Appendix H

Discrete symmetries of dynamics

ASIC GROUP-THEORETIC NOTIONS are recapitulated here: groups, irreducible rep-

B resentations, invariants. Our notation follows birdtisek.

The key result is the construction of projection operatoosnfinvariant ma-
trices. The basic idea is simple: a hermitian matrix can bgatalized. If this
matrix is an invariant matrix, it decomposes the reps of tioelg into direct sums
of lower-dimensional reps. Most of computations to folleaplement the spectral
decomposition

M =/11P1+/12P2+‘”+/1rpr,

which associates with each distinct rogtof invariant matrixM a projection
operator (H.17):

M -1

P = .
/li—ﬂj

j#i

Sects. H.3 and H.4 develop Fourier analysis as an applicafithe general
theory of invariance groups and their representations.

H.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanovit)

We definegroup, representationsymmetry of a dynamical systeamdinvariance
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Group axioms. A groupG is a set of elementsgy, g, g3, . . . for which compo-
sition or group multiplication g o g; (which we often abbreviate @pg;) of any
two elements satisfies the following conditions:

1. Ifg1,02 € G, thengo o g1 € G.
2. The group multiplication is associatives o (g2 © g1) = (g3 © 92) © 0.

3. The groupG containsidentityelemente such thaggo e = eo g = g for every
elementg € G.

4. For every elemerg € G, there exists a unique == g1 € G such that
hog=goh=e.

A finite group is a group with a finite number of elements

G={e®,....0¢]},

where|G|, the number of elements, is teder of the group.

Example H.1 Finite groups: Some finite groups that frequently arise in applica-
tions:
e C, (also denoted Z): the cyclic group of order n.

e Dy the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

e S,: the symmetric group of all permutations of n symbols, order n!.

Example H.2 Lie groups: Some compact continuous groups that arise in
dynamical systems applications:
e S! (also denoted T1): circle group of dimension 1.
e Tpm=StxSt... xS mtorus, of dimension m.
e SQQ2): rotations in the plane, dimension 1. Isomorphic to S*.
e O(2) = S(O2) x Dy: group of rotations and reflections in the plane, of dimension
1

e U(1): group of phase rotations in the complex plane, of dimension 1. Isomorphic
to SO2).

e S(3): rotation group of dimension 3.

e SU?2): unitary group of dimension 3. Isomorphic to SO(3).

e GL(n): general linear group of invertible matrix transformations, dimension n.
e S(n): special orthogonal group of dimension n(n — 1)/2.

e O(n) = SAn) x D1: orthogonal group of dimension n(n — 1)/2.

e S n): symplectic group of dimension n(n+ 1)/2.

e SUN): special unitary group of dimension n? — 1.
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Example H.3 Cyclic and dihedral groups:  The cyclic group C, ¢ SQ2) of order n
is generated by one element. For example, this element can be rotation through 2r/n.

The dihedral group D, c O(2), n > 2, can be generated by two elements one at least
of which must reverse orientation. For example, take o corresponding to reflection in
the x-axis. o> = €; such operation o is called an involution. C to rotation through 2z /n,
then D, = (o, C), and the defining relations are 0> = C" = ¢, (Co)? = e.

Groups are defined and classified as abstract objects bynthdiiplication
tables (for finite groups) or Lie algebras (for Lie groups).hd¥concerns us in
applications is theiactionas groups of transformations on a given space, usually a
vector space (see appendix B.1), but sometimedtareaspace, or a more general
manifold M.

Repeated index summation. Throughout this text, the repeated pairs of up-
perlower indices are always summed over

n
Gabxb = Z Gabxb ) (H.1)
b=1

unless explicitly stated otherwise.

General linear transformations. Let GL(n,FF) be the group of general linear
transformations,

GL(n,F)={g:F" - F"|det@) # 0} . (H.2)

UnderGL(n, F) a basis set o¥ is mapped into another basis set by multiplication
with a [nxn] matrix g with entries in fieldF (F is eitherR or C),

¢2=e(g ).

As the vectorx is what it is, regardless of a particular choice of basis,eurhis
transformation its coordinates must transform as

X;:gabxb-

Standard rep. We shall refer to the set ohjkn] matricesg as astandard rep
of GL(n, F), and the space of ati-tuples &, X2, ..., X,)", X € F on which these
matrices act as thetandard representation space V

Under a general linear transformatigre GL(n, F), the row of basis vectors
transforms by right multiplication a8 = eg™?, and the column oky’s trans-
forms by left multiplication as<’ = gx. Under left multiplication the column
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(row transposed) of basis vectogs transforms a®’' = gfe’, where thedual
repd = (g7 is the transpose of the inverse @f This observation motivates
introduction of adual representation spadé the space on whictL(n, F) acts
via the dual rem’.

Dual space. If V is a vector representation space, thendhal spaceV is the
set of all linear forms oW over the fieldF.

If (&b, ..., e} is a (right) basis oi/, thenV is spanned by thelual basis
(left basis){eq), - - -, &q)}, the set oh linear formsegj) such that

e(i) . e(J) — 5|J ,

wheres? is the Kronecker symbol® = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will herdigiinguished by
upper indices

LA LY. (H.3)

They transform undeGL(n, F) as

Y2 = (g (H.4)

For GL(n, F) no complex conjugation is implied by tHenotation; that interpre-
tation applies only to unitary subgroups®t(n, C). g can be distinguished from
g’ by meticulously keeping track of the relative ordering @ thdices,

®R-0", @)E- . (H.5)

Defining space, dual space. In what followsV will always denote thelefining
n-dimensional complex vector representation space, thatsay the initial, “el-
ementary multiplet” space within which we commence ourlsghtions. Along
with the defining vector representation spaoeomes thelual ndimensional vec-
tor representation spade We shall denote the corresponding elemenY dfy
raising the index, as in (H.3), so the components of definpags vectors, resp.
dual vectors, are distinguished by lower, resp. upper esdic

X = (X, X2,..., %), vV
O %2, xXY) XeV. (H.6)

|
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Defining rep. LetG be a group of transformations acting linearly\éywith the
action of a group elemeigte G on a vectorx € V given by an fxn] matrix g

X, =0’ ab=12....n. (H.7)

We shall refer ta.” as thedefining repof the groupG. The action ofg € G on a
vectorq e V is given by thedual rep[nxn] matrix g':

X/a — b(gT)ba — gabxb. (H.8)

In the applications considered here, the gr@will almost always be assumed
to be a subgroup of thenitary group in which caseg = g, and™ indicates
hermitian conjugation:

(@a" = (@) = da- (H.9)

Hermitian conjugation is efected by complex conjugation and index transpo-
sition: Complex conjugation interchanges upper and loweices; transposition
reverses their order. A matrix lermitianif its elements satisfy

(M2 =M. (H.10)

For a hermitian matrix there is no need to keep track of thativel ordering of
indices, adVlp? = (M")p2 = M3,

Invariant vectors. The vectorg € V is aninvariant vectorif for any transfor-
mationg € G

g=9dg. (H.11)
If a bilinear formM (X, y) = x®MaPyy, is invariant for allg € G, the matrix
Mab = gacgbd Iv'cd (H.12)

is aninvariant matrix Multiplying with g,® and using the unitary condition (H.9),
we find that the invariant matricedmmutewith all transformationg € G:

[g.M] =0. (H.13)
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Invariants. We shall refer to an invariant relation betwepivectors inV and
g vectors inV, which can be written as a homogeneous polynomial in terms of
vector components, such as

H(xy,zr,9) = habcdexbyaSerdzc ) (H.14)

as aninvariant in V9 @ VP (repeated indices, as always, summed over). In this
example, the cdicientsh®®.ye are components of invariant tendoe V3 ® V2.

Matrix representation of agroup. Let us now map the abstract groGghomeo-
morphicallyon a group of matrice®(G) acting on the vector spasg i.e., in such
a way that the group properties, especially the group migléifion, are preserved:

1. Anyg e Gis mapped to a matrik(g) € D(G).

2. The group produaf, o g1 € G is mapped onto the matrix produbig; o
01) = D(92)D(1).

3. The associativity is preserve®(gs o (g2 o g1)) = D(g3)(D(g2)D(01)) =
(D(93)(D(g2))D(91)-

4. The identity elemeng¢ € G is mapped onto the unit matrix(e) = 1 and
the inverse elemerd™ € G is mapped onto the inverse matiiXg™?) =

[D(g)]* = D~X(g).

We call this matrix groud(G) a linear or matrixepresentatiorof the groupG
in therepresentation space.WVe emphasize herfknear’ in order to distinguish
the matrix representations from other representatiortgithaot have to be linear,
in general. Throughout this appendix we only consider limepresentations.

If the dimensionality ol is d, we say the representation is @dimensional
representation We will often abbreviate the notation by writing matride&) e
D(G) asg, i.e., X’ = gxcorresponds to the matrix operatigh= Z?zl D(9)ij Xj-

Character of a representation. The character of,(g) of ad-dimensional rep-
resentatiorD(g) of the group elemery € G is defined as trace

d
Xxa(@) =trD(g) = ) Dii(0).
i=1

Note thaty(€) = d, sinceD;j(e) = ¢;; for 1 < i, j < d.
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Faithful representations, factor group. If the mappingG on D(G) is an iso-
morphism, the representation is said tofaihful. In this case the order of the
group of matricedD(G) is equal to the ordeG| of the group. In general, how-
ever, there will be several elememit& G that will be mapped on the unit matrix
D(h) = 1. This property can be used to define a subgrbug G of the group
G consisting of all elements € G that are mapped to the unit matrix of a given
representation. Then the representation is a faithfulessprtation of théactor
group G/H.

Equivalent representations, equivalence classesA representation of a group
is by no means unique. If the basis in thdimensional vector spadéis changed,
the matriceP(g) have to be replaced by their transformati@igg), with the new
matricesD’(g) and the old matriceB(g) are related by an equivalence transfor-
mation through a non-singular matitx

D’(g) = CD(g)C™.

The group of matrice®’(g) form a representatiod’(G) equivalent to the rep-
resentatiorD(G) of the groupG. The equivalent representations have the same
structure, although the matrices lookfdrent. Because of the cylic nature of the
trace the character of equivalent representations is the sa

x(9) = )" Dj(g) = trD'(g) = tr (CD(Q)C?) .
i=1

Regular representation of a finite group. Theregularrepresentation of a group
is a special representation that is defined as follows: Coenttie elements of a
finite group into a vectofgs, g2, . . ., §g}. Multiplication by any elemeng, per-
mutes{gi, 02, ..., 0g} entries. We can represent the elemgnby the permu-
tation it induces on the components of vectgr, 9o, ...,9g}. Thus fori, j =
1,...,|G|, we define theegular representation

oy ) op g =g, withli=1,...,[G|,
Dij(9) _{ 0 otherwise

In the regular representation the diagonal elements of @ilioes are zero except
for the identity elemeng, = ewith g,g; = gi. So in the regular representation the
character is given by

_[IG] for g=e,
X(g)—{o for g=+e.
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H.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational gaidtom Hermann
Weyl on the “so-called first main theorem of invariant théory

“All invariants are expressible in terms of a finite number amthem We
cannot claim its validity for every grouf®; rather, it will be our chief task to
investigate for each particular group whether a finite intgdpasis exists or not;
the answer, to be sure, will turn oufiamative in the most important cases.”

It is easy to show that any rep of a finite group can be broughitnitary
form, and the same is true of all compact Lie groups. Hencehiat follows, we
specialize to unitary and hermitian matrices.

H.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitarytriraC such that

0 0
L 0 ... 0
cMCT = 0 0 4 0 . (H.15)
0 1
Az ...
0 0 o

Here 4; # A; are ther distinct roots of the minimatharacteristic(or seculaj
polynomial

ﬁ(M -41) =0. (H.16)
i=1

In the matrixC(M — 1,1)C" the eigenvalues correspondingtpare replaced
by zeroes:

A1 — A2
A1 —A2

A3 — Az
Az — Ao
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and so on, so the product over all factaw € 1,1)(M — A31) ..., with exception
of the M — A;1) factor, has nonzero entries only in the subspace assdaiatie
A1

(oNoN
o O
= OO
o

cl[M-ync =] [(a-a)

j#1 j#1

Thus we can associate with each distinct rgcd projection operatorP;,

M -4l
P = , H.17
| 1,—[ T (H.17)

which acts as identity on théh subspace, and zero elsewhere. For example, the
projection operator onto th& subspace is

C. (H.18)

The diagonalization matri is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalisnthiat weneverneed

to carry such explicit diagonalization; all we need are what invariant matrices

M we find convenient, the algebraic relations they satisfgl, @thonormality and
completeness d?;: The matriced?; areorthogonal

PiPj = 6ijPj , (no sum on;j), (H.19)

and satisfy theompleteness relation
r
Z P =1. (H.20)
i=1

As tr (CP,C") = tr P;, the dimension of theh subspace is given by

di=trp;. (H.21)
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It follows from the characteristic equation (H.16) and theni of the projection
operator (H.17) that; is the eigenvalue d¥1 on P; subspace:

MP; = 4P, (no sum on). (H.22)

Hence, any matrix polynomial (M) takes the scalar valug(1;) on theP; sub-
space

f(M)Pi = f()P;. (H.23)

This, of course, is the reason why one wants to work with irciale reps: they
reduce matrices and “operators” to pure numbers.

H.2.2 Irreducible representations

Suppose there exist several linearly independent invdaial] hermitian matrices
M1, M, ..., and that we have usdd; to decompose thd-dimensional vector
spaceV = Vi@ Vo @ ---. CanMy,Ms,... be used to further decomposg?

Further decomposition is possible if, and only if, the imgat matrices commute:

[M1,M3] =0, (H.24)

or, equivalently, if projection operato; constructed fromM, commute with
projection operator®; constructed fronM 1,

PP = PiP;. (H.25)

Usually the simplest choices of independent invariant icegrdo not com-
mute. In that case, the projection operatBrsonstructed fronM , can be used
to project commuting pieces ™ ,:

Mg) = PM2P;, (no sum on).

ThatM g) commutes withM ; follows from the orthogonality oP;:

MY, M1] = > 4[MY, P =0. (H.26)
j

Now the characteristic equation fmg) (if nontrivial) can be used to decompose
V; subspace.
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An invariant matrixM induces a decomposition only if its diagonalized form
(H.15) has more than one distinct eigenvalue; otherwisg firoportional to the
unit matrix and commutes trivially with all group element.rep is said to be
irreducibleif all invariant matrices that can be constructed are priogaal to the
unit matrix.

According to (H.13), an invariant matrM commutes with group transforma-
tions [G, M] = 0. Projection operators (H.17) constructed frivirare polynomi-
als inM, so they also commute with ale G:

[G,P] =0 (H.27)

Hence, aflxd] matrix rep can be written as a direct sum df¥{d;] matrix reps:
G=1Gl= ) PGPj= ) PGP, = ) Gi. (H.28)
L] i i

In the diagonalized rep (H.18), the matgas a block diagonal form:

g 0 O
Cgc'=|0 @ O ‘ ., g=).ClgCi. (H.29)
0 0 ° i

The repg; acts only on theal;-dimensional subspadé consisting of vector®;q,
g € V. In this way an invariantdxd] hermitian matrixM with r distinct eigenval-
ues induces a decomposition oflalimensional vector spadéinto a direct sum
of di-dimensional vector subspacés

v% vievie.. .oV, (H.30)

H.3 Lattice derivatives

In order to set up continuum field-theoretic equations whiescribe the evolution
of spatial variations of fields, we need to deflattice derivatives

Consider a smooth functiaf(x) evaluated on an infinitd-dimensional lattice
de = d(X), X = al = lattice point ¢ e Z9, (H.31)

where a is the lattice spacing. Each set of values¢gk) (a vectorg,) is a
possible lattice configuration. Assume the lattice is hyqssic, and letn, €
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{Ay, Ay, - - -, Ag} be the unit lattice cell vectors pointing along tth@ositive direc-
tions. Thelattice derivativeis then

(9,0), = LW 200 _ Peon (.32

Anything else with the correch — O limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linearatoe, by introducing
the stepping operatom the directionu

(0'#)[]_ = St4y - (H.33)

As o will play a central role in what follows, it pays to undersiawhat it does.

In computer dicretizations, the lattice will be a finidedimensional hyper-
cubic lattice

de = P(X), x = af = lattice point, ¢ e (Z/N)Y, (H.34)

wherea is the lattice spacing and there a¥é points in all. For a hyper-cubic
lattice the translations in flerent directions commuter,o, = o,0,, SO itis
suficient to understand the action of (H.33) on a 1-dimensicatstk.

Let us write dowrv for the 1-dimensional case in its fulNxN] matrix glory.
Writing the finite lattice stepping operator (H.33) as angepshift’ matrix,

01
01
01

(H.35)

S
Il

0 0

is no good, ag so defined is nilpotent, and afthirsteps nothing is lefiyN = 0.
A sensible way to approximate an infinite lattice by a finite @to replace it by a
lattice periodic in each, direction. On geriodic latticeevery point is equally far
from the “boundary”’N/2 steps away, the “surfaceffects are equally negligible
for all points, and the stepping operator acts as a cyclimptation matrix

01
01

01

o= . , (H.36)

1 0
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with ‘1" in the lower left corner assuring periodicity.

Applied to the lattice configuration = (¢1, ¢2, - - -, #n), the stepping operator
translates the configuration by one sit@) = (¢2, @3, -, dn, ¢1). Its transpose
translates the configuration the other way, so the transpgoatso the inverse,
o~ = o7 . The partial lattice derivative (H.32) can now be written asultipli-
cation by a matrix:

1
aygb[ = a (O"u - 1)[] ¢J .

In the 1-dimensional case thi{N] matrix representation of the lattice deriva-
tive is:

(H.37)

1 -1

To belabor the obvious: On a finite lattice Nf points a derivative is simply a
finite [Nx N] matrix. Continuum field theory is a world in which the la#its so
fine that it looks smooth to us. Whenever someone calls sdongedim “operator,”
think “matrix.” For finite-dimensional spaces a linear ageris a matrix; things
get subtler for infinite-dimensional spaces.

H.3.1 Lattice Laplacian

In the continuum, integration by parts movgaround,¢" - 8°¢ — —d¢' - d¢; on
a lattice this amounts to a matrix transposition

[((’ﬂ‘l)¢]T'[((’ﬂ‘1)¢] =" (03t -1 (0 -1) - 0.

If you are wondering where the “integration by parts” minignss, it is there in
discrete case at well. It comes from the identity

1 1
N==(ct-1)=-01(c-1)=-c71.
2 (0' ) o (-1 o
The symmetric (self-adjoint) combinatian= —9"9

19, 2 < 1,
A:—gl;(rfﬂ —1)(0,1—1):—?;(1—5(0'# +a'ﬂ)) (H.38)
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is thelattice Laplacian We shall show below that this Laplacian has the correct
continuum limit. In the 1-dimensional case thé N] matrix representation of
the lattice Laplacian is:

2 1 1
1 -2 1
1 1 -2 1
A= X . (H.39)
1
1 1 -2

The lattice Laplacian measures the second variation of d fielacross three
neighboring sites: it is spatiallyon-local You can easily check that it does what
the second derivative is supposed to do by applying it to aljmda restricted to the
lattice, ¢, = ¢(af), whereg(al) is defined by the value of the continuum function
#(X) = X2 at the lattice poink, = af.

H.3.2 Inverting the Laplacian

Evaluation of perturbative corrections in (28.51) reqgsiiteat we come to grips
with the “free” or “bare” propagatoM. While the the Laplacian is a simple
difference operator (H.39), the propagator is a messier olfjegay to compute
is to start expanding the propagatdras a power series in the Laplacian

1

_ _is Lo«
M_mz_A_mzén@kA. (H.40)

As A is a finite matrix, the expansion is convergent foffisiently largem?. To
get a feeling for what is involved in evaluating such serimluateA? in the
1-dimensional case:

6 -4 1 1 -4
-4 6 -4 1 1
A2 111 -4 6 -4 1 (H.41)
at 1 -4 - 1| '
1 6 -4
-4 1 1 -4 6

What A3, A%, --- contributions look like is now clear; as we include highed an
higher powers of the Laplacian, the propagator matrix fils while theinverse
propagator is dferential operator connecting only the nearest neighbloegrop-
agator is integralpon-localoperator, connecting every lattice site to any other lat-
tice site. In statistical mechanich is the (bare) 2-point correlation. In quantum
field theory, it is called a propagator.

appendSymm - 22sep2010 ChaosBook.org version14, Dec 31 2012



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 855

These matrices can be evaluated as is, on the lattice, anetigoant is eval-
uated this way, but in case at hand a wonderful simplificaf@lows from the
observation that the lattice action is translationallyaiant. We will show how
this works in sect. H.4.

H.4 Periodic lattices

Our task now is to transforrvl into a form suitable to explicit evaluation.

Consider the fiect of a lattice translation — o-¢ on the matrix polynomial
S[o¢] = —1'¢T (O'T M_lo') 1)
> .

As M1 is constructed fromr and its inverse M~! and o commute, and the
function S[o¢] is invariant under translations,

Slod] = Slo] = ~5¢7 Mg, (H.42)

If a function (in this case, the functid|¢]) defined on a vector space (in this case,
the configurationp) commutes with a linear operatot, then the eigenvalues of

can be used to decompose #heector space into invariant subspaces. For a hyper-
cubic lattice the translations inféérent directions commute;, o, = 0,07, SO it

is suficient to understand the spectrum of the 1-dimensional sigppperator
(H.36). To develop a feeling for how this reduction to ineauti subspaces works

in practice, let us continue humbly, by expanding the scdpeiodeliberations to

a lattice consisting of 2 points.

H.4.1 A 2-point lattice diagonalized

The action of the stepping operator(H.36) on a 2-point lattice = (¢1, ¢2) is to
permute the two lattice sites

()

As exchange repeated twice brings us back to the origindlgroation,o? = 1,
the characteristic polynomial of is

(c+1)(c-1)=0,
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with eigenvaluesly = 1,11 = —1. Construct now the symmetrization, antisym-
metrization projection operators

o—-A1 1 1/1 1
Py = = —(1 = — H.43
0= o -3t 2(1 1) (H.43)
o-1 1 11 -1
P om0 =50 ) (H.49)

Noting thatPy + P; = 1, we can project the lattice configuratignonto the two
eigenvectors o

¢ = 1¢=Po-¢+ P19,
¢1\ _ (d1+¢2) 1 (1y (¢1—-¢2) 1 (1
(o) - N @(1)+ V2 @(—1) (H.45)
= gioﬁo + (Zlﬁl . (H.46)

As PoP;1 = 0, the symmetric and the antisymmetric configurations foanssep-
arately under any linear transformation constructed feoand its powers.

In this way the characteristic equatierf = 1 enables us to reduce the 2-
dimensional lattice configuration to two 1-dimensional ®rmen which the value
of the stepping operatar is a numbera € {1, -1}, and the eigenvectors ang =
%(1, 1), Ay = %(1, —1). We have inserted/2 factors for convenience, in order

that the eigenvectors be normalized unit vectors. As we sbal see, §o, ¢1) is
the 2-site periodic lattice discrete Fourier transformhaf field @1, ¢>).

H.5 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional pecitattice withN sites.

Each application of- translates the lattice one step;Nhsteps the lattice is
back in the original configuration

9
z

Il
=
(¢}

o

z

N

so the eigenvalues of are theN distinct N-th roots of unity

j2r
N

N-1
MN-1=[ - D=0, w=¢ (H.47)
k=0

As the eigenvalues are all distinct aNdn number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expoundegpendix H.2)
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associates with thlieth eigenvalue of- a projection operator that projects a con-
figuration¢ ontok-th eigenvector ofr,

O'—/ljl
P. = . H.48
=11 T (H.48)
j#k

A factor (o — 4;1) kills the j-th eigenvectorp; component of an arbitrary vector
in expansionp = --- + g?),-goj + ---. The above product kills everything but the
eigen-directiongg, and the factov]‘[#k(/lk — 4;j) ensures thalPy is normalized as
a projection operator. The set of the projection operaswc®mplete,

D Pe=1, (H.49)
k

and orthonormal
PxPj = 6kjPk (no sum ork) . (H.50)

Constructing explicit eigenvectors is usually not a the lesy to fritter one’s
youth away, as choice of basis is largely arbitrary, and fathe content of the
theory is in projection operators. However, in case at haedeigenvectors are
so simple that we can forget the general theory, and congtrasolutions of the
eigenvalue condition

O Pk = wkgok (H.51)
by hand:
0 1 1 1
0 1 K K
1 0 1 w K 1 w
—— . 3k =W —= 3k
VN K @ N| ¢
0 1
1 o)\ L(N-1Kk W(N-1K

1 =1, (no sum ork)

AR

0
1 K - —(N=-
of = —(1,a) w2, o (N 1)k)- (H.52)
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The eigenvectors are orthonormal
QDE’QDj = 0kj » (H.53)

as the explicit evaluation qﬂ - p; yields theKronecker delta function for a peri-
odic lattice

(H.54)

The sum is over thé&l unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unkess j (mod N), in which
case each term in the sum equals 1.
The projection operators can be expressed in terms of teeegtors (H.51),
(H.52) as
1 ,
(Pee = (@dele)e = SR (nosum ork). (H.55)
The completeness (H.49) follows from (H.54), and the ortnorality (H.50)
from (H.53).

éx, the projection of the configuration on thé-th subspace is given by

(Pe-d)e = ke, (no sum ork)
. 1 N-1 o
= o= — E IRk H.56
Pk b9 N 24 e be ( )

We recognizepy as thediscrete Fourier transfornof ¢,. Hopefully rediscovering
it this way helps you a little toward understanding why Feutransforms are full
of €XP factors (they are eigenvalues of the generator of transistiand when
are they the natural set of basis functions (only if the thdertranslationally
invariant).

H.5.1 Fourier transform of the propagator

Now insert the identity}: Px = 1 wherever profitable:

M= 1M1= PMPe = D ailef - M - gidey, -
kk kk
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The matrix
Mik = () - M - gx) (H.57)

is the Fourier space representationMdf According to (H.53) the matrixJy, =
(e )e = ﬁei%”k" is a unitary matrix, so the Fourier transform is a lineartanyi
transformationUU™ = Y Py = 1, with Jacobian detU = 1. The form of the
invariant function (H.42) does not change undes ¢y transformation, and from
the formal point of view, it does not matter whether we coreputthe Fourier
space or in the configuration space that we started out witit. ekample, the
trace ofM is the trace in either representation

DMy =" (PMPL)
14 kk ¢

D@l - M - @)@l )e = ) Sk Mie = tr M.
K7 K

trM

From this it follows that tM" = trM", and from the tr In= Intr relation that
detM = detM. In fact, any scalar combination ¢fs, J's and couplings, such as
the partition functiorZ[ J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what's the payback?

H.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (H.51) to converhatrices into scalars. W
commutesvith o, the~n (pl ‘M -py) = Mk, and the matridM acts as a multipli-
cation by the scalaM on thekth subspace. For example, for the 1-dimensional
version of the lattice Laplacian (H.38) the projection oekkth subspace is

2 (1, _
Wodon) = 5 (50™+-1) 6w

- % (cos(% k) - l) ki (H.58)

In the k-th subspace the bare propagator is simply a number, andninast to
the mess generated by (H.40), there is nothing to inveing:

Okk’

(@r M- gi) = (Co)kdk = = . (H.59)

1
B - 2 i (cos(fk.) - 1)

wherek = (ki, ko, ---,k,) is ad-dimensional vector in th&ld-dimensional dual
lattice.
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= Cz/f ‘ﬁ\\\ -

Figure H.1: Symmetries of four disks on a square. A /

fundamental domain indicated by the shaded wedge. o]

O]
)

Going back to the partition function (28.51) and stickingttie factors ofl
into the bilinear part of the interaction, we replace thetigpa, by its Fourier
transformJy, and the spatial propagatdvlj, by the diagonalized Fourier trans-
formed Go)x

ITM-3= 30" @ M-l - D = ) JiGoxd. (H.60)
k.k’ k

H.6 C,, factorization

If an N-disk arrangement hasy symmetry, and the disk visitation sequence is
given by disk label$e exes . . .}, only the relative incremenjs = 6.1 — ¢ modN
matter. Symmetries under reflections across axes incrhasgroup toCyy and
add relations between symbolg;} and{N — ¢} differ only by a reflection. As
a consequence of this reflection increments become dectemetil the next re-
flection and vice versa. Consider four equal disks placedhenvertices of a
square (figure H.1). The symmetry group consists of the ityest the two re-
flectionsoy, oy acrossx, y axes, the two diagonal reflectiongs, 024, and the
three rotation$C4, Co andCi by anglesr/2, r and 3r/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute labpeds{1, 2, 3, 4}

by relative incrementg; € {1,2,3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflectiois; ibw sym-
bol will be called 1 Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As ampba consider
the fundamental domain cycle 112. Taking the disk> 1disk 2 segment as the
starting segment, this symbol string is mapped into the disikation sequence
1,12,13;21... = 123, where the subscript indicates the increments (or decre
ments) between neighboring symbols; the period of the cy& is thus 3 in
both the fundamental domain and the full space. Similahnky,dycle112 will be
mapped into 1;2 11 23 12,713,021 = 121323 (note that the fundamental domain
symbol 1corresponds to a flip in orientation after the second and difthbols);
this time the period in the full space is twice that of the fame:ntal domain. In
particular, the fundamental domain fixed points correspgortide following 4-disk
cycles:
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Table H.1: C4, correspondence between the ternary fundamental domaie myclesp™
and the full 4-disk{1,2,3,4 labeled cycle9, together with theC,, transformation that
maps the end point of thp ¢ycle into an irreducible segment of tigecycle. For ty-
pographical convenience, the symbobflsect. H.6 has been replaced by 0, so that the
ternary alphabet i, 1, 2}. The degeneracy of thgcycle ism, = 8ng/np. Orbit2 is the
sole boundary orbit, invariant both under a rotationrtand a reflection across a diagonal.
The two pairs of cycles marked bg)(and ) are related by time reversal, but cannot be
mapped into each other 16, transformations.

[ hs p p hs
0 12 T 0001 12121414 024
1 1234 Cs 0002 12124343 oy
2 13 Cy, 013 0011 12123434 C,
01 1214 024 0012 1212 414134342323C3
02 1243 oy 0021 @) 1213414234312324 c§
12 12413423 C3 0022 1213 e
001 121232343414 C, 0102@) 1214232134324143C,
002 121343 C, 0111 12143234 013
011 121434 oy 0112 ) 12142123 ox
012 121323 013 0121b) 12132124 ox
021 124324 013 0122 12131413 024
022 124213 ox 0211 12432134 o
112 123 e 0212 12431423 024
122 124231342413 C, 0221 12421424 024
0222 12424313 oy
1112 1234234134124123C,
1122 12313413 C,

1222 124241313424 2313C}

4-disk reduced
12 © 1
1234 o 1
13 <—> 2

Conversions for all periodic orbits of reduced symbol peiess than 5 are listed
in table H.1.

This symbolic dynamics is closely related to the group-tbgo structure
of the dynamics: the global 4-disk trajectory can be geedrély mapping the
fundamental domain trajectories onto the full 4-disk spagehe accumulated
product of theC4, group elementgy; = C, g» = C?, 01 = 0diagC = CTaxis
whereC is a rotation byr/2. In the112 example worked out above, this yields
O112 = Q20101 = C2Coaxis = O diag listed in the last column of table H.1. Our
convention is to multiply group elements in the reverse ovdéh respect to the
symbol sequence. We need these group elements for our epxtist dynamical
zeta function factorizations.

TheCy4, group has four 1-dimensional representations, either sstmer(A;)
or antisymmetric &,) under both types of reflections, or symmetric under one and
antisymmetric under the otheB{, B,), and a degenerate pair of 2-dimensional
representationg. Substituting theC,, characters
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o

Cof”|

Q
3
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W

Figure H.2: Symmetries of four disks on a rectangle
A fundamental domain indicated by the shaded wedc

Cay |AL Ao By By E
e 1 1 1 1 2
Co 1 1 1 1 -2
CaCill 1 -1 -1 0
O’axes 1 '1 1 'l 0
O—diag 1 -1 -1 1 0
into (21.15) we obtain:
hﬁ Aq Ay B1 B, E
e (1- tg = (1-t5) (A-t5) (1-tp) (A-tp) (1-tp)*
Cx (1-t)* = (1-tp) (1-tp) (L-tp) (-t (1+ tp)4
CsCy (1- t4)2 = (1-tg) (-t (L+tp) (L+tp) (L+td)

T axes (1—tg = (1—tf)) (1+t[3) (1—t5) (1+t5) (1—tg
T diag: (1—t)4 = (1-tp) (A+tp) (L+tp) (1-tp) (1—t)2

The possible irreducible segment group elemérgsare listed in the first col-
umn; oaxes denotes a reflection across either the x-axis or the y-aris o@iag
denotes a reflection across a diagonal (see figure H.1). liiGddegener-
ate pairs of boundary orbits can run along the symmetry lingke full space,
with the fundamental domain group theory weighgs= (C, + 0x)/2 (axes) and
hp = (C2 + 013)/2 (diagonals) respectively:

A A B B E
(1 - tp)(L - Otp)(L - tp)(L - Otp)(L + tp)?
(1 - tp)(1 - Otg)(L — Otp)(L — tp)(L + tp)*(H.61)

axes: (1-t§)?
diagonals: (} t§)

RS

\

(we have assumed thigtdoes not change sign under reflections across symmetry

axes). For the 4-disk arrangement considered here onlyidgentl orbits3, 24
occur; they correspond to ttfixed point in the fundamental domain.

TheA; subspace i, cycle expansion is given by

1/0p = (1-1to)(1—11)(1 - t2)(1 - tor)(1 - to2)(1 - t12)
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(1 = too1)(1 — too2)(L — to12)(1 — to12) (1 — to21) (1 — to22) (1 — t112)

(1 = t122)(1 — tooo1) (1 — too02) (1 — too11)(1 — too12)(1 — too21) - - -
= 1-to—ty1 -tz — (tor — tots) — (toz — tot2) — (t12 — tat2)

—(too1 — toto1) — (too2 — toto2) — (to11 — tator)

—(to22 — toto2) — (t112 — tat12) — (t122 — tat12)

—(to12 + toz1 + tot1tz — tot12 — tatop — totog) ... (H.62)

(for typographical convenience, 4 replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the characede readfdthe symbol
strings: ya,(hp) = (1), xg,(hs) = ()™, xB,(hp) = (-1)°*™, whereng and

n; are the number of times symbols 0, 1 appear inglsgrmibol string. FoB, all

tp with an odd total number of 0’s and 1’s change sign:

1/¢s, = (L+1to)(1+t1)(1—t2)(1 - tor)(L + to2)(1 + t12)
(1 + too1)(1 — too2)(1 + to11)(1 — t012)(1 — to21)(1 + to22) (1 — t112)
(1 + t122)(1 — tooo1)(1 + to002) (1 — too12)(1 + too12)(1 + too21) - - -
= 1l+to+1ty —to— (tor — tota) + (toz — totz) + (tr2 — tato)
+(too1 — toto1) — (too2 — toto2) + (to11 — tatos)
+(to22 — tolo2) — (112 — tat12) + (tro2 — tot12)
—(to12 + to21 + totatz — tot12 — tatoz — totod) . . . (H.63)

The form of the remaining cycle expansions depends cryaiallthe special role
played by the boundary orbits: by (H.61) the ottbiloes not contribute t8, and
B,

1/4a, = (1+1t0)(1—ta)(1 +tor)(1 + to2)(1 — t12)
(1 = too1)(1 — too2)(1 + to11)(1 + to12)(1 + to21)(1 + to22) (1 — t112)
(1 = t122)(1 + tooo1) (1 + too02) (1 — too11)(1 — too12)(1 — too21) - - -
= 1l+to—ty+ (tor —toty) +to2 — t12
—(too1 — toto1) — (too2 — toto2) + (to11 — tator)
+lo22 — t122 — (t112 — tat12) + (to12 + to21 — tot12 — tatoo) . . (H.64)

and

1/4s, = (1—-1to)(1+ta)(2 +tor)(1 — to2)(1 + t12)
(1 + too1)(1 — too2)(1 — to12)(1 + to12) (1 + toz21) (1 — toz2) (1 — t112)
(1 + t122) (1 + tooo1) (1 — too02) (1 — too11)(L + too12)(L + too21) - - -
= 1-to+1ty+ (tor —tots) —toz + t12
+(too1 — totor) — (too2 — toto2) — (to11 — tator)
—tozz2 + t1zz — (taaz — tats2) + (to12 + toza — tota2 — tatoy) . . (H.65)
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In the above we have assumed thatoes not change sign undgs, reflections.
For the mixed-symmetry subspaEdhe curvature expansion is given by

Ve = 1+t+(—to® +11%) + (2ooz — tote” — 2112 + tts?)
+(2too11 — 2toozz + 2totooz — to1? — toa? + 2t1122— 2toty1o
+12° — t0°t1%) + (2tonooz2 — 2too112+ 2totoo11 — 2too121— 2tooz11
+2tooz22 — 2otoozz + 21012+ 2to1021— 2lo1102— totor? + 2toz022
~totor® + 21112~ 211020+ 2tot1102 — 212120+ bot1o? — tote’H?
+2too2(—to® + t1%) — 2ty1a(—to® + t1%)) (H.66)

A quick test of thet = gAlgAzgglg’BZg’é factorization is &orded by the topo-
logical polynomial; substituting, = Z' into the expansion yields

1/§A1:1_3Za 1/§A2:1/g81:1’ 1/{82:1/gE:1+Z5

in agreement with (15.46). exercise 20.9

H.7 C,, factorization

An arrangement of four identical disks on the vertices ofcéanegle ha€£s,, sym-
metry (figure H.2b).Cy, consists of e, oy, oy, Co}, i.e., the reflections across the
symmetry axes and a rotation by

This system fiords a rather easy visualization of the conversion of a K-dis
dynamics into a fundamental domain symbolic dynamics. Aditdeaving the
fundamental domain through one of the axis may be folded bgck reflection
on that axis; with these symmetry operatiags = ox andg; = oy we asso-
ciate labels 1 and 0, respectively. Orbits going to the diatip opposed disk
cross the boundaries of the fundamental domain twice; théyat of these two
reflections is jusC, = ooy, to which we assign the label 2. For example, a
ternary string 001020.1. is converted into 12143123, and the associated

group-theory weight is given by . g1909290919090.

Short ternary cycles and the corresponding 4-disk cyckebsted in table H.2.
Note that already at length three there is a pair of cycled {0143 and 02k 142)
related by time reversal, bubt by anyC,, symmetries.

The above is the complete description of the symbolic dynarfor 4 suf-
ficiently separated equal disks placed at corners of a rgietaHowever, if the
fundamental domain requires further partitioning, thenaey description is in-
suficient. For example, in the stadium billiard fundamental domone has to
distinguish between bouncesf ¢he straight and the curved sections of the bil-
liard wall; in that case five symbols fice for constructing the covering symbolic
dynamics.
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Table H.2: Cy, correspondence between the terngyl, 2} fundamental domain prime
cyclesp’and the full 4-disk1,2,3,4 cyclesp, together with theC,, transformation that
maps the end point of thp ¢ycle into an irreducible segment of tipecycle. The de-
generacy of thep cycle ismy = 4np/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each oth&@:pyransformations. The full
space orbit listed here is generated from the symmetry exticade by the rules givenin
sect. H.7, starting from disk 1.

p P g p P g
0 14 oy 0001 14143232 C,
1 12 oy 0002 14142323 oy
2 13 C, 0011 1412 e
01 1432 G, 0012 14124143 oy
02 1423 oy 0021 14134142 oy
12 1243 oy 0022 1413 e
001 141232 oy 0102 14324123 oy
002 141323 C, 0111 14343212 C,
011 143412 oy 0112 14342343 oy
012 143 e 0121 14312342 oy
021 142 e 0122 14313213 C,
022 142413 oy 0211 14212312 oy
112 121343 G, 0212 14213243 C,
122 124213 oy 0221 14243242 C,

0222 14242313 oy

1112 12124343 o,

1122 1213 e

1222 12424313 o,

The groupCy,, has four 1-dimensional representations, distinguishethéiy
behavior under axis reflections. T representation is symmetric with respect
to both reflections; thé, representation is antisymmetric with respect to both.
The B; and B, representations are symmetric under one and antisymnuettier
the other reflection. The character table is

Cyy | At Ay By B

e |1 1 1 1
C[1 1 -1 -1
ox |1 -1 1 -1
oy |1 -1 -1 1

Substituted into the factorized determinant (21.14), iha&rdboutions of peri-
odic orbits split as follows

gf) Al A2 B]_ BZ

e (1- tg)4 = (1-tp) (1-tp) (@A-tp) (1-tp)
Cx (1- tg 2 = (1-t) (A-tp) (A-tp) (1-tp)
ox (1-1t8)? (1-tp) (Q+tp) (A-ts) (L+tp)
oy (-t (1-tp) (L+tp) (L+tp) (L-tp)

Cycle expansions follow by substituting cycles and thedugrtheory factors from
table H.2. ForA; all characters arel, and the corresponding cycle expansion is
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given in (H.62). Similarly, the totally antisymmetric syage factorizatior®; is
given by (H.63), theB; factorization ofC,4,. ForB; all t, with an odd total number
of 0’'s and 2's change sign:

1/¢s, = (L+1t0)(1—t)(1+t2)(1 + tor)(1 — to2)(1 + t12)
(1 = too1)(1 + too2)(1 + to11)(1 — t012)(1 — to21)(1 + to22) (1 + t112)
(1 - t222)(1 + tooo1)(1 — too02)(1 — tooa1)(1 + too12)(1 + too21) - - -
= 1l+to—ty +to + (tor — tots) — (toz — tot2) + (tr2 — tato)
—(too1 — toto1) + (too2 — toto2) + (to11 — tatos)
+(to22 — toto2) + (t112 — tat12) — (tr22 — tot12)
—(to12 + to21 + totatz — tot12 — tatoz — totog) . . . (H.67)

For B; all t, with an odd total number of 1's and 2’s change sign:

1/¢s, = (1—-1to)(1+t)(1+t2)(1 + tor)(1 + to2)(1 - t12)
(1 + too1)(1 + too2)(1 — to11)(1 — t012)(1 — to21)(1 — to22) (1 + t112)
(1 + t122) (1 + tooo1) (1 + too02) (1 — too11)(L — too12)(1 — too21) - - -
= 1-to+1ty +1tx+ (tor - tots) + (toz — tot2) — (tr2 — tat2)
+(too1 — toto1) + (too2 — toto2) — (to11 — tator)
—(toz22 — toto2) + (t112 — tat12) + (t122 — tat12)
—(to12 + to21 + totatz — otz — tatoz — totog) . . . (H.68)

Note that all of the above cycle expansions group long otbggther with their
pseudo-orbit shadows, so that the shadowing argument®fwvemence still ap-

ply.

The topological polynomial factorizes as

1 1 1
—_— — = — = 1+ Z,
Z;Az Z;Bl Z;Bz

—=1-3z ,
I

consistent with the 4-disk factorization (15.46).

H.8 Heénon map symmetries

We note here a few simple symmetries of the Henon map (3AaNb # 0 the
Hénon map is reversible: the backward iteration of (3.§8&)iven by

ot = ~£ (1 8%~ ¥oea). (H.69)

appendSymm - 22sep2010 ChaosBook.org version14, Dec 31 2012



EXERCISES 867

Hence the time reversal amountstte» 1/b, a — a/b? symmetry in the param-
eter plane, together witk — —x/b in the coordinate plane, and there is no need
to explore thed, b) parameter plane outside the stog {—1, 1}. Forb = -1 the
map is orientation and area preserving ,

o1 = 1— %G — Xne1, (H.70)

the backward and the forward iteration are the same, andaihewandering set
is symmetric across the,,; = X, diagonal. This is one of the simplest models of
a Poincaré return map for a Hamiltonian flow. For the origoareversingo = 1
case we have

o1 = 1— @ + Xne1, (H.71)

and the non—wandering set is symmetric acrossthe= —x, diagonal.

Commentary

Remark H.1 Literature  This material is covered in any introduction to linear alge-
bra[H.1, H.2, H.3] or group theory [21.15, 10.2]. The expiosigiven in sects. H.2.1 and
H.2.2 is taken from refs. [H.23, H.24, 9.5]. Who wrote thisahofirst we do not know,
but we like Harter’s exposition [H.25, H.26, B.11] best. téais theory of class algebra-
sdfers a more elegant and systematic way of constructing th@mahszet of commuting
invariant matrice$/; than the sketchféered in this section.

Remark H.2 Labeling conventions While there is a variety of labeling conventions [25.19,
9.25] for the reduce@,4, dynamics, we prefer the one introduced here because obds cl
relation to the group-theoretic structure of the dynamiis:global 4-disk trajectory can

be generated by mapping the fundamental domain trajestorito the full 4-disk space

by the accumulated product of tlk, group elements.

Remark H.3 C,, symmetry  C,, is the symmetry of several systems studied in the
literature, such as the stadium billiard [8.10], and therRahsional anisotropic Kepler
potential [21.3].

Exercises

H.1. Amlagroup?  Show that multiplication table
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H.2.

H.3.

exerAppSymm - 1feb2008

-0 0T DO

-~ 0 0O T @D
O -0 Qoo
DO -0 T|T
(eI Yol ok
D T QYO —H—

OV DT OO

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix H.1.)

From W.G. Harter [B.11]

Three coupled pendulums with aC, symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same masws and lengtH, the one midway of same
length but diferent mas#, with the tip coupled to the
tips of the outer ones with springs offtiessk. Assume
displacements are smak,/l < 1.

(a) Show that the acceleration matkix —axis

el a+b -a 0 X1
X |==-| -¢c 2c+b -c X2 |,
X3 0 -a a+b X3

wherea = k/ml, ¢ = k/Ml andb = g/I.

(b) Check that § R] = 0, i.e., that the dynamics is
invariant undeiC, = {e R}, whereR interchanges the
outer pendulums,

0 10
1 00

0 01
R- }

(c) Construct the corresponding projection operalars
andP_, and show that the 3-pendulum system decom-
poses into a 1-dimensional subspace, with eigenvalue
(w)? = a+ b, and a 2-dimensional subspace, with
acceleration matrix (trust your own algebra, if it strays
from what is stated here)

a+b -+v2a

a0 =
-v2c c+b

The exercise is simple enough that you can do it with-
out using the symmetry, so: construt, P_ first, use
them to reducato irreps, then proceed with computing
remaining eigenvalues af

(d) Does anything interesting happerMf= m?

The point of the above exercise is that almost always the
symmetry reduction is only partial: a matrix representa-
tion of dimensiond gets reduced to a set of subspaces
whose dimensiond® satisfyy. d® = d. Beyond that,
love many, trust few, and paddle your own canoe.

From W.G. Harter [B.11]

Lorenz system in polar coordinates: dynamics.
(continuation of exercise 9.8)
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1. Show that (9.29) has two equilibria:

(ro.20) = (0,0), 6 undefined
(r,61,z2) = (V2b(o—1),7/4,p (HLY2)

2. Verify numerically that the eigenvalues and eigen-

vectors of the two equilibria are (we list here
the precise numbers to help you check your pro-
grams):

EQ, = (0, 12 27) equilibrium: (and itsCY2-
rotationEQ,) has one stable real eigenvalue
AW = -13854578,

and the unstable complex conjugate pair
123 = @ +iw® = 0.093956+ i10.194505.
The unstable eigenplane is defined by eigen-
vectors

Reel = (-0.4955 —0.201Q —0.8450)

Im e® = (0.5325 -0.8464 0)

with periodT = 27/w® = 0.6163306,

radial expansion multiplier

Ar = exp(2ru®@/w®) = 1.059617,

and the contracting multiplier

Ac = exp(2uP/w®) ~ 1.95686x 104

along the stable eigenvectorBf);,

e® = (0.8557 —0.3298 -0.3988).

EQ = (0,0,0) equilibrium: The stable eigen-
vectore® = (0,0, 1) of EQy, has contraction rate
1@ = _p=-2666...

The other stable eigenvector is

e = (-0.244001-0.9697750), with contract-
ing eigenvalue

1@ = _228277. The unstable eigenvector

e® = (-0.6530490.7573160) has eigenvalue
A® =118277.

. Plot the Lorenz strange attractor both in the

Lorenz coordinates figure 2.5, and in the doubled-
polar angle coordinates (9.24) for the Lorenz pa-
rameter values = 10,b = 8/3, p = 28. Topolog-
ically, does it resemble the Lorenz butterfly, the
Rossler attractor, or neither? The Poincaré sec-
tion of the Lorenz flow fixed by the-axis and the
equilibrium in the doubled polar angle represen-
tation, and the corresponding Poincaré return map
(sh, S + 1) are plotted in figure 11.8.

4. Construct the Poincaré return map, 6+1),
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WhatA3, A4, - - - contributions look like is now clear; as

20 we include higher and higher powers of the Laplacian,
’ the propagator matrix fills up; while thiaversepropa-
gator is diferential operator connecting only the nearest
neighbors, the propagator is integral operator, connect-
ing every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer
cise H.5.

20

wheres s arc-length measured along the unstable
manifold of EQy, lower Poincaré section of fig-
ure 11.8(b). Elucidate its relation to the Poincaré -
return map of figure 11.9. (plot by J. Halcrow)

5. Lattice Laplacian diagonalized. Insert the iden-
tity 3, P® = 1 wherever you profitably can, and use the
eigenvalue equation (H.51) to convert shiftmatrices

5. Show that if a periodic orbit of the polar represen- into scalars. M commutesvith o-, then (0:(' M- gp) =
tation Lorenz is also periodic orbit of the Lorenz M®s, and the matrixM acts as a multiplication by
flow, their Floquet multipliers are the same. How the scalaM® on thekth subspace. Show that for the 1-
do the Floquet multipliers of relative periodic or- dimensional version of the lattice Laplacian (H.39) the
bits of the representations relate to each other? projection on thékth subspace is

6. What does the volume contraction formula (4.43)
look like now? Interpret.

H.4. Laplacian is a non-local operator. (gol A ) = % (cos(z—l\jlr k) - 1) ke . (H.75)
While the Laplacian is a simple tri-diagonali@girence
operator (H.39), its inverse (the “free” propagator of sta-
tistical mechanics and quantum field theory) is a messier In the kth Subspace the propagator is S|mp|y a number,
object. A way to compute is to start expanding propaga-  and, in contrast to the mess generated by (H.73), there i

tor as a power series in the Laplacian nothing to evaluating:
1 1o 1
———=— > —-A". H.73
ml-A n? Z mén ( ) .1 Sk
n=0 f
. - . L LA KT m_ 2 HKN = 1 .(H.76)
As A is a finite matrix, the expansion is convergent for — {maz (COS Zk/N - 1)

sufficiently largem?. To get a feeling for what is in-

volved in evaluating such series, show thats: _ o ) ) _
wherek is a site in theN-dimensional dual lattice, and

i _é' 1‘1 1 1 -4 a = L/N is the lattice spacing.
, 1|1 -4 6 -4 1
AT = 2 1 -4 - '(H'7A11I.6. Fix Predrag’s lecture od Feb 5, 2008. Are theC;
6 _4 frequencies on pp. 4,5 correct? If not, write the correct
4 1 1 -4 6 expression for the beat frequency.
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