are al-
ready ‘almost’ ready to quantize helium by semiclassicahoes.

fast track:
@ chapter 5, p. 99

6.4 Rectification of maps

In sect. 6.2 we argued that nonlinear coordinate transfiomscan be profitably
employed to simplify the representation of a flow. We shalrapply the same
idea to nonlinear maps, and determine a smooth nonlineagehaf coordinates
that flattens out the vicinity of a fixed point and makes the firsgar in an open
neighborhood. In its simplest form the idea can be impleegtnly for an iso-
lated nondegenerate fixed point (otherwise one needs tieahéorm expansion
around the point), and only in a finite neighborhood of a pastthe conjugating
function in general has a finite radius of convergence. It $8 we will extend
the method to periodic orbits.
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6.4.1 Rectification of a fixed point in one dimension
exercise 6.3

Consider a 1-dimensional mafa.1 = f(x,) with a fixed point atx = 0, with
stability A = /(0). If |A| # 1, one can determine the power series for a smooth
conjugationh(x) centered at the fixed poirit(0) = 0, that flattens out the neigh-
borhood of the fixed point

f(x) = h"L(Ah(X) (6.20)

and replaces the nonlinear méfx) by alinear mapyn.1 = Ayn.

To compute the conjugatioh we use the functional equatiom(Ax) =
f(h~1(x)) and the expansions

£(x) AX+ X+ XT3+ ...
hi(x) = x+xXhy+x°hg+... . (6.21)

Equating the caéicients of XX on both sides of the functional equation yields
hy order by order as a function dp, fs,.... If h(x) is a conjugation, so is any
scalingh(bx) of the function for a real numbdx. Hence the value d’(0) is not
determined by the functional equation (6.20); it is coneanto sety(0) = 1.

The algebra is not particularly illuminating and best leftbmputers. In any
case, for the time being we will not use much beyond the firgak term in these
expansions.

Here we have assumetd # 1. If the fixed point has vanishirig-l derivatives,
the conjugacy is to thkth normal form

In multiple dimensionsA is replaced by the Jacobian matrix, and one has to
check that the eigenvaluéd are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.8). remark 6.3

6.5 Rectification of a periodic orbit

In sect. 6.4.1 we have constructed the conjugation fundtioa fixed point. Here

we turn to the problem of constructing it for periodic orbiEach point around the

cycle has a dierently distorted neighborhood, withfiéiring second and higher

order derivatives, so we need to compute féedent conjugation functioh, at

each periodic poink,. We expand the map around each periodic point along Cﬁ%}
the cycle,

Ya(#) = fa(¢) = Xar1 = ¢fas + ¢ faz+ ... (6.22)
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wherex, is a point on the cyclefa(¢p) = f(xa + ¢) is centered on the periodic
orbit, and the indek in f refers to thekth order in the expansion (6.21).

For a periodic orbit the conjugation formula (6.20) geriees to

fa() = oL (RROha(9)).  a=12---.n,

point by point. The conjugationg functior are obtained in the same way as
before, by equating cdiécients of the expansion (6.21), and assuming that the
cycle Floquet multiplierA = ng;g f’(xa) is not marginal|A| # 1. The explicit
expressions foh, in terms off are obtained by iterating around the whole cycle,

(X + 6) = N3 (Aha(9)) + Xa. (6.23)

evaluated at each periodic pomtAgain we have the freedom to 4&(0) = 1 for remark 6.2
alla.

6.5.1 Repeats of cycles

We have traded our initial nonlinear mdpfor a (locally) linear map\y and an
equally complicated conjugation functidn What is gained by rewriting the map
f in terms of the conjugacy function? Once the neighborhood of a fixed point
is linearized, the iterates dfare trivialized; from the conjugation formula (6.21)
one can compute the derivatives of a function composed teigf r times:

(%) = " }(A"h(X)) .

One can already discern the form of the expansion for anrarpiiterate; the an-
swer will depend on the conjugacy functibfx) computed for aingleapplication

of mappingf, and all the dependence on the iterate number will be calogidec-
tors that are polynomial functions af , a considerable simplification. The beauty
of the idea is diicult to gauge at this stage—an appreciation only sets in when
starts computing perturbative corrections, whether iestél mechanics (where
the method was born), or quantum or stochastic correctmfsemiclassical’ ap-
proximations.

6.6 Cycle Floquet multipliers are metric invariants 5
XX
In sect. 5.2 we established that for a given flow the cycle &dbanultipliers are

intrinsic to a given cycle, independent of the starting paiong the cycle. Now
we can prove a much stronger statement: cycle Floquet rietSparesmooth
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conjugacyor metric invariantsof the flow, the same iany representation of the
dynamical system.

That the cycle Floquet multipliers are an invariant propeftthe given dy-
namical system follows from elementary considerationsest.$6.1: If the same
dynamical behavior is given by a mdpin x coordinates, and a mapin the
y = h(x) coordinates, theri andg (or any other good representation) are related
by (6.4), a reparameterization and a coordinate transfimmg = ho f o h™2,

As both f andg are arbitrary representations of the dynamical systemgexhe
plicit form of the conjugacyh is of no interest, only the properties invariant under
any transformatiorh are of general import. Furthermore, a good representation
should not mutilate the data; the mappimgnust be asmooth conjugacwhich
maps nearby periodic points éfinto nearby periodic points @. This smooth-
ness guarantees that the cycles are not only topologicatiamts, but that their
linearized neighborhoods are also metric invariants. Foeal point f(x) = x of

a 1-dimensional map this follows from the chain rule for datives,

g = h'(foh*(y))f'(h-l(y))Wlx)
- h’(x)f’(x)WlX)=f’(x), (6.24)

In d dimensions the relationship between the maps firedint coordinate repre-
sentations is agaigo h = ho f. We now make the matrix structure of relation
(6.3) explicit:

ohy » oht
Tik(¥) = — and (¥ =—— s
|k( ) 5 . ik ( ) ﬁYK b0

i.e., Tik(x) is the matrix inverse oFﬁ(l(x). The chain rule now relates!’, the
Jacobian matrix of the magto the Jacobian matrix of mafa

M;;(h(x)) = Tic(fF () Mia (YT} (%). (6.25)

If xis a fixed point then (6.25) is similarity transformation and thus preserves
eigenvalues: itis easy to verify that in the case of penpdycle againM’P(h(x))

andMP(x) are related by a similarity transformation (note that thisot true for

M'(x) with r # np). As stability of a flow can always be reduced to stability of

a Poincaré return map, a Floquet multiplier of any cycle,a&dlow or a map in

arbitrary dimension, is a metric invariant of the dynamisydtem. exercise 6.3

in depth:
” appendix B.4, p. 798
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Résum é

The dynamical systemM, f) is invariant under the group of all smooth conjuga-
cies

(M, f) > (M',g) = (h(M),ho foh™).

This invariance can be used to (i) find a simplified repregimtdor the flow and
(ii) identify a set of invariants, numbers computed withipaaticular choice of
(M, f), but invariant under alM — h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltoniaresysif D
degrees of freedom is fully foliated Hy-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system, one would like tasfarm to a coordinate
frame in which the stable and unstable manifolds form a sétaofversally in-
tersecting hyper-planes, with the flow everywhere locajlpdrbolic. That cannot
be achieved in general: Fully globally integrable and fgllgbally chaotic flows
are a very small subset of all possible flows, a ‘set of measere in the world
of all dynamical systems.

What wereally care about is developing invariant notions for a given dynam
ical system. The totality of smooth one-to-one nonlinearrdmate transforma-
tions h that map all trajectories of a given dynamical systewt, ¢*) onto all tra-
jectories of dynamical systemd/(, ¢") gives us a huge equivalence class, much
larger than the equivalence classes familiar from the theblinear transforma-
tions. In the theory of Lie groups, the full invariant spemafion of an object is
given by a finite set of Casimir invariants. What a good futlafe@nvariants for a
group of general nonlinear smooth conjugacies might beti&kmawn, but the set
of all periodic orbits and their Floquet multipliers willfuout to be a good start.

Commentary

Remark 6.1 Rectification of flows.  See Section 2.2.5 of ref. [6.10] for a pedagogical
introduction to smooth coordinate reparameterizationgpliit examples of transfor-
mations into canonical coordinates for a group of scalinys @ group of rotations are
worked out.

Remark 6.2 Rectification of maps. The methods outlined above are standard in
the analysis of fixed points and the construction of normahfofor bifurcations, see for
example ref. [1.26, 12.34, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7,]3THe geometry underlying such
methods is elegant, and we enjoyed reading, for examplejMaeand Richards [6.8],
chaps. 2 and 4 of Ozorio de Almeida’s monograph [6.9], and\aays, Arnol'd [6.1].

Recursive formulas for the evaluation of derivatives neleteevaluate (6.21) are
given, for example, in Appendix A of ref. [16.9]. Section &@f ref. [6.11] describes
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in detail the smooth conjugacy that relates the Ulam maybjt.the tent map (11.4).
For ‘negative Schwartzian derivatives, families of caggeies of Ulam-type maps, as-
sociated Lyapunov exponents, continuous measures amgfyrdinters to literature, see
ref. [6.12].

Remark 6.3 A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet expisneay be related by ratios
of integers. That is, ifAp1, Apa,.... Apg are the Floquet multipliers of the Jacobian
matrix, then they are in resonance if there exist integers ., ng such that

(Ap)™(Ap2)™ -+ (Apa)™ = 1.

If there is resonance, one may get corrections to the basiugation formulas in the
form of monomials in the variables of the map. (R. Mainieri)
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Exercises

6.1. Harmonic oscillator in polar coordinates:  Given a
harmonic oscillator (6.6) that follows = —qandd = p,

use (6.8) to rewrite the system in polar coordinates (6.7)
and find equations far ande. 6.3. Linearization for maps. Letf : C —» C be a map

from the complex numbers into themselves, analytic at
the origin with a fixed point. By manipulating power se-
ries, find the first few terms of the mdythat conjugates

f toaz thatis,

Solve this system. Does it match the solution in
the M space?

1. Show that the 1-dimensional state space of the
rewritten system is the quotient spak€/SO(2).
2. Construct a Poincaré section of the quotiented
flow.
6.2. Coordinate transformations. Changing coordinates f( = h(eh(@).
is conceptually simple, but can become confusing when
carried out in detail. The diculty arises from con-
fusing functional relationships, such a&) = h=(y(t))
with numerical relationships, such agy) = h'(x)v(x).
Working through an example will clear this up.

There are conditions on the derivative fofit the origin
to assure that the conjugation is always possible. For-
mulate these conditions by examining the series

(difficulty: medium) (R. Mainieri)

(a) The diferential equation iV is X = {2x1.%2} 6.4, Ulam and tent maps. ~ Show that the smooth conju-

and the change of coordinates frott to M’ is gacy (6.1)
h(x1, X2) = {2X1 + X2, X1 — X2}. Solve forx(t). Find
h. g¥o) = hofoh™y)

(b) Shqw that in_ the; transformed spaké, the difer- y h(x) = sirf(7x/2),
ential equation is
d [ Y1 ]:}[ SY1+ 2y2 }
3 .

dt| ¥2 Y1+ 4y2

conjugates the tent maf(x) = 1 — 2|x — 1/2] into the
Ulam mapg(y) = 4y(1-y) . (continued as exercise 13.1)
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