Chapter 8

Billiards

ple with both numerically and conceptually, is the dynama€illiards.

For billiards, discrete time is altogether natural; a pétimoving through
a billiard sufers a sequence of instantaneous kicks, and executes simfitnm
in between, so there is no need to contrive a Poincaré secil® have already
used this system in sect. 1.3 as the intuitively most adoiesekample of chaos.
Here we define billiard dynamics more precisely, anticiggthe applications to
come.

THE pynamics that we have the best intuitive grasp on, and find easiestfo gr

8.1 Billiard dynamics

A billiard is defined by a connected regi@ c RP, with boundarydQ c RP-*
separatingQ from its complemenkP \ Q. The regionQ can consist of one com-
pact, finite volume component (in which case the billiardgghspace is bounded,
as for the stadium billiard of figure 8.1), or can be infiniteextent, with its
complemeniRP \ Q consisting of one or several finite or infinite volume compo-
nents (in which case the phase space is open, as for the Ridiséll game in
figure 1.1). In what follows we shall most often restrict otteation toplanar
billiards.

A point particle of massnand momentunp, = mv, moves freely within the
billiard, along a straight line, until it encounters the hdary. There it reflects
specularly ¢pecular = mirrorlike), with no change in the tangential component
of momentum, and instantaneous reversal of the momenturpaant normal to
the boundary,

P =p-2(p- AN, (8.1)

with f the unit vector normal to the bounda®® at the collision point. The angle
of incidence equals the angle of reflection, as illustratefigure 8.2. A billiard is

145

CHAPTER 8. BILLIARDS 146

Figure 8.1: The stadium billiard is a 2-
dimensional domain bounded by two semi-circle
of radiusd = 1 connected by two straight walls of
length 2. At the points where the straight walls
meet the semi-circles, the curvature of the border
changes discontinuously; these are the only sin-
gular points of the flow. The lengthis the only
parameter.

Figure 8.2: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized

by sand the outgoing trajectory angleboth mea- ©
sured counterclockwise with respect to the out-
ward normaln® (b) The Birkhdf phase-space co-
ordinate pair § p) fully specifies the trajectory,

N7 (s.p)

wherep = |p|sing is the momentum component PO

tangential to the boundary As the pinball kinetic

energy is conserved in elastic scattering, the pin-

ball mass and the magnitude of the pinball mo- \__s=0

mentum are customarily setto= |p| = 1. 16 3 4 &
(a) (b) s

a Hamiltonian system with al2dimensional phase spage- (g, p) and potential
V(g) =0forqe Q,V(q) = o for qe dQ. remark 2.1

A billiard flow has a natural Poincaré section defined by Bafk coordinates
Sy, the arc length position of th@h bounce measured along the billiard boundary,
and p, = |p|sin¢n, the momentum component parallel to the boundary, where
¢n is the angle between the outgoing trajectory and the norontileé boundary.
We measure both the arc lengihand the parallel momentumcounterclockwise
relative to the outward normal (see figure 8.2 as well as figudéa)). InD = 2,
the Poincaré section is a cylinder (topologically an ang)l figure 8.3, where
the parallel momentunp ranges for—|p| to |p|, and thes coordinate is cyclic
along each connected componeni@f. The volume in the full phase space is
preserved by the Liouville theorem (7.39). The Birkhooordinatesx = (s, p) € exercise 8.6
P, are the natural choice, because with them the Poincauénraetap preserves
the phase-space volume of the [f) parameterized Poincaré section (a perfectly

good coordinate ses(¢) does not do that). exercise 8.6
section 8.2

Without loss of generality we set = |v| = |p| = 1. Poincaré section condition
eliminates one dimension, and the energy conserviica 1 eliminates another,
so the Poincaré section return mjs (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P2 (sn, pn) = (Sne1, Posa) (8.2)
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Figure 8.3: In D = 2 the billiard Poincaré section 1
is a cylinder, with the parallel momentumranging
over p € {-1,1}, and with thes coordinate is cyclic pq
along each connected componend@f The rectangle
figure 8.2 (b) is such cylinder unfolded, with periodic
boundary conditions glueing together the left and the!
right edge of the rectangle.

s/

from thenth collision to the i + 1)st collision. The discrete time dynamics map
P is equivalent to the Hamiltonian flow (7.1) in the sense th@hlwescribe the
same full trajectory. Let, denote the instant afth collision. Then the position
of the pinballe Q at timet, + v < ty;:1 is given by D - 2 Poincaré section
coordinates $,, pn) € P together withr, the distance reached by the pinball along
the nth section of its trajectory (as we have set the pinball spedd the time of
flight equals the distance traversed).

Example 8.1 3-disk game of pinball: In the case of bounces off a circular disk,
the position coordinate s = r@ is given by angle 6 € [0, 2r]. For example, for the 3-disk

game of pinball of figure 1.6 and figure 3.9 (a) we have two types of collisions: exercise 8.1

r— 2 H
Po : {¢ o+ aar_CSIr/p back-reflection (8.3)
p =-p+ &sing
-2 :
py | ¥ =o-2arCSIDE2N/S et to 3rd disk. (8.4)
p = p- &sing’

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsin- one only
needs to compute one square root per each reflection, and the simulations can be very

fast. exercise 8.2

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py's and
P1’s. At each step one has to check whether the trajectory intersects the desired disk
(and no disk in-between). With minor modifications, the above formulas are valid for
any smooth billiard as long as we replace a by the local curvature of the boundary at
the point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discretadibilliard systems. In-
finitesimal equations of variations (4.2) do not apply, gt multiplicative struc-
ture (4.39) of the finite-time Jacobian matrices does. Ag Hre more physical
than most maps studied by dynamicists, let us work out thiarilstability in
some detail.
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On the face of it, a plane billiard phase space is 4-dimeasidtowever, one
dimension can be eliminated by energy conservation, anotties by the fact that
the magnitude of the speed is constant. We shall now show lavg go a local
frame of motion leads to a §2] Jacobian matrix.

Consider a 2-dimensional billiard with phase-space coaitdisx = (qz, 02, P1, P2)-
Let t, be the instant of theth collision of the pinball with the billiard boundary,
andt; = t, + ¢, € positive and infinitesimal. With the mass and the speed dqual
1, the momentum direction can be specified by afiglg = (qs, 0z, Sind, cosd).
Now parametrize the 2-dimensional neighborhood of a trajgcsegment by
6x = (62 60), where

6z = 6q1 cosh — 6, Sing, (8.5)

66 is the variation in the direction of the pinball motion. Daeenergy conserva-
tion, there is no need to keep tracksofj, variation along the flow, as that remains
constant. ddi, 0p) is the coordinate variation transverse to ktiesegment of the
flow. From the Hamilton’s equations of motion for a free paetidqg;/dt = p,
dpi/dt = 0, we obtain the equations of motion (4.1) for the linearinetyhbor-
hood

d d
00 =0 Goz=06. (8.6)

Let 60, = 66(t)) anddz, = dz(t}) be the local coordinates immediately after the
nth collision, andsé;, = 66(t;), 6z, = éz(t;) immediately before. Integrating the
free flight fromt’_, tot; we obtain

0Zy-1 + Tnobn-1, Tn=1th—th1
86n-1, (8.7)

6z,
50,

and the Jacobian matrix (4.38) for theh free flight segment is
1
wroa = (5 7 ) (©.9)

At incidence anglep, (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse Vinesz, projects onto an
arc on the billiard boundary of leng#fz, / cos¢,. The corresponding incidence
angle variations¢n = 67, /pn COSén, pn = local radius of curvature, increases the
angular spread to

67 = -6z,
2

0ty = -06, — pnC—OS¢n62n N (89)
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Figure 8.4: Defocusing of a beam of nearby trajecto-
ries at a billiard collision. (A. Wirzba)

so the Jacobian matrix associated with the reflection is

1o ) , 2 (8.10)

M = - = —
<%) (rn ) e

The full Jacobian matrix fon, consecutive bounces describes a beam of tra-
jectories defocused by along the free flight (the,, terms below) and defo-

cusedrefocused at reflections byir (ther, terms below) exercise 8.4
Y(1 (1 0
M = (_1)npl—n[( L )( b ) (8.12)
=Np

wherery, is the flight time of thekth free-flight segment of the orbit, = 2/, cos¢n
is the defocusing due to thigh reflection, angb, is the radius of curvature of
the billiard boundary at theth scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase-space volume presgndetM = 1,
and the eigenvalues are given by (7.30).

This is an example of the Jacobian matrix chain rule (4.47}lfscrete time
systems (the Heénon map stability (4.48) is another exam3eability of every
flight segment or reflection taken alone is a shear with twoeigenvalues,

1

detMt = det( 0 1

) , detMg= det( rl 2 ) s (8.12)
n

but acting in concert in the interwoven sequence (8.11) dasylead to a hyper-
bolic deformation of the infinitesimal neighborhood of diaild trajectory. exercise 13.7

As a concrete application, consider the 3-disk pinballesysof sect. 1.3. An-
alytic expressions for the lengths and eigenvalue®,df and10 cycles follow
from elementary geometrical considerations. Longer syodguire numerical exercise 13.8

evaluation by methods such as those described in chapter 13. exercise 8.3
chapter 13
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Résum é

A particulary natural application of the Poincaré sectinethod is the reduction
of a billiard flow to a boundary-to-boundary return map.

Commentary

Remark 8.1 Billiards. The 3-disk game of pinball is to chaotic dynamics what a
pendulumis to integrable systems; the simplest physiaahgte that captures the essence

of chaos. Another contender for the title of the *harmoniiketor of chaos’ is the baker’s

map which is used as the red thread through Ott’s introdn¢tichaotic dynamics [1.11].

The baker’'s map is the simplest reversible dynamical systémsh is hyperbolic and

has positive entropy. We will not have much use for the bakedp here, as due to its
piecewise linearity it is so nongeneric that it misses athefsubtleties of cycle expansions
curvature corrections that will be central to this treatise chapter 20

That the 3-disk game of pinball is a quintessential exampléeterministic chaos
appears to have been first noted by B. Eckhardt [8.1]. The hwate studied in depth
classically, semiclassically and quantum mechanicallp.i@aspard and S.A. Rice [8.3],
and used by P. Cvitanovi¢t and B. Eckhardt [8.4] to demotest@pplicability of cycle
expansions to quantum mechanical problems. It has beentaséddy the higher order
7 corrections to the Gutzwiller quantization by P. Gaspard BnAlonso Ramirez [8.5],
construct semiclassical evolution operators and entieetspl determinants by P. Cvi-
tanovic and G. Vattay [8.6], and incorporate thérdiction dfects into the periodic orbit
theory by G. Vattay, A. Wirzba and P.E. Rosenqvist [8.7]. (gzad’s monograph [1.8],
which we warmly recommend, utilizes the 3-disk system in momre depth than will
be attained here. For further links chettkaosBook . org.

A pinball game does miss a number of important aspects oticidymamics: generic
bifurcations in smooth flows, the interplay between regiohstability and regions of
chaos, intermittency phenomena, and the renormalizateory of the ‘border of order’
between these regions. To study these we shall have to facenupch harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smootbmials. The game of pinball
may be thought of as the infinite potential wall limit of a srttopotential, and pinball
symbolic dynamics can serve asavering symbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically r&lan unstable cycle onto the
corresponding one for the potential under investigatidhihgs go well, the cycle will section 29.1
remain unstable and isolated, no new orbits (unaccountebyfdhe pinball symbolic
dynamics) will be born, and the lost orbits will be accourf@tby a set of pruning rules.
The validity of this adiabatic approach has to be checkeeffally in each application, as
things can easily go wrong; for example, near a bifurcatiensame naive symbol string
assignments can refer to a whole island of distinct periodidts.

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monograph [1.8] is rec-
ommended reading if you are interested in Hamiltonian flawsl billiards in particular.

A. Wirzba has generalized the stability analysis of se@tt@scattering fi 3-dimensional
spheres (follow the links ithaosBook.org/extras). A clear discussion of linear sta-
bility for the generatl-dimensional case is given in Gaspard [1.8], sect. 1.4.
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Exercises

8.1

8.2.

8.3.

8.4.

. A pinball smulator.

Implement the disk— disk
maps to compute a trajectory of a pinball for a given
starting point, and a giveR:a = (center-to-center dis-
tance):(disk radius) ratio for a 3-disk system. As this
requires only computation of intersections of lines and
circles together with specular reflections, implementa-
tion should be within reach of a high-school student.
Please start working on this program now; it will be con-
tinually expanded in chapters to come, incorporating the
Jacobian calculations, Newton root—finding, and so on.
Fast code will use elementary geometry (only one
[~ per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work witiR:a = 6 andor 2.5 values. Draw the
correct versions of figure 1.9 or figure 12.3 Ra= 2.5
andor 6.

Trapped orbits.  Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure 1.9 for vari-
ousR:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their es-
cape. Try alsdRka = 6:1, though that might be too thin
and require some magnification. The initial conditions
can be randomly chosen, but need not - actually a clearer
picture is obtained by systematic scan through regions of
interest.

Pinball stability. Add to your exercise 8.1 pinball
simulator a routine that computes thexp Jacobian
matrix. To be able to compare with the numerical re-
sults of coming chapters, work witRa = 6 andor 2.5
values.

Stadium billiard. Consider theBunimovich sta-

dium [8.9, 8.10] defined in figure 8.1. The Jacobian8.6.

matrix associated with the reflection is given by (8.10).

References

8.5. A test of your pinball simulator.

Here we takey = —1 for the semicircle sections of the
boundary, and cag remains constant for all bounces
in a rotation sequence. The time of flight between two
semicircle bounces igc = 2 cospx. The Jacobian ma-
trix of one semicircle reflection folowed by the flight to
the next bounce is

1 2cosp 1 0
(‘1)( o 1" )( ~2/ cossx 1)

-3 2cos
(_1)( 2/ cosgk 1 “ )

J =

A free flight must always be followed By=1,2,3,---
bounces along a semicircle, hence the natural symbolic
dynamics for this problem isary, with the correspond-
ing Jacobian matrix given by sheae.(the eigenvalues
remain equal to 1 throughout the whole rotation), &nd
bounces inside a circle lead to

—2k-1 2kcosp ) (8.13)

¥= Vl)k( 2k/cosp  2k-1

The Jacobian matrix of a cycle of lengthn, is given
by

LY 1
- ke
Jp:(*l)z‘nk ( 0 f )( Nk

8 ) . (8.14)
k=1

Adopt your pinball simulator to the stadium billiard.

Test your exer-
cise 8.3 pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
exercise 13.7 and 13.8.

Birkhoff coordinates.  Prove that the Birkhi coor-
dinates are phase-space volume preserving.
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