
Appendix I

Convergence of spectral
determinants

I.1 Curvature expansions: geometric picture

I f you has some experience with numerical estimates of fractal dimensions, you
will note that the numerical convergence of cycle expansions for systems such
as the 3-disk game of pinball, table 20.2, is very impressive; only three input

numbers (the two fixed points0, 1 and the 2-cycle10) already yield the escape
rate to 4 significant digits! We have omitted an infinity of unstable cycles; so why
does approximating the dynamics by a finite number of cycles work so well?

Looking at the cycle expansions simply as sums of unrelated contributions is
not specially encouraging: the cycle expansion (20.2) is not absolutely convergent
in the sense of Dirichlet series of appendix I.5, so what one makes of it depends
on the way the terms are arranged.

The simplest estimate of the error introduced by approximating smooth flow
by periodic orbits is to think of the approximation as a tessellation of a smooth
curve by piecewise linear tiles, figure 1.11.

I.1.1 Tessellation of a smooth flow by cycles

One of the early high accuracy computations ofπ was due to Euler. Euler com-
puted the circumference of the circle of unit radius by inscribing into it a regu-
lar polygon with N sides; the error of such computation is proportional to 1−
cos(2π/N) ∝ N−2. In a periodic orbit tessellation of a smooth flow, we cover the
phase space byehn tiles at thenth level of resolution, whereh is the topological
entropy, the growth rate of the number of tiles. Hence we expect the error in ap-
proximating a smooth flow byehn linear segments to be exponentially small, of
orderN−2 ∝ e−2hn.
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I.1.2 Shadowing and convergence of curvature expansions

We have shown in chapter 15 that if the symbolic dynamics is defined by a finite
grammar, a finite number of cycles, let us say the firstk terms in the cycle expan-
sion are necessary to correctly count the pieces of the Cantor set generated by the
dynamical system.

They are composed of products of non–intersecting loops on the transition
graph, see (15.15). We refer to this set of non–intersectingloops as thefundamen-
tal cycles of the strange set. It is only after these terms have been included that
the cycle expansion is expected to converge smoothly, i.e.,only for n > k are the
curvaturescn, a measure of the variation of the quality of a linearized covering of
the dynamical Cantor set by the lengthn cycles, and expected to fall off rapidly
with n.

The rate of fall-off of the cycle expansion coefficients can be estimated by
observing that for subshifts of finite type the contributions from longer orbits in
curvature expansions such as (20.7) can always be grouped into shadowing com-
binations of pseudo-cycles. For example, a cycle with itinerary ab= s1s2 · · · sn

will appear in combination of form

1/ζ = 1− · · · − (tab − tatb) − · · · ,

with ab shadowed by cyclea followed by cycleb, wherea = s1s2 · · · sm, b =
sm+1 · · · sn−1sn, and sk labels the Markov partitionMsk (11.2) that the trajectory
traverses at thekth return. If the two trajectories coincide in the firstm symbols,
at themth return to a Poincaré section they can land anywhere in thephase space
M

∣

∣

∣ f Ta(xa) − f Ta...(xa...)
∣

∣

∣ ≈ 1 ,

where we have assumed that theM is compact, and that the maximal possible
separation acrossM is O(1). Herexa is a point on thea cycle of periodTa, andxa...

is a nearby point whose trajectory tracks the cyclea for the firstm Poincaré section
returns completed at the timeTa.... An estimate of the maximal separation of the
initial points of the two neighboring trajectories is achieved by Taylor expanding
aroundxa... = xa + δxa...

f Ta(xa) − f Ta...(xa...) ≈
∂ f Ta(xa)
∂x

· δxa... = Ma · δxa... ,

hence the hyperbolicity of the flow forces the initial pointsof neighboring trajec-
tories that track each other for at leastm consecutive symbols to lie exponentially
close

|δxa...| ∝
1
|Λa|
.
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Similarly, for any observable (17.1) integrated along the two nearby trajecto-
ries

ATa...(xa...) ≈ ATa(xa) +
∂ATa

∂x

∣

∣

∣

∣

∣

∣

x=xa

· δxa... ,

so

∣

∣

∣ATa...(xa...) − ATa(xa)
∣

∣

∣ ∝ TaConst
|Λa|

,

As the time of return is itself an integral along the trajectory, return times of nearby
trajectories are exponentially close

|Ta... − Ta| ∝
TaConst
|Λa|

,

and so are the trajectory stabilities

∣

∣

∣ATa...(xa...) − ATa(xa)
∣

∣

∣ ∝ TaConst
|Λa|

,

Substitutingtab one finds

tab − tatb
tab

= 1− e−s(Ta+Tb−Tab)
∣

∣

∣

∣

∣

ΛaΛb

Λab

∣

∣

∣

∣

∣

.

Since with increasingm segments ofab come closer toa, the differences in action
and the ratio of the eigenvalues converge exponentially with the eigenvalue of the
orbit a,

Ta + Tb − Tab ≈ Const× Λ− j
a , |ΛaΛb/Λab| ≈ exp(−Const/Λab)

Expanding the exponentials one thus finds that this term in the cycle expansion is
of the order of

ta jb − tata j−1b ≈ Const× ta jbΛ
− j
a . (I.1)

Even though the number of terms in a cycle expansion grows exponentially, the
shadowing cancellations improve the convergence by an exponential factor com-
pared to trace formulas, and extend the radius of convergence of the periodic orbit
sums. Table I.1 shows some examples of such compensations between long
cycles and their pseudo-cycle shadows.
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n tab − tatb Tab − (Ta + Tb) log
[

ΛaΛb
Λab

]

ab − a · b
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 -7.96028600139×106 5.21713101432×103 -9.8×103 001-0·01
4 -1.03326529874×107 5.29858199419×104 -1.3×103 0001-0·001
5 -1.27481522016×109 5.35513574697×105 -1.6×104 00001-0·0001
6 -1.52544704823×1011 5.40999882625×106 -1.8×105 000001-0·00001
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 5.30414752996×106 -3.67093656690×103 7.7×103 011-01·1
4 -5.40934261680×108 3.14925761316×104 -9.2×104 0111-011·1
5 4.99129508833×1010 -2.67292822795×105 1.0×104 01111-0111·1
6 -4.39246000586×1012 2.27087116266×106 -1.0×105 011111-01111·1

Table I.1: Demonstration of shadowing in curvature combinations of cycle weights of
form tab − tatb, the 3-disk fundamental domain cycles atR : d = 6, table 29.3. The ratio
ΛaΛb/Λab is approaching unity exponentially fast.

It is crucial that the curvature expansion is grouped (and truncated) by topo-
logically related cycles and pseudo-cycles; truncations that ignore topology, such
as inclusion of all cycles withTp < Tmax, will contain orbits unmatched by shad-
owed orbits, and exhibit a mediocre convergence compared with the curvature
expansions.

Note that the existence of a pole atz = 1/c implies that the cycle expansions
have a finite radius of convergence, and that analytic continuations will be required
for extraction of the non-leading zeros of 1/ζ. Preferably, one should work with
cycle expansions of Selberg products, as discussed in sect.20.2.2.

I.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift type, there is no finite topo-
logical polynomial, there are no “curvature” corrections,and the convergence of
the cycle expansions will be poor.

I.2 On importance of pruning

If the grammar is not finite and there is no finite topological polynomial, there
will be no “curvature” expansions, and the convergence willbe poor. That is
the generic case, and one strategy for dealing with it is to find a good sequence of
approximate but finite grammars; for each approximate grammar cycle expansions
yield exponentially accurate eigenvalues, with successive approximate grammars
converging toward the desired infinite grammar system.

When the dynamical system’s symbolic dynamics does not havea finite gram-
mar, and we are not able to arrange its cycle expansion into curvature combina-
tions (20.7), the series is truncated as in sect. 20.6, by including all pseudo-cycles
such that|Λp1 · · ·Λpk | ≤ |ΛP|, whereP is the most unstable prime cycle included
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into truncation. The truncation error should then be of order O(ehTPTP/|ΛP|), with
h the topological entropy, andehTP roughly the number of pseudo-cycles of stabil-
ity ≈ |ΛP|. In this case the cycle averaging formulas do not converge significantly
better than the approximations such as the trace formula (22.15).

Numerical results (see for example the plots of the accuracyof the cycle ex-
pansion truncations for the Hénon map in ref. [20.3]) indicate that the truncation
error of most averages tracks closely the fluctuations due tothe irregular growth
in the number of cycles. It is not known whether one can exploit the sum rules
such as the mass flow conservation (20.17) to improve the accuracy of dynamical
averaging.

I.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a ri-
tornar nel chiaro monde; e sanza cura aver d’alcun riposa
salimmo sù, el primo e io secondo, tanto ch’i’ vidi de le
cose belle che porta ‘l ciel, per un perutgio tondo.”

—Dante

The periodic orbit theory is learned in stages. At first glance, it seems
totally impenetrable. After basic exercises are gone through, it seems totally triv-
ial; all that seems to be at stake are elementary manipulations with traces, deter-
minants, derivatives. But if start thinking about you will get a more and more
uncomfortable feeling that from the mathematical point of view, this is a perilous
enterprise indeed. In chapter 23 we shall explain which parts of this enterprise are
really solid; here you give a fortaste of what objections a mathematician might
rise.

Birkhoff’s 1931 ergodic theorem states that the time average (17.4) exists al-
most everywhere, and, if the flow is ergodic, it implies that〈a(x)〉 = 〈a〉 is a
constant for almost allx. The problem is that the above cycle averaging formulas
implicitly rely on ergodic hypothesis: they are strictly correct only if the dynam-
ical system is locally hyperbolic and globally mixing. If one takes aβ derivative
of both sides

ρβ(y)ets(β)
=

∫

M
dx δ(y − f t(x))eβ·A

t(x)ρβ(x) ,

and integrates overy

∫

M
dy
∂

∂β
ρβ(y)

∣

∣

∣

∣

∣

β=0
+ t

∂s
∂β

∣

∣

∣

∣

∣

β=0

∫

M
dy ρ0(y) =

∫

M
dx At(x)ρ0(x) +

∫

M
dx
∂

∂β
ρβ(x)

∣

∣

∣

∣

∣

β=0
,
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one obtains in the long time limit

∂s
∂β

∣

∣

∣

∣

∣

β=0
=

∫

M
dy ρ0(x) 〈a(x)〉 . (I.2)

This is the expectation value (17.12) only if the time average (17.4) equals the
space average (17.9),〈a(x)〉 = 〈a〉, for all x except a subsetx ∈ M of zero
measure; if the phase space is foliated into non-communicating subspacesM =
M1 +M2 of finite measure such thatf t(M1) ∩ M2 = ∅ for all t, this fails. In
other words, we have tacitly assumed metric indecomposability or transitivity.
We have also glossed over the nature of the “phase space”M. For example, if the
dynamical system is open, such as the 3-disk game of pinball,M in the expecta-
tion value integral (17.15) is a Cantor set, the closure of the union of all periodic
orbits. Alternatively,M can be considered continuous, but then the measureρ0

in (I.2) is highly singular. The beauty of the periodic orbittheory is that instead
of using an arbitrary coordinatization ofM it partitions the phase space by the in-
trinsic topology of the dynamical flow and builds the correctmeasure from cycle
invariants, the Floquet multipliers of periodic orbits.

Were we to restrict the applications of the formalism only tosystems which
have been rigorously proven to be ergodic, we might as well fold up the shop
right now. For example, even for something as simple as the H´enon mapping we
do not know whether the asymptotic time attractor is strangeor periodic. Physics exercise 17.1

applications require a more pragmatic attitude. In the cycle expansions approach
we construct the invariant set of the given dynamical systemas a closure of the
union of periodic orbits, and investigate how robust are theaverages computed on
this set. This turns out to depend very much on the observablebeing averaged
over; dynamical averages exhibit “phase transitions”, andthe above cycle averag-
ing formulas apply in the “hyperbolic phase” where the average is dominated by
exponentially many exponentially small contributions, but fail in a phase domi-
nated by few marginally stable orbits. Here the noise - always present, no matter
how weak - helps us by erasing an infinity of small traps that the deterministic
dynamics might fall into.

Still, in spite of all the caveats, periodic orbit theory is abeautiful theory,
and the cycle averaging formulas are the most elegant and powerful tool available
today for evaluation of dynamical averages for low dimensional chaotic determin-
istic systems.

I.4 Estimate of thenth cumulant

An immediate consequence of the exponential spacing of the eigenvalues is that
the convergence of the Selberg product expansion (D.12) as function of the topo-
logical cycle length,F(z) =

∑

n Cnzn, is faster than exponential. Consider ad–
dimensional map for which all Jacobian matrix eigenvalues are equal: up =

Λp,1 = Λp,2 = · · · = Λp,d. The Floquet multipliers are generally not isotropic;
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however, to obtain qualitative bounds on the spectrum, we replace all Floquet
multipliers with the least expanding one. In this case thep cycle contribution to
the product (19.9) reduces to

Fp(z) =
∞
∏

k1···kd=0

(

1− tpuk1+k2+···+kd
p

)

=

∞
∏

k=0

(

1− tpuk
p

)mk
; mk =

(

d − 1+ k
d − 1

)

=
(k + d − 1)!
k!(d − 1)!

=

∞
∏

k=0

mk
∑

ℓ=0

(

mk

ℓ

)

(

−uk
ptp

)ℓ
(I.3)

In one dimension the expansion can be given in closed form (23.5), and the
coefficientsCk in (D.12) are given by

τpk = (−1)k
u

k(k−1)
2

p
∏k

j=1(1− u j
p)

tk
p . (I.4)

Hence the coefficients in theF(z) =
∑

n Cnzn expansion of the spectral determinant
(20.14) fall off faster than exponentially, as|Cn| ≈ un(n−1)/2. In contrast, the cycle
expansions of dynamical zeta functions fall of “only” exponentially; in numerical
applications, the difference is dramatic.

In higher dimensions the expansions are not quite as compact. The leading
power ofu and its coefficient are easily evaluated by use of binomial expansions
(I.3) of the (1+tuk)mk factors. More precisely, the leadingun terms intk coefficients
are of form

∞
∏

k=0

(1+ tuk)mk = . . . + um1+2m2+...+ jm j t1+m1+m2+...+m j + . . .

= . . . +

(

u
md
d+1 t

)(d+m
m )
+ . . . ≈ . . . + u

d√
d!

(d−1)! n
d+1

d tn
+ . . .

Hence the coefficients in theF(z) expansion fall off faster than exponentially, as
un1+1/d

. The Selberg products are entire functions in any dimension, provided that
the symbolic dynamics is a finite subshift, and all cycle eigenvalues are sufficiently
bounded away from 1.

The case of particular interest in many applications are the2-d Hamiltonian
mappings; their symplectic structure implies thatup = Λp,1 = 1/Λp,2, and the
Selberg product (19.13) In this case the expansion corresponding to (23.5) is given
in exercise 23.4 and the coefficients fall off asymptotically asCn ≈ un3/2

.
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I.5 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

A Dirichlet series off (s) is defined as

f (s) =
∞
∑

j=1

a je
−λ j s (I.5)

wheres, a j are complex numbers, and{λ j} is a monotonically increasing series
of real numbersλ1 < λ2 < · · · < λ j < · · ·. A classical example of a Dirichlet
series is the Riemann zeta function for whicha j = 1, λ j = ln j. In the present
context, a formal series over individual pseudo-cycles such as (20.2) ordered by
increasing pseudo-cycle periods are often Dirichlet series. For example, for the
pseudo-cycle weight (20.3), the Dirichlet series is obtained by ordering pseudo-
cycles by increasing periodsλπ = Tp1 + Tp2 + . . . + Tpk , with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk )
∣

∣

∣Λp1Λp2 . . .Λpk

∣

∣

∣

dπ ,

wheredπ is a degeneracy factor in the case thatdπ pseudo-cycles have the same
weight.

If the series
∑ |a j| diverges, the Dirichlet series is absolutely convergent for

Res > σa and conditionally convergent for Res > σc, whereσa is theabscissa
of absolute convergence

σa = lim
N→∞

sup
1
λN

ln
N

∑

j=1

|a j| , (I.6)

andσc is theabscissa of conditional convergence

σc = lim
N→∞

sup
1
λN

ln

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

a j

∣

∣

∣

∣

∣

∣

∣

∣

. (I.7)

We encounter another example of a Dirichlet series in the semiclassical quantiza-
tion, the quantum chaos part ofChaosBook.org.
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Commentary

Remark I.1 Are cycle expansions Dirichlet series? Even though some literature [19.12]
refers to cycle expansions as ’Dirichlet series’, they are not Dirichlet series. Cycle expan-
sions collect contributions of individual cycles into groups that correspond to the coef-
ficients in cumulant expansions of spectral determinants, and the convergence of cycle
expansions is controlled by general properties of spectraldeterminants. Dirichlet series
order cycles by their periods or actions, and are only conditionally convergent in the
regions of interest. The abscissa of absolute convergence is in this context called the ‘en-
tropy barrier’; contrary to frequently voiced anxieties, this number does not necessarily
has much to do with the actual convergence of the theory.
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