Appendix |

Convergence of spectral
determinants

I.1 Curvature expansions: geometric picture

will note that the numerical convergence of cycle exparsfonsystems such

as the 3-disk game of pinball, table 20.2, is very impressiwdy three input
numbers (the two fixed poin, 1 and the 2-cycld0) already yield the escape
rate to 4 significant digits! We have omitted an infinity of taise cycles; so why
does approximating the dynamics by a finite number of cycleskwo well?

I F YOU HAS SOME EXPERIENCE With numerical estimates of fractal dimensions, you

Looking at the cycle expansions simply as sums of unreladedributions is
not specially encouraging: the cycle expansion (20.2) isheolutely convergent
in the sense of Dirichlet series of appendix 1.5, so what oages of it depends
on the way the terms are arranged.

The simplest estimate of the error introduced by approximgagmooth flow
by periodic orbits is to think of the approximation as a téatien of a smooth
curve by piecewise linear tiles, figure 1.11.

I.1.1 Tessellation of a smooth flow by cycles

One of the early high accuracy computationsrafias due to Euler. Euler com-
puted the circumference of the circle of unit radius by iiiBng into it a regu-
lar polygon with N sides; the error of such computation ispomtional to 1—
cos(2r/N) o« N2, In a periodic orbit tessellation of a smooth flow, we cover th
phase space bg™ tiles at thenth level of resolution, wherk is the topological
entropy, the growth rate of the number of tiles. Hence we exiie error in ap-
proximating a smooth flow bg™ linear segments to be exponentially small, of
orderN=2 o« g2,
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I.1.2 Shadowing and convergence of curvature expansions

We have shown in chapter 15 that if the symbolic dynamics fimelé by a finite
grammar, a finite number of cycles, let us say the kitgrms in the cycle expan-
sion are necessary to correctly count the pieces of the €setgenerated by the
dynamical system.

They are composed of products of non—intersecting loopshertransition
graph, see (15.15). We refer to this set of non—intersedtiogs as théundamen-
tal cycles of the strange set. It is only after these terms haea beluded that
the cycle expansion is expected to converge smoothlyoingy,for n > k are the
curvatures,, a measure of the variation of the quality of a linearizedecimg of
the dynamical Cantor set by the lengtltycles, and expected to falffarapidly
with n.

The rate of fall-¢f of the cycle expansion ciicients can be estimated by
observing that for subshifts of finite type the contribuidnom longer orbits in
curvature expansions such as (20.7) can always be groufzeshadowing com-
binations of pseudo-cycles. For example, a cycle with itineab= s, - - 5,
will appear in combination of form

1Yi=1-—(ta—tate) = -,

with ab shadowed by cycl@ followed by cycleb, wherea = $,5---sm, b =
Sme1- - Sh-15h ands labels the Markov partitionMs, (11.2) that the trajectory
traverses at thkth return. If the two trajectories coincide in the firtsymbols,
at themth return to a Poincaré section they can land anywhere iphhse space
M

[fTe(xa) = FTo (xa.)] > 1.

where we have assumed that thé¢is compact, and that the maximal possible
separation acros$t is O(1). Herex, is a point on th@ cycle of periodT,, andxa .

is a nearby point whose trajectory tracks the cgdier the firstm Poincaré section
returns completed at the tinTg . An estimate of the maximal separation of the
initial points of the two neighboring trajectories is aatgd by Taylor expanding
aroundxy . = Xz + 0Xa...

Ta(xa)

af
T20q) — 7 (xa.) » 0% =Ma-oxa,

hence the hyperbolicity of the flow forces the initial poinfseighboring trajec-
tories that track each other for at leastonsecutive symbols to lie exponentially
close

1
6Xa..| o< —— .
[Aal
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Similarly, for any observable (17.1) integrated along thie hearby trajecto-
ries

AAT
ATe (%) ~ AT2(xg) + X ~0Xa.. »

X=Xz
SO

TaConst
Aal 7

AT (¥a..) = AT(x)| o«

As the time of return is itself an integral along the trajegtoeturn times of nearby
trajectories are exponentially close

TaConst
IAal

[Ta. — Tal

and so are the trajectory stabilities

TaConst

Ala. — ATa(x
AT (1) - AT ()] o <2

Substitutingtap one finds

tap —taly = 1 — g ATa+To=Tab)
tab

Aalp ‘
Aap |

Since with increasingn segments ofb come closer t@, the diferences in action
and the ratio of the eigenvalues converge exponentiallly thi¢ eigenvalue of the
orbita,

Ta+ Tp— Tap ~ Constx A;j . |AaAp/Aapl ~ expConst Agp)

Expanding the exponentials one thus finds that this termeirtyicle expansion is
of the order of

toib — tata-1p ~ CONStX tapAs. . (1.1)

Even though the number of terms in a cycle expansion growsregially, the
shadowing cancellations improve the convergence by annexjial factor com-
pared to trace formulas, and extend the radius of conveegeithe periodic orbit
sums. Table I.1 shows some examples of such compensatitnsdrelong
cycles and their pseudo-cycle shadows.
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n tap — talp Tap— (Ta+To) | log[2ele] ab-a-b

2 | -5.2346515078410° | 4.858029273741(7 -6.3x107 01-01

3| -7.960286001391(° | 5.2171310143R10° -9.8x10° 001-001

4| -1.03326529874107 | 5.2985819941910" -1.3x10* | 0001-0001

5| -1.2748152201810° | 5.3551357469%10° -1.6x10% | 00001-60001
6 | -1.5254470482810' | 5.4099988262510° -1.8x10° | 000001-G00001
2 | -5.2346515078410" | 4.85802927374107 6.3x107 01-01

3| 5.3041475299610° | -3.6709365669010° 7.7x10° 011-0%1

4 | -5.4093426168010° | 3.1492576131610* -9.2<10* | 0111-0111

5| 4.9912950883810° | -2.6729282279%10° 1.0x10* | 01111-01111
6 | -4.3924600058610'2 | 2.2708711626610° -1.0x10° | 011111-01114

Table I.1: Demonstration of shadowing in curvature combinations afleweights of
form tap — tatp, the 3-disk fundamental domain cyclesiat d = 6, table 29.3. The ratio
Aalp/Aap is approaching unity exponentially fast.

It is crucial that the curvature expansion is grouped (anddated) by topo-
logically related cycles and pseudo-cycles; truncatitwas ignore topology, such
as inclusion of all cycles witfi, < Trax, will contain orbits unmatched by shad-
owed orbits, and exhibit a mediocre convergence comparéu the curvature
expansions.

Note that the existence of a polezat 1/c implies that the cycle expansions
have a finite radius of convergence, and that analytic coations will be required
for extraction of the non-leading zeros of¢l Preferably, one should work with
cycle expansions of Selberg products, as discussed in2e2t2.

1.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift tyjeere is no finite topo-
logical polynomial, there are no “curvature” correctioasd the convergence of
the cycle expansions will be poor.

I.2  Onimportance of pruning

If the grammar is not finite and there is no finite topologicalypomial, there
will be no “curvature” expansions, and the convergence héllpoor. That is
the generic case, and one strategy for dealing with it is tbdigood sequence of
approximate but finite grammars; for each approximate granuycle expansions
yield exponentially accurate eigenvalues, with succesapproximate grammars
converging toward the desired infinite grammar system.

When the dynamical system’s symbolic dynamics does not aéinie gram-
mar, and we are not able to arrange its cycle expansion im@utue combina-
tions (20.7), the series is truncated as in sect. 20.6, bydimg all pseudo-cycles
such thajAp, - - - Ap| < |Apl, whereP is the most unstable prime cycle included
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into truncation. The truncation error should then be of pig ™ Tp/|Ap]), with

h the topological entropy, arel™ roughly the number of pseudo-cycles of stabil-
ity ~ |Ap|. In this case the cycle averaging formulas do not convegyafiiantly
better than the approximations such as the trace formula%22

Numerical results (see for example the plots of the accuoate cycle ex-
pansion truncations for the Henon map in ref. [20.3]) iatkcthat the truncation
error of most averages tracks closely the fluctuations duleetarregular growth
in the number of cycles. It is not known whether one can expla sum rules
such as the mass flow conservation (20.17) to improve theaxygof dynamical
averaging.

1.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a ri-
tornar nel chiaro monde; e sanza cura aver d’alcun riposa
salimmo su, el primo e io secondo, tanto ch'i’ vidi de le
cose belle che porta ‘I ciel, per un perutgio tondo.”

—Dante

§
J The periodic orbit theory is learned in stages. At first gignit seems
totally impenetrable. After basic exercises are gone tinpit seems totally triv-
ial; all that seems to be at stake are elementary manipotatigth traces, deter-
minants, derivatives. But if start thinking about you wiktga more and more
uncomfortable feeling that from the mathematical pointiefw this is a perilous
enterprise indeed. In chapter 23 we shall explain whictsprthis enterprise are
really solid; here you give a fortaste of what objections a mathemat might
rise.

Birkhoff’s 1931 ergodic theorem states that the time average (1Xigtsal-
most everywhere, and, if the flow is ergodic, it implies tkafx)) = (a) is a
constant for almost ak. The problem is that the above cycle averaging formulas
implicitly rely on ergodic hypothesis: they are strictlyroect only if the dynam-
ical system is locally hyperbolic and globally mixing. If ®@takes g derivative
of both sides

ps)eH) = fM dxa(y - F1(9)APps(x),

and integrates over

4] aJs
dy — t— d =
fM ly 6'3/7/3()’)'13:0 + 6ﬁ',3:o fM Yy po(y)

17l
[ axA 00+ [ ox a—ﬁmx)\ﬁ:o,
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one obtains in the long time limit
aJs f
—| = | dypo(X)(@(x) . 1.2
Ty~ P00 @00 (2)

This is the expectation value (17.12) only if the time averét7.4) equals the
space average (17.9a(x)) = (a), for all x except a subset € M of zero
measure; if the phase space is foliated into non-communécaubspaced =
M1 + M, of finite measure such thdt(M;) N M, = 0 for all t, this fails. In
other words, we have tacitly assumed metric indecompasabil transitivity.
We have also glossed over the nature of the “phase speicd®or example, if the
dynamical system is open, such as the 3-disk game of pinbtih the expecta-
tion value integral (17.15) is a Cantor set, the closure efthion of all periodic
orbits. Alternatively,M can be considered continuous, but then the measure
in (1.2) is highly singular. The beauty of the periodic orthieory is that instead
of using an arbitrary coordinatization 8f it partitions the phase space by the in-
trinsic topology of the dynamical flow and builds the cormetasure from cycle
invariants, the Floquet multipliers of periodic orbits.

Were we to restrict the applications of the formalism onlysystems which
have been rigorously proven to be ergodic, we might as wédl éip the shop
right now. For example, even for something as simple as #@oH mapping we

do not know whether the asymptotic time attractor is straorgeeriodic. Physics exercise 17.1

applications require a more pragmatic attitude. In theecgsipansions approach
we construct the invariant set of the given dynamical sysasma closure of the
union of periodic orbits, and investigate how robust arestferages computed on
this set. This turns out to depend very much on the obsenfzdileg averaged
over; dynamical averages exhibit “phase transitions”, tarcabove cycle averag-
ing formulas apply in the “hyperbolic phase” where the agers dominated by
exponentially many exponentially small contributionst fail in a phase domi-
nated by few marginally stable orbits. Here the noise - asn@gsent, no matter
how weak - helps us by erasing an infinity of small traps thatdhterministic
dynamics might fall into.

Still, in spite of all the caveats, periodic orbit theory iseautiful theory,
and the cycle averaging formulas are the most elegant andrpdvool available
today for evaluation of dynamical averages for low dimenala@haotic determin-
istic systems.

.4 Estimate of thenth cumulant

An immediate consequence of the exponential spacing ofigfemealues is that
the convergence of the Selberg product expansion (D.12)resién of the topo-
logical cycle lengthF(2) = 3,Cn2Z", is faster than exponential. Consided-a
dimensional map for which all Jacobian matrix eigenvaluge equal: up =
Ap1 = Ap2 = --- = Apg. The Floquet multipliers are generally not isotropic;
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however, to obtain qualitative bounds on the spectrum, \péace all Floquet
multipliers with the least expanding one. In this caseghgycle contribution to
the product (19.9) reduces to

Fo@ = ﬁ (1 - tpugieria)
ky-r-kg=0

= ) d-1+k| (k+d-1)!
- [Je-wi m= (Y-S
Mk X
= 1) e 03

=~
i}

0 (=0

In one dimension the expansion can be given in closed fornb)(2and the
codficientsCy in (D.12) are given by

K(k-1)

u
Y S S (14)
" moa-u)”

Hence the caicients in theF(2) = ), 2" expansion of the spectral determinant
(20.14) fall df faster than exponentially, &8, ~ u"™1/2_|n contrast, the cycle
expansions of dynamical zeta functions fall of “only” expatially; in numerical
applications, the dlierence is dramatic.

In higher dimensions the expansions are not quite as comfj#et leading

power ofu and its coéficient are easily evaluated by use of binomial expansions

(1.3) of the (+tu¥)™ factors. More precisely, the leadingterms int codficients
are of form

o
l_[(l + tuk)m< . |Jm1+2mz+...+jmJ tl+m1+mg+m+m, +
k=0
dem
my () dar | ded
= ...+(Umt) " x om0

Hence the ca@cients in theF(2) expansion fall & faster than exponentially, as
u™ ™ The Selberg products are entire functions in any dimengimvided that
the symbolic dynamics is a finite subshift, and all cycle eigdues are diiciently
bounded away from 1.

The case of particular interest in many applications are2tdeHamiltonian
mappings; their symplectic structure implies thgt= Ap1 = 1/Ap2, and the
Selberg product (19.13) In this case the expansion comelpg to (23.5) is given
in exercise 23.4 and the déieients fall df asymptotically a&,, ~ u’?
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.5 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

§
J A Dirichlet series off (s) is defined as
f(9) =) ajes (15)
=1

wheres, a; are complex numbers, arid;} is a monotonically increasing series
of real numbersl; < 12 < --- < 4j < ---. A classical example of a Dirichlet
series is the Riemann zeta function for whigh= 1, 1; = In j. In the present
context, a formal series over individual pseudo-cycleshsaag (20.2) ordered by
increasing pseudo-cycle periods are often Dirichlet serfeor example, for the
pseudo-cycle weight (20.3), the Dirichlet series is olmdiby ordering pseudo-
cycles by increasing period = Tp, + Tp, + ... + Tp,, with the codlicients

&P (Apy +Apy+.+Ap)

8= —d,,
TN

whered, is a degeneracy factor in the case tapseudo-cycles have the same
weight.

If the series}; |a;| diverges, the Dirichlet series is absolutely convergent fo
Res > o, and conditionally convergent for Re> o, whereo, is theabscissa
of absolute convergence

N
1
=i ey : 1.6
ca= lim sup-- n;\ajl, (1.6)

ando is theabscissa of conditional convergence

N

2al-
1

j=

(.7)

lim su 1 In
o= —
7 Now p,iN

We encounter another example of a Dirichlet series in thecdassical quantiza-
tion, the quantum chaos part@iaosBook. org.
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Commentary

Remark .1 Are cycle expansions Dirichlet series? Even though some literature [19.12]
refers to cycle expansions as 'Dirichlet series’, they arteDirichlet series. Cycle expan-
sions collect contributions of individual cycles into gpsuthat correspond to the coef-
ficients in cumulant expansions of spectral determinamid,the convergence of cycle
expansions is controlled by general properties of spedg@rminants. Dirichlet series
order cycles by their periods or actions, and are only camitly convergent in the
regions of interest. The abscissa of absolute convergernieghis context called the ‘en-
tropy barrier’; contrary to frequently voiced anxietiesistnumber does not necessarily
has much to do with the actual convergence of the theory.
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