Appendix F

| mplementing evolution

F1 Koopmania

its downstream value timdater,a(x) — a(x(t)), evaluated at the trajectory

THE KoopmAN OPERATOR action on a state space functiax) is to replace it by
point x(t):

t ') = | dy&'(x
[%a](x) a(f'(x)) fM y K (x,y) aly)

s(y- f'(x) - (F.1)

K'(x.y)

Given an initial density of representative poipt), the average value Gf(x)
evolves as

(@)

L t L t
— [ axa(f'(9) 9 = o | ax a0

i _ ft
IlefMdX dya(y) oy - 1'(9) (3.

The ‘propagators(y — f'(x)) can be interpreted as belonging to the Perron-Frobenius
operator (16.10), so the two operators are adjoint to edwr,ot

[ axfrcalonpe = | ayaw) [£ofo. (F2)

This suggests an alternative point of view, which is to pughathical €fects
into the density. In contrast to the Koopman operator whidvaaces the trajec-
tory by timet, the Perron-Frobenius operator depends on the trajectany fime
tin the past
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The Perron-Frobenius operators are non-normal, not d@fre operators,
so their left and right eigenvectorsfidir. The right eigenvectors of a Perron-
Frobenius operator are the left eigenvectors of the Koopraad vice versa.
While one might think of a Koopman operator as an ‘inversette Perron-
Frobenius operator, the notion afljoint is the right one, especially in settings
where flow is not time-reversible, as is the case for dissip&®DESs (infinite di-
mensional flows contracting forward in time) and for stoc¢icaffows.

The family of Koopman'’s operator{sKt}teR+ forms a semigroup parameter-
ized by time

(@ K°=1
(b) KK =™ >0 (semigroup property) ,

with the generator of the semigroup, the generator of infinitesimal time transl
tions defined by

ﬂ:tll)rg%(?(t—l).

(If the flow is finite-dimensional and invertibleAl is a generator of a group). The
explicit form of A follows from expanding dynamical evolution up to first order
asin (2.5):

Aa(x) = tirg+%(a(ft(x)) —a(¥) = vi()dia(x). (F.3)

Of course, that is nothing but the definition of the time datixe, so the equation
of motion fora(x) is

d
— - = 0. F.4
(5§ - ) (F4)
appendix F.2
The finite time Koopman operator (F.1) can be formally expedsby exponenti-
ating the time-evolution generatot as
K=, (F.5)
exercise F.1

The generatorA looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothibigt a translation by
timex velocity: exercise 16.10

dVika(x) = a(x + tv) . (F.6)
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As we will not need to implement a computational formula fengrale“ in

what follows, we relegate making sense of such operatorpperalix F.2. Here appendix F.2
we limit ourselves to a brief remark about the notion of “dpam” of a linear

operator.

The Koopman operatoK acts multiplicatively in time, so it is reasonable to
suppose that there exist constams> 0, 8 > 0 such thal|X"|| < Me? for all
t > 0. What does that mean? The operator norm is define in the gaintdrs
which we defined the matrix norms in sect. J.2: We are assuthaigno value
of K'p(X) grows faster than exponentially for any choice of funciigr), so that
the fastest possible growth can be bounded*yya reasonable expectation in the
light of the simplest example studied so far, the exact escaje (17.30). If that
is so, multiplyingk* by ™% we construct a new operater?kt = e(*-#) which
decays exponentially for large||e#)|| < M. We say thae"¥k" is an element
of a bounded semigroup with generatafl — 81. Given this bound, it follows by
the Laplace transform

fo dte‘%(t:ﬁ, Res> S, (F.7)

that theresolvent operator § — A)~* is bounded (“resolvent’= able to cause section J.2
separation into constituents)

H 1 Hsf dte‘StMetﬁ:i.
S—-A 0 s—-p

If one is interested in the spectrum &, as we will be, the resolvent operator is a
natural object to study. The main lesson of this brief assdbat for the continu-
ous time flows the Laplace transform is the tool that bringsrdthe generator in
(16.29) into the resolvent form (17.24) and enables us wysta spectrum.

F.2 Implementing evolution

(R. Artuso and P. Cvitanovit)

,
J We now come back to the semigroup of operatifts We have introduced
the generator of the semigroup (16.27) as

d t
ﬂ—a‘K

t=0

If we now take the derivative at arbitrary times we get

(%Wtw)(x) _ i Y09 - (1))

-0 n
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w(F{(3) a%w(i)

(% Aw) (%)

%=ft(x)

which can be formally integrated like an ordinaryfdrential equation yielding exercise F.1
K= e, (F.8)

This guarantees that the Laplace transform manipulatiossdt. 16.5 are correct.
Though the formal expression of the semigroup (F.8) is gsiitgple one has to
take care in implementing its action. If we express the egptal through the
power series

R SR
xt = — Ak, (F.9)

— ki

we encounter the problem that the infinitesimal generatér2(@) contains non-
commuting pieces, i.e., there drg¢ combinations for which the commutator does
not satisfy

0
[6—Xi,Vj(X)] =0.

To derive a more useful representation, we follow the sisatesed for finite-
dimensional matrix operators in sects. 4.2 and 4.3 and @ssetimigroup property
to write

t/oT

7(t — l_[ 7(67

m=1

as the starting point for a discretized approximation todbetinuous time dy-
namics, with time stepr. Omitting terms from the second order onwards in the
expansion ofK’" yields an error of orde®(672). This might be acceptable if the
time steps is suficiently small. In practice we write the Euler product

t/oT
K= [ | @+ o6rAm) + O (F.10)
m=1

where

(Am) (9 = u(F™ () j—z

= T (%)
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As far as thex dependence is concerneli acts as

X1 X1

gAY ‘ . F.11
Xi - Xi + 67Vi(X) ( )
Xd Xd

exercise 2.6

We see that the product form (F.10) of the operator is notkieg but a prescrip-
tion for finite time step integration of the equations of roatt in this case the
simplest Euler type integrator which advances the trajgdby srxvelocity at
each time step.

F.2.1 A symplecticintegrator

,
J The procedure we described above is only a starting poininfane so-
phisticated approximations. As an example on how to get goeh&ound on the

error term consider the Hamiltonian flafi = 8+ C, 8 = piz, C = —0V(0) 7 -

Clearly the potential and the kinetic parts do not commute.rivéke sense of thexercise F.2
formal solution (F.10) by splitting it into infinitesimalegts and keeping terms up

to 672 in

~ 1
KT = KT + zl(arf[za +2C,[B,C]l +---, (F.12)
where
KOT — @30TBhTC3oTS (F.13)

The approximate infinitesimal Liouville operal‘fﬁ‘” is of the form that now gen-
erates evolution as a sequence of mappings induced by {1& 3e flight by
1618, scattering byraV(q'), followed again by:sr35 free flight:

e%&:g{q} {q’}:{q—%p}
p P’ p
L IRt PV
P P’ P+ 6Tov(q)
7 17 r_ OT 7
f5) - (£
p”’ P p’

Collecting the terms we obtain an integration rule for thijset of symplectic flow
which is better than the straight Euler integration (F.14)tas accurate up to
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orderst?:
S 2
O+t = On—07pPn-— %6V (On = 67Pn/2)
Prs1 = Pn+ 0TIV (OQn — 6TPn/2) (F.15)

The Jacobian matrix of one integration step is given by

L —67/2 1 0)\(1 —5t/2
M:(O 1 )(&av(q’) 1)(0 1 ) (F.16)

Note that the billiard flow (8.11) is an example of such syrofieintegrator. In
that case the free flight is interrupted by instantaneoubrefiéctions, and can be
integrated out.

Commentary

Remark F.1 Koopman operators. The “Heisenberg picture” in dynamical systems
theory has been introduced by Koopman and Von Neumann [R]] sEe also ref. [16.12].
Inspired by the contemporary advances in quantum mechdtoopman [F.1] observed
in 1931 thatX" is unitary onL?(x) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operatoréi}&l/h) —the kernel of£!(y, x) introduced

in (16.16) (see also sect. 17.2) is the analogue of the Gramstidbn discussed here in
chapter 31. The relation between the spectrum of the Koopopanator and classical
ergodicity was formalized by von Neumann [F.2]. We shall ng¢ Hilbert spaces here
and the operators that we shall stughyl not be unitary. For a discussion of the relation
between the Perron-Frobenius operators and the Koopmaatopsfor finite dimensional
deterministic invertible flows, infinite dimensional camtting flows, and stochastic flows,
see Lasota-Mackey [16.12] and Gaspard [1.8].

Remark F.2 Symplectic integration. The reviews [F.12] and [F.13]fer a good start-
ing point for exploring the symplectic integrators litared. For a higher order integrators
of type (F.13), check ref. [F.18].

Exercises

F.1. Exponential form of semigroup elements. Check commute, K'A = AKX, by considering the action of
that the Koopman operator and the evolution generator  both operators on an arbitrary state space func{ah
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F.2. Non-commutativity. Check that the commutators in F.3. Symplectic leapfrog integrator. Implement (F.15)

(F.12) are not vanishing by showing that for 2-dimensional Hamiltonian flows; compare it with
P P Runge-Kutta integrator by integrating trajectories in
[8,C] =-p(V'— -V —]. some (chaotic) Hamiltonian flow.
op  dq
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