Chapter 32

WKB quantization

Tmz wAVE FUNcTION for a particle of energf moving in a constant potentis
is

v = AetPd (32.1)

with a constant amplitudd, and constant wavelength= 2x/k, k = p/Ah,

andp = + v2m(E - V) is the momentum. Here we generalize this solution

to the case where the potential varies slowly over many veagghs. This
semiclassical (or WKB) approximate solution of the Sclmgedr equation fails at
classical turning points, configuration space points witeggarticle momentum
vanishes. In such neighborhoods, where the semiclasgipabximation fails,
one needs to solve locally the exact quantum problem, inrdocdeompute con-
nection coéicients which patch up semiclassical segments into an ajppate
global wave function.

Two lessons follow. First, semiclassical methods can bgpewerful - classi-
cal mechanics computations yield surprisingly accuraieneses of quantal spec-
tra, without solving the Schrddinger equation. Secondhislassical quantization
does depend on a purely wave-mechanical phenomena, theenblagldition of
phases accrued by all fixed energy phase space trajectoatsdannect pairs of
coordinate points, and the topological phase loss at euemng point, a topolog-
ical property of the classical flow that plays no role in cleasmechanics.

32.1 WKB ansatz
Consider a time-independent Schroddinger equation in tladpmension:

o, B
“om¥" (@ + V(@(a) = Ev (). (32.2)
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V(x)

Figure 32.1: A 1-dimensional potential, location of
the two turning points at fixed enerdy

with potential V(g) growing suficiently fast asq — +oo so that the classical
particle motion is confined for anff. Define the local momenturp(g) and the
local wavenumbek(q) by

p(a) = +v2m(E - V(q)), p(q) = 7k(q). (32.3)
The variable wavenumber form of the Schrodinger equation
'+ K@ =0 (32.4)

sugests that the wave function be writtenjas Ae%S, A andS real functions of
g. Substitution yields two equations, one for the real anéofbr the imaginary
part:

(s)? = p2+h2% (32.5)
’” '\ 1 d 2
S'A+ 2SN = A2)=0. (32.6)

Adgs

The Wentzel-Kramers-BrillouifWKB) or semiclassicabpproximation consists
of dropping thei? term in (32.5). Recalling that = 7k, this amounts to assuming
thatk? > %, which in turn implies that the phase of the wave functiorhiarging
much faster than its overall amplitude. So the WKB approxiomecan interpreted
either as a short wavelengiigh frequency approximation to a wave-mechanical
problem, or as the semiclassicals 1 approximation to quantum mechanics.

Settingi = 0 and integrating (32.5) we obtain the phase increment ofvewa
function initially atq, at energyE

q
S(9.9.E) = fq dq’p(@”). (32.7)

This integral over a particle trajectory of constant eneagied theaction will
play a key role in all that follows. The integration of (32i§)even easier

M@= ——  C=Ip@)Fu(), (32.8)
()
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where the integration consta@tis fixed by the value of the wave function at the
initial point g’. TheWKB (or semiclassicglansatzwave function is given by

Ve o E) = — -erSed 8, (32.9)
Ip(a)I2

In what follows we shall suppress dependence on the initait@and energy in
such formulas,q, d’, E) — (q).

The WKB ansatz generalizes the free motion wave functionl{3&vith the
probability densitylA(g)[? for finding a particle aty now inversely proportional
to the velocity at that point, and the phase p replaced by2 [ dq p(@), the in-
tegrated action along the trajectory. This is fine, exceptngtturning pointd,
figure 32.1, where all energy is potential, and

p(@) -0 as q-— o, (32.10)

so that the assumption tHe > % fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslogs the job.
In the g coordinate, the turning points are defined by the zero larestergy con-
dition (see figure 32.1), and the motion appears singulas iEmot so in the full
phase space: the trajectory in a smooth confining 1-dimeakjootential is al-
ways a smooth loop (see figure 32.2), with the “special” réléne turning points
du, gr Seen to be an artifact of a particular choice of thepf coordinate frame.
Maslov proceeds from the initial poing/( p’) to a point ¢, pa) preceding the
turning point in they(q) representation, then switch to the momentum represen-
tation

7 _L Ll
w(p) = mque w(d), (32.11)

continue from {a, pa) to (gs, ps), switch back to the coordinate representation,

:L AP 7
o= = f dpePy(p). (32.12)

and so on.

The only rub is that one usually cannot evaluate these wemsfexactly. But,
as the WKB wave function (32.9) is approximate anyway, itisas to estimate
these transforms to the leading orderiiaccuracy. This is accomplished by the
method of stationary phase.
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Figure 32.2: A 1-dof phase space trajectory of a par-
ticle moving in a bound potential.

32.2 Method of stationary phase

All “semiclassical” approximations are based on saddlafpevaluations of inte-
grals of the type

| = f dx A(x) €50 | X d(X) R, (32.13)

wheresis a real parameter, an(x) is a real-valued function. In our applications
s =1/ will always be assumed large.

For larges, the phase oscillates rapidly and “averages to zero” evesysy
except at thextremal pointsd’(xo) = 0. The method of approximating an integral
by its values at extremal points is called thethod of stationary phas€onsider
first the case of a 1-dimensional integral, and expég, + 6x) aroundxg to
second order idx,

| = f dx A(X) @SO00)+307(0)5x+.) (32.14)

Assume (for time being) thab” (o) # 0, with either sign, sgid}”’] = " /|®”| =
+1. If in the neighborhood ok, the amplitudeA(X) varies slowly over many
oscillations of the exponential function, we may retain kbxading term in the
Taylor expansion of the amplitude, and approximate thegnaleup to quadratic
terms in the phase by

| ~ A(xp) €5709) f dx g5 o)) (32.15)

The one integral that we know how to integrate is the Gausﬁtagralf dxe s =
V2rb For for pure imaginarp = ia one gets instead theesnel integral formula

exercise 32.1

1 o i - jza
i dxe 2@ = \/E: |all/zel4\a\ (3216)
V21 J-oo
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we obtain

I ~ A(Xo ‘ | gsrraiy 32.17

09| 55760 (32.47)

where+ corresponds to the positifreegative sign o6®” (Xp).

32.3 WKB quantization

We can now evaluate the Fourier transforms (32.11), (32d.#)e same order in
7 as the WKB wave function using the stationary phase method,

e (S@-ap)

Wsdp)

| P(Q)\

S
~ LM dqesS @) (32.18)
Varh - |p(ar)iE

whereq" is given implicitly by the stationary phase condition
0=S(@)-p=p()-p

and the sign ofS”(q") = p’(q*) determines the phase of the Fresnel integral
(32.16)

Tedp) = —C_elIS@)-apls foons @) (32.19)
[p(a) P (a)l2

As we continue fromda, pa) to (gs, ps), nothing problematic occursp(q*) is
finite, and so is the acceleratigpi(q*). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as dgeihdre transform

S(p) = S(a(p) - a(p)P
which can be used to expresses everything in terms of tregiable,

‘o d4=1=9P9P) _ om@
a =P, T —l—dq dp =q(Pp@). (32.20)

As the classical trajectory crossgs the weight in (32.19),

%pz(qo - 2p(@)p/ (@) = ~2mV'(q). (32.21)
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Figure 32.3: Sy(E), the action of a periodic orbj at
energyE, equals the area in the phase space traced
by the 1-dof trajectory.

is finite, andS”(q*) = p’(q*) < O for any point in the lower left quadrant, includ-
ing (da, pa). Hence, the phase loss in (32.19)-§. To go back from thep to
the g representation, just turn figure 32.2 quarter-turn antlalase. Everything
is the same if you replacey(p) — (-p,d); so, without much ado we get the
semiclassical wave function at the poigg(ps),

er (8(p)+ap)-1%
Usd@) = ————— sdp) = T
lo(p*)I2 Ip(a)I2

i

erS@-% (32.22)

The extralp’ (q°)|Y2 weight in (32.19) is cancelled by the (p*)|/2 term, by the
Legendre relation (32.20).

The message is that going through a smooth potential tupoing the WKB
wave function phase slips by3. This is equally true for the right and the left
turning points, as can be seen by rotating figure 32.2 by,18ad flipping co-
ordinates ¢, p) — (—g,—p). While a turning point is not an invariant concept
(for a suficiently short trajectory segment, it can be undone by%td#), for a
complete periodd, p) = (', p’) the total phase slip is alway2 - 7/2, as a loop
always hasn = 2 turning points.

TheWKB quantization conditiofollows by demanding that the wave function
computed after a complete period be single-valued. Witimdmmalization (32.8),
we obtain

w(d) =y = | =~

The prefactor is 1 by the periodic orbit conditign= ¢, so the phase must be a
multiple of 2,

- 56 pe)da=2r(n+5). (32.23)

wheremis the number of turning points along the trajectory - fosthidof prob-
lem,m=2.

The action integral in (32.23) is the area (see figure 32.8)osed by the
classical phase space loop of figure 32.2, and the quantizetindition says that
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eigen-energies correspond to loops whose action is areintegltiple of the unit
quantum of action, Planck’s constant The extra topological phase, which, al-
though it had been discovered many times in centuries pasdttdwait for its
most recent quantum chaotic (re)birth until the 1970’s. ditests derivation in a
noninvariant coordinate frame, the final result involvely @anonically invariant
classical quantities, the periodic orbit actinand the topological indem.

32.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only gas&®@se quantum
mechanics we fully understand: the harmonic oscillator

E= %q(p%(qu)z).

The loop in figure 32.2 is now a circle in thegq, p) plane, the action is its area
S = 27E/w, and the spectrum in the WKB approximation

En = fiw(n + 1/2) (32.24)

turns out to be thexactharmonic oscillator spectrum. The stationary phase condi-
tion (32.18) keep¥(q) accurate to ordag?, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problerhe WKB spectrum
turns out to be very accurate all the way down to the grounig.sturprisingly
accurate, if one interprets dropping th&term in (32.5) as a short wavelength
approximation.

32.4 Beyond the quadratic saddle point

We showed, with a bit of Fresridlaslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by/& for each turning point.
Thisz/2 came from avfi in the Fresnel integral (32.16), one such factor for every
time we switched representation from the configuration eggadhe momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (32.14) fails whenéVdx) = 0, or, in
our the WKB ansatz (32.18), whenever the momenfita) = S”(q) vanishes.

In that case we have to go beyond the quadratic approximé@ui5) to the first
nonvanishing term in the Taylor expansion of the exponédnb’I(x) # O, then

. 0 P x-x0)3
| ~ A(xo)dS?0o) f dx s 00) 2 (32.25)
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Figure 32.4: Airy function Ai(q). 0.6

Airy functions can be represented by integrals of the form
i0= £ [ dydos
Ai(x) = o dydX¥=73), (32.26)

With a bit of Fresng¢Maslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the B\flantization
condition given in standard quantum mechanics textbodisoreexpanding the
potential close to the turning point

V(@) = V(do) + (94— do)V'(q0) + - »

solving the Airy equation (witlv’(go) — z after appropriate rescalings),

v’ =2y, (32.27)

and matching the oscillatory and the exponentially de@ayfarbidden” region
wave function pieces by means of théKB connection formulas That requires
staring at Airy functions (see (32.4)) and learning aboetrtasymptotics - a chal-
lenge that we will have to eventually overcome, in order tmiporate diraction
phenomena into semiclassical quantization.

The physical origin of the topological phase is illustratgdthe shape of the
Airy function, figure 32.4. For a potential with a finite sloggq) the wave func-
tion penetrates into the forbidden region, and accommedatst more of a sta-
tionary wavelength then what one would expect from the @dabsajectory alone.
For infinite walls (i.e., billiards) a dierent argument applies: the wave function
must vanish at the wall, and the phase slip due to a specfilactien is—r, rather
than—rn/2.

Résumé

The WKB ansatz wave function for 1-degree of freedom prokléails at the
turning points of the classical trajectory. While in theepresentation the WKB
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ansatz at a turning point is singular, along fhdirection the classical trajectory in
the same neighborhood is smooth, as for any smooth boundtjzbtite classical
motion is topologically a circle around the origin in treg ) space. The simplest
way to deal with such singularities is as follows; follow ttiassical trajectory in
g-space until the WKB approximation fails close to the tugnpoint; then insert
fdplp)(pl and follow the classical trajectory in thespace until you encounter
the nextp-space turning point; go back to tluespace representation, an so on.
Each matching involves a Fresnel integral, yielding anesxtr/4 phase shift, for
a total ofe™™ phase shift for a full period of a semiclassical particle ingvin a
soft potential. The condition that the wave-function beyrvalued then leads to
the 1-dimensional WKB quantization, and its lucky coudire, Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around thraihg pointa, V(q) =
V(a)+(g—a)V’(a)+- - -, and solve the quantum mechanical constant linear potentia
V(q) = qF problem exactly, in terms of an Airy function. An approxiratave
function is then patched together from an Airy function atteturning point, and
the WKB ansatz wave-function segments in-between via theBV&¢&nnection
formulas. The single-valuedness condition again yielg@sltidimensional WKB
quantization. This a bit more work than tracking the claglsi@jectory in the full
phase space, but it gives us a better feeling for shapes ofuquaigenfunctions,
and exemplifies the general strategy for dealing with otirguarities, such as
wedges, bifurcation points, creeping and tunneling: paigether the WKB seg-
ments by means of exact QM solutions to local approximatiorssngular points.

Commentary

Remark 32.1 Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso than (33.36) has no zero eigen-
values. The zero eigenvalue case would require going befyen@aussian saddle-point
approximation, which typically leads to approximationgfoé integrals in terms of Airy

functions [32.9]. exercise 32.4

Remark 32.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condi-
tion was the key result of the old quantum theory, in whicheteetron trajectories were
purely classical. They were lucky - the symmetries of the I&eproblem work out in
such a way that the total topological index= 4 amount &ectively to numbering the
energy levels starting with = 1. They were unlucky - because the hydrogen- 4
masked the topological index, they could never get the treipectrum right - the semi-
classical calculation had to wait for until 1980, when Lelopand Percival [A.5] added
the topological indices.
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Exercises

5

32.1. WKB ansatz. J Try to show that no other
ansatz other than (33.1) gives a meaningful definition of
the momentum in the — 0 limit.

32.2. Fresnel integral. Derive the Fresnel integral

1 foo 2 - jra
= dxezm = \/E:|a|1/2e'4\a‘
V21 J-oo

32.3. Sterling formula for n!. Compute an approximate
value ofn! for largen using the stationary phase approx-
imation. Hint:n! = fom dtte .

§
32.4. Airy function for large arguments. & Impor-
tant contributions as stationary phase points may arise
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