Appendix B

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas KuhnThe Structure of Scientific Revolu-
tions

way beyond what we can exhaustively cover. Here we recapitid few

THE SUBJECT OF LINEAR ALGEBRA generates innumerable tomes of its own, and is
essential concepts that ChaosBook relies on. The puncisligg. (B.25):

Hamilton-Cayley equatiofif (M — 4;1) = 0 associates with each distinct root
Ai of a matrixM a projection ontath vector subspace

M - 451
/li—/lj :

P =
j#i

B.1 Linear algebra

In this section we collect a few basic definitions. The readight prefer going
straight to sect. B.2.

Vector space. A setV of element,y, z,... is called avector(or linear) space
over a fieldF if

(a) vector addition“+” is defined inV such thatV is an abelian group under
addition, with identity elemert;
(b) the set ilosedwith respect tascalar multiplicationand vector addition

ax+y) = ax+ay, abeF, xyeV
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(@a+b)x = ax+bx
a(bx) = (abx
1x = X, 0x =0. (B.1)

Here the fieldF is eitherR, the field of reals numbers, @, the field of complex
numbers. Given a subs¥g c V, the set of all linear combinations of elements of
Vo, or thespanof Vj, is also a vector space.

Abasis. {e),..., ¥} s any linearly independent subset\6ivhose span i¥.
The number of basis elemerdss thedimensiorof the vector spac¥.

Dual space, dual basis. Under a general linear transformatigre GL(n, F), the
row of basis vectors transforms by right multiplicationed® = Y, (g71)i, e,
and the column ofky’s transforms by left multiplication ax’ = gx. Under
left multiplication the column (row transposed) of basistees gy transforms
asg(j) = (g")j*ey, where thedual repg’ = (g™)7 is the transpose of the inverse
of g. This observation motivates introduction oflaal representation spadé,
the space on whicBL(n, F) acts via the dual reg’.

Definition. If V is a vector representation space, thendbal space\7 is the set
of all linear forms onV over the fieldF.

If (e, é¥) is a basis o¥/, thenV is spanned by theual basisieq), - - -, &)},
the set ofd linear formsey, such that

K k

& - &9 =4,
whereé‘j‘ is the Kronecker symboB‘j( = 11if j = k, and zero otherwise. The
components of dual representation space vegter¥ will here be distinguished

by upper indices

0LV YY) (B.2)
They transform undeGL(n, F) as

Y=gy’ (B.3)

For GL(n, F) no complex conjugation is implied by tHenotation; that interpre-
tation applies only to unitary subgroupn) c GL(n,C). In the index notation,
g can be distinguished frorg’ by keeping track of the relative ordering of the
indices,

@2 - (@8- Pa. (B.4)
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Algebra. A set of r elementst, of a vector spacg” forms an algebra if, in
addition to the vector addition and scalar multiplication,

(a) the set ilosedwith respect to multiplicatioly - 7~ — 77, so that for any
two elements,, ts € 7, the product, - tz also belongs ta™

r-1
ty - t/; = Z Ta/gyty s Taf/gy eC; (BS)
y=0

(b) the multiplication operation idistributive

(te+tp)-t, = to-t,+tg-t,
ty-(tp+t) = ty-tg+ts-t,.

The set of numbers,z” are called thestructure constantsThey form a matrix
rep of the algebra,

(tu)ﬁy = Trz/}y 5 (BB)

whose dimension is the dimensionf the algebra itself.

Depending on what further assumptions one makes on thepiicdtion, one
obtains diferent types of algebras. For example, if the multiplicattomssociative

(to - tg) -ty =ty - (tg- 1)),
the algebra isissociative Typical examples of products are thmatrix product
(to )i = 0B,  tecVOV. ®7)
and theLie product
(te - 19)3 = (02 — WE)R,  tac VOV (B.8)

which defines d.ie algebra

B.2 Eigenvalues and eigenvectors

Eigenvalues of a [dxd] matrix M are the roots of its characteristic polynomial

detM — A1) = ﬂ(zi - =0. (B.9)

appendstability - 23jan2012 ChaosBook.org version14, Dec 31 2012

APPENDIX B. LINEAR STABILITY 790

Given a nonsingular matrik, with all 4; # 0, acting ond-dimensional vectors
x, we would like to determineigenvectors) of M on whichM acts by scalar
multiplication by eigenvalug;

Me® = ;e . (B.10)

If 4 # 2;, € and e are linearly independent. There are at mostistinct
eigenvalues and eigenspaces, which we assume have beentedny some
method, and ordered by their real parts,/Re ReAi,1.

If all eigenvalues are distinct &) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for dsimensional vectox € RY

X =% €0 4 36 4. 4 xq e (B.11)
From (B.10) it follows that
M -4 D = - 2)e?,

matrix (M — ;1) annihilatese®), the product of all such factors annihilates any
vector, and the matri¥ satisfies its characteristic equation (B.9),

d
l—[(M — A1) =0. (B.12)
i=1

This humble fact has a name: the Hamilton-Cayley theoremelfielete one term
from this product, we find that the remainder projectsnto the corresponding
eigenspace:

l_[(M — X = ﬂui —2)%e".

j# j#i

Dividing through by the {; — 1;) factors yields therojection operators

M - 251
P B.1
| IJ] A=y ®19

which areorthogonalandcomplete

r
PiP; = 6ijPj, (nosum onj), ZPizl. (B.14)

m
N
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It follows from the characteristic equation (B.12) thats the eigenvalue d¥1 on
Pi subspace:

MP; = AP (no sum on). (B.15)
UsingM = M 1 and completeness relation (B.14) we can rewvitas
M = 43Py + 2P + - - +/1de. (BlG)

Any matrix functionf(M) takes the scalar valu;) on theP; subspacef(M) P; =
f(4;) P, and is thus easily evaluated throughsfeectral decomposition

f(M) =D ()P ®.17)

This, of course, is the reason why anyone but a fool works imigtlucible reps:
they reduce matrix (AKA “operator”) evaluations to manigtitns with numbers.

By (B.10) every column of; is proportional to a right eigenvectef), and
its every row to a left eigenvectey;). In general, neither set is orthogonal, but by
the idempotence condition (B.14), they are mutually ortinad,

ey - e = co. (B.18)

The non-zero constantis convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan fiméents. We shall set = 1. Then itis
convenient to collect all left and right eigenvectors intsirggle matrix as follows.

Fundamental matrix. The set of solution(t) = J'(xg)%o for a system of ho-
mogeneous linear fierential equation(t) = A(t)x(t) of order 1 and dimension
d forms ad-dimensional vector space. A bag&(t), ..., e (t)) for this vector

space is called fundamental systenkvery solutionx(t) can be written as

d
X(t) = Z G eV).
i=1

The [dxd] matrix Fﬁl = e-l(j) whose columns are the right eigenvectors)'of

FO = EV0,....e%M),  FO = (ew®).....eq®) (B.19)

is the inverse of &undamental matrix
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Jacobian matrix. The Jacobian matri¥d!(xg) is the linear approximation to a
differentiable functiofit(xo), describing the orientation of a tangent plane to the
function at a given point and the amount of local rotation ahdaring caused
by the transformation. The inverse of the Jacobian matria @finction is the
Jacobian matrix of the inverse function. fifis a map fromd-dimensional space
to itself, the Jacobian matrix is a square matrix, whoserdetent we refer to as
the ‘Jacobian.’

The Jacobian matrix can be written as transformation frosishat timetg to
the basis at timé,

J170(x0) = F(ta)F(to) ™ (B.20)

Then the matrix form of (B.18) i§(t)F(t) = 1, i.e., for zero time the Jacobian

matrix is the identity. exercise B.1

Example B.1 Fundamental matrix. If A is constant in time, the system (4.2) is
autonomous, and the solution is

x(t) = e*'x(0),
where exp(At) is defined by the Taylor series for exp(x). As the system is linear, the sum
of any two solutions is also a solution. Therefore, given d independent initial conditions,
x1(0), X2(0), . .. X4(0) we can write the solution for an arbitrary initial condition based on
its projection on to this set,

X(t) = F(t) F(0)x(0) = €,

where F(t) = (xa(t), X(t), . . ., Xa(t)) is a fundamental matrix of the system. (J. Halcrow)

exercise B.1

Example B.2 Complex eigenvalues. ~ As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining a dynamical flow are real numbers, so what is the meaning
of a complex eigenvector?

If A, A+1 eigenvalues that lie within a diagonal [2 x 2] sub-block M’ c M
form a complex conjugate pair, {A, A1} = {u + iw, u — iw)}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {€¥, el —
(Ree® Ime®}. In this 2-dimensional real representation, M’ — N, the block N is a
sum of the rescalingxidentity and the generator of SQ(2) rotations

(n —w\_ (1 O) (O —l)
N_(a) p)‘“(o 1)\ o)
Trajectories of X = N x, given by x(t) = J'x(0), where

Jt=@N :ew(cpswl —Slnwt), ®.21)
sinwt  coswt
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spiral infout around (x,y) = (0,0), see figure 4.3, with the rotation period T and the
radial expansion /contraction multiplier along the €) eigen-direction per a turn of the

spiral:

T=2r/w, Aradial = e, (B.22)

We learn that the typical turnover time scale in the neighborhood of the equilibrium

(x,y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 107°T).

Error correlation matrix.  In the sect. 17.4 calculation of Lyapunov exponents
we do not care about the orientation of the vector betweegjectory and its per-
turbation, but only its magnitude. This magnitude is givgitHeerror correlation
matrix

90| = x0T () 6% (8.23)

As J is in general not symmetric and not diagonalizable, it is etimes more
convenient to work with the symmetric and diagonalizabldrind = (J‘)TJt,
with real positive eigenvalue$A 1> > ... > |Ag[?}, and a complete orthonormal
set of eigenvectors dfi, .. ., ug}.

Degenerate eigenvalues. While for a matrix with generic real elements all eigen-
values are distinct with probability 1, that is not true iregence of symmetries,
or spacial parameter values (bifurcation points). Whataransay about situation
whered, eigenvalues are degeneralg,= 1 = di;1 = - -+ = Aj;q,-1? Hamilton-
Cayley (B.12) now takes form

r
[[M-2p*=0.  >d=d. (B.24)
a=1 a
We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (B.24) can be
replaced by the minimal polynomial,
r
[|m-22=0, (B.25)

a=1

where the product includes each distinct eigenvalue ongeorMatrix M acts
multiplicatively

Me@h = gelek) (B.26)
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on ad,-dimensional subspace spanned by a linearly independérdf smsis
eigenvectorge), ge2) ... daddy This is the easy case whose discussion we
continue in appendix H.2.1. Luckily, if the degeneracy is tlua finite or compact
symmetry group, releval matrices can always be brought to such Hermitian,
diagonalizable form.

M can only be brought to upper-triangular, Jordan form.  This is the messy
case, so we only illustrate the key idea in example B.3.

Example B.3 Decomposition of 2-dimensional vector spaces:  Enumeration of
every possible kind of linear algebra eigenvalue / eigenvector combination is beyond
what we can reasonably undertake here. However, enumerating solutions for the sim-

plest case, a general [2x2] non-singular matrix

_( M Mg
M _( Ma1 Mgz )

takes us a long way toward developing intuition about arbitrary finite-dimensional ma-

trices. The eigenvalues

A1 = %tr M + % V(trM)2 — 4 detM (B.27)

are the roots of the characteristic (secular) equation (B.9):

detM —11) = (d1—A)(2—2)
22 —trM A +detM = 0.

Distinct eigenvalues case has already been described in full generality. The left/right

eigenvectors are the rows/columns of projection operators

M-l M -4l
T P

Degenerate eigenvalues.if 1; = 1, = A, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension we
continue in appendix H.2.1. (b) M can be brought to Jordan form, with zeros every-
where except for the diagonal, and some 1's directly above it; for a [2x 2] matrix the

Jordan form is

M=o ) =) ¥=(7):

v helps span the 2-dimensional space, (M — 1)V = 0, but is not an eigenvector, as
Mv®@ = av®@ + &b, For every such Jordan [d,xd,] block there is only one eigenvector

per block. Noting that

m_ /lm m/l"H
wo-( M),
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we see that instead of acting multiplicatively on R?, Jacobian matrix J' = exptM)

oM (\lj) _ en(u + tV) (B.29)

\

picks up a power-low correction. That spells trouble (logarithmic term Int if we bring
the extra term into the exponent).

Example B.4 Projection operator decomposition in 2 dimensions: Let’s illus-
trate how the distinct eigenvalues case works with the [2x2] matrix

-3 3)

Its eigenvalues {11, A2} = {5, 1} are the roots of (B.27):
detM —11) =2 -61+5=(5-2)(1-2) =0.

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:

(5 2 (5 2)+s(6 9=(6 o)

Associated with each root A; is the projection operator (B.28)

1 13 1

PL o= Z(Mfl):Z(s 1) (8.30)
1 101 -1

P, = Z(M—S-l):z(_B 3) (B.31)

Matrices P; are orthonormal and complete, The dimension of the ith subspace is given
by di = trP;; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that P; satisfies the eigenvalue equation MP; = A;P;. Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

, i (58591 19533
M -3.1=(5 —3)P1+(1—3)P2_(58593 lomod -

Second, as P; satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

1 1
1) 2y _
e - (3).(2)
e = {(3 1),(1 -1),
with overall scale arbitrary. The matrix is not hermitian , so {€1)} do not form an orthog-

onal basis. The left-right eigenvector dot products e, - €9, however, are orthogonal
as in (B.18), by inspection.
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Example B.5 Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then € is given by

At eht
Aot elet
exp . =

Agt eldt

If Ais diagonalizable, A = FDF~1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
A" = (FDFY)(FDF™Y)...(FDFY) = FD"F~1. Inserting this into the Taylor series for
e gives e = FePtF1,

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2x2] matrices. For any
linear system in R?, there is a similarity transformation

B=U"AU,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

(A2 0 (a1 (M ~w
87(0 ;1)’ B7(0 /1)’ Bf(w ,u)'
These three cases, called normal forms, correspond to A having (1) distinct real eigen-

values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

g (€Y 0 Bt oafl t Bt _at(COSbt —sinbt
=(G er) F=e(g 1) F=(Gnnt comt)

and e* = UeB'U~. What we have done is classify all [22] matrices as belonging to one
of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to RY is called the Jordan normal form. (J. Halcrow)

B.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King

| got forty red white and blue shoe strings

And a thousand telephones that don’t ring

Do you know where | can get rid of these things?
— Bob Dylan,Highway 61 Revisited

Table B.1, taken from ref. [B.1], is an example of how to taielthe leading
Floquet eigenvalues of the stability matrix of an equiliioni or relative equilib-
rium. The isotropy subgrouﬁ;(E')Q of the corresponding eigenfunction should be
indicated. If the isotropy is triviang) = {e}, it is omitted from the table. The
isotropy subgrouisgq of the solution itself needs to be noted, and for relative
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Table B.1: The first 27 least stable Floquet exponents y + i w of equilibrium EQs for plane
Couette flowRe= 400. The exponents are ordered by the decreasing real eertwb zero expo-
nents, to the numerical precision of our computation, driz@ the two translational symmetries.
For details, see ref. [B.1].

i wls 195
12 | 007212161 004074989 SSS
3 | 0.06209526 SAA
4 | 006162059 ASA
56 | 002073075 007355143 SSS
7 | 0.009925378 SAA

8,9 | 0.009654012 0.04551274 AAS
10,11 | 0.009600794 0.2302166 SAA

12,13 | 1.460798e-06 = 1.542103e-06 - -A
14,15| -0.0001343539 0.231129 AAS
16 | -0.006178861 ASA
17,18 | -0.007785718  0.1372092 AAS
19 | -0.01064716 SAA

20,21 -0.01220116 0.2774336 SSS
22,23 | -0.01539667 0.2775381 SAA
24,25 -0.03451081 0.08674062 ASA
26,27| -0.03719139 0.215319 SAA

equilibrium (10.30) the velocitg along the group orbit. In addition, if the least
stable (i.e., the most unstable) eigenvalue is complexs ftelpful to state the
period of the spiral-out motion (or spiral-in, if stabl@)q = 27r/a)(El)Q.

Table B.2, taken from ref. [B.3], is an example of how to talelthe leading
Floquet exponents of the monodromy matrix of an periodigtarbrelative pe-
riodic orbit. For a periodic orbit one states the perigd Ap = [T Ape, and the
isotropy groupG,, of the orbit; for a relative periodic orbit (10.35) one state
addition the shift parameters = (¢1, ¢2,- - én). Ap, the product of expanding
Floguet multipliers (5.7) is useful, ag|Ap| is the geometric weight of cyclp
in a cycle expansion (remember that each complex eigencaluigibutes twice).
We often do care about(p’) = Apj/|Apjl € {+1,-1}, the sign of thejth Floquet
multiplier, or, if Ay j is complex, its phasﬁpw(p”.

Surveying this multitude of equilibrium and Floquet expotseis aided by a
plot of the complex exponent plang, v). An example are the eigenvalues of
equilibrium EQg from ref. [B.2], plotted in figure B.1. To decide how many of
the these are “physical” in the PDE case (where number ofrexms is always
infinite, in principle), it is useful to look at thej,u") plot. However, intelli-
gent choice of thg-axis units can be tricky for high-dimensional problemsr Fo
Kuramoto-Sivashinsky system the correct choice are theewaavnbers which,
due to the O(2) symmetry, come in pairs. For plane Couettetfievgood choice
is not known as yet; one needs to group O%2p(2) wave-numbers, as well as
take care of the wall-normal node counting.
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Figure B.1: Eigenvalues of the plane Couette flon o4 EQ
equilibrium EQs, plotted according to their isotropy | 8
groups: ® + + +, the S-invariant subspacep + — —, 4
<4 -+ -, and A - — +, where+ symbols stand o
for symmetrigantisymmetric under symmetry opera- 4 a
tion s;, s, and s respectively, defined in ref. [B.2]. o <t

For tables of numerical values of stability eigenvalue ™
seeChannelflow.org.

-0.4
-0.05 0 0.05 0.1

Table B.2: The first 13 least stable Floquet exponehts y + i w of periodic orbitp = P59.77 for
plane Couette flonRe = 400, together with the symmetries of corresponding eigemve. The
eigenvalues are ordered by the decreasing real part. Thesva@igenvalue, to the numerical pre-
cision of our computation, arises from the spanwise traiosial SO(2) symmetry of this periodic
orbit. For details, see ref. [B.3].

Pole W o Y
12 0.07212161  0.04074989 D
3 1 0.06209526 ?
4 | -1 0.06162059
5,6 0.02073075  0.07355143
-1 0.009925378
8,9 0.009654012 0.04551274
10,11 0.009600794 0.2302166

B.4 Stability of Hamiltonian flows

¢S

(M.J. Feigenbaum and P. Cvitanovic)

The symplectic structure of Hamilton’s equations buys usmonore than the
incompressibility, or the phase space volume conservatioded to in sect. 7.1.
The evolution equations for any g dependent quantit®) = Q(q, p) are given by
(16.31).

In terms of the Poisson brackets, the time-evolution eqodtr Q = Q(q, p)
is given by (16.33). We now recast the symplectic conditio®)in a form con-
venient for using the symplectic constraints kg Writing x(t) = X' = [p/, ]
and the Jacobian matrix and its inverse

o og 29 5q
—| 99 dp -1 _| oq ap
M—[m @]’ M —[@ @]’ (B.32)
aq ap g  Ip

we can spell out the symplectic invariance condition (7.9):

aq, dp,  Idp Ig;

_k_k _ k& _ o
0qi 9q;  9q; oq;
opi op;  9p; Ip;
aq. op,  dp, 0q,
G U L A 03
4G opj  9q; Ip;
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From (7.26) we obtain

oG _ 9P op 9% g _ 94 op _ ¥

=1 Sh_J % L R B.34
o, dpi op; oq - op;  dp oqp g (639

Taken together, (B.34) and (B.33) imply that the flow conseerthe{p, g} Poisson
brackets

dg 0d; 949 dq;
{g.9;} = L2
& Ip g, Ip g
{pi.pj} = 0, {pi,dj} = dij (B.35)

i.e., the transformations induced by a Hamiltonian flowameonical preserving
the form of the equations of motion. The first two relations symmetric under
i, j interchange and yiel®(D — 1)/2 constraints each; the last relation yiel%
constraints. Hence only [®? — 2D(D — 1)/2 — D? = d(2D + 1) elements oM
are linearly independent, as it behooves group elementsea$ytmplectic group
S [(2D).

B.5 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrid of the flow (4.6), but themonodromy matrix M
which enters the trace formula. This matrix gives the timpesielence of a dis-
placement perpendicular to the flow on the energy manifoldeéd, we discover
some trivial parts in the Jacobian matdx An initial displacement in the direc-
tion of the flowx = wVH(X) transfers according téx(t) = x(t)st with 6t time
independent. The projection of any displacemenéxon VH(x) is constant, i.e.,
VH(X(t))ox(t) = 6E. We get the equations of motion for the monodromy matrix
directly choosing a suitable local coordinate system onoté x(t) in form of
the (non singular) transformatidg(x(t)):

JOx(t)) = UTH(x(t) I(x(1)) U(x(0)) (B.36)
These lead to

= LJ

J
L = uu-v (B.37)

with

Note that the properties a) — c) are only fulfilled thandL if U itself is symplec-
tic.
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Choosingxe = VH(t)/|[VH(t)? and x; as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (B.36)aal timet. Setting
U= (. xLX]..... X0, ) gives

1 % = L% 0 % = . *
010 0 00O0..0
j=]0 = : =0 = , (B.38)
Do M |
0 = 0 =

The matrixM is now the monodromy matrix and the equation of motion arergiv
by

M=IM. (B.39)

The vectorsx, ..., Xog—2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the malti{X) can be written
down explicitly, i.e.,

X -y -U/? v/

_ |y x —we wq
U(t) = (%, X1, Xg, X2) = 0oV YRy (B.40)

Vo-U oy X/

with X = (x,y;u,v) andq = |[VH| = |x. The matrixU is non singular and
symplectic at every phase space poinexcept the equilibrium points= 0. The
matrix elements fot are given (B.42). One distinguishes 4 classes of eigenvalue
of M.

o stableor elliptic, if A = e andv €]0, 1[.
e marginal if A = +1.
o hyperbolic inverse hyperbolicif A = €4, A = —e**.

o loxodromig if A = e*#** with z andw real. This is the most general case,
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.84, is a [2<2] matrix, the eigenvalues are determined
by

_ tr(M) = ytr(M)2 -4

1 2

(B.41)
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i.e., tr(M) = 2 separates stable and unstable behavior.

Thel matrix elements for the local transformation (B.40) are

Ty = I~ 6 =+ ) = o)+ 200y~ ) + )
=(hxhy + hyhy)(hxx + By = huy = hw)]

M = q—lzl(hi + R2)(Byy + Pu) + (02 + F2) (e + i)
=2(hxhy + hyhv)(hxu + hyv) - 2(hxhy - huhv)(hxy = hu)]

o1 = —(hZ+h2)(hu+hw) = (02 + W) (hex + hyy)

+2(hxhy = hyhy)(hxu = hyy) + 2(hchy + hyhy) (hey + Byw)

2 = -Ti, (B.42)

with h;, hjj is the derivative of the HamiltoniaH with respect to the phase space
coordinates and = [VH/[2.
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EXERCISES

802

Exercises

B.1. Real representation of complex eigenvalues. (Ver-
ification of example B.2.)Ay, Ak.1 eigenvalues form a
complex conjugate paifdy, A1} = {4 + iw,u — iw}.
Show that

(a) corresponding projection operators are complex
conjugates of each other,

P =P, P* = Py,
where we denotBy by P for notational brevity.
(b) P can be written as

1 )
P= E(RHQ)’

References

whereR = Py + Py,1 andQ are matrices with re
elements.

©  (pn)=2 Q)

(d) - -+AkPy+AxPys1+- - - complex eigenvalue pair
the spectral decomposition (B.16) is now repl
by a real [2<2] matrix

2

or whatever you find the clearest way to write
real representation.
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