Chapter 34

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanovit)

tion, the central results of the semiclassical quantinatib classically

chaotic systems. In chapter 35 we will rederive these foamdibr the
case of scattering in open systems. Quintessential wavhanas &ects such as
creeping, difraction and tunneling will be taken up in chapter 38.

WE DERIVE HERE the Gutzwiller trace formula and the semiclassical zetafun

34.1 Traceformula

Our next task is to evaluate the Green'’s function trace (BlirLthe semiclassical
approximation. The trace

tr Gso(E) = f d°qGs(, G, E) = tr Go(E) + ) f d°qGj(q.q. E)
]

receives contributions from “long” classical trajectariabeled byj which start
and end ing after finite time, and the “zero length” trajectories whosadths
approach zero a3 — Q.

First, we work out the contributions coming from the finiten& returning
classical orbits, i.e., trajectories that originate and aha given configuration
pointg. As we are identifyingy with ¢, taking of a trace involves (still another!)
stationary phase condition in tlgg — q limit,
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 625

Figure 34.1: A returning trajectory in the configura- P
tion space. The orbit is periodic in the full phase spac

only if the initial and the final momenta of a returning
trajectory coincide as well.

Figure 34.2: A romanticized sketch ofSy(E) =
S(q,0,E) = 9§p(q E)dq landscape orbit. Unstable
periodic orbits traverse isolated ridges and saddles &
the mountainous landscape of the act®(y, g, . E).
Along a periodic orbitSy(E) is constant; in the trans-
verse directions it generically changes quadratically.

meaning that the initial and final momenta (33.40) of contiily trajectories
should coincide

pi(0,9.E) - p{(g.0,E) =0, q € jth periodic orbit (34.1)

so the trace receives contributions only from those longsital trajectories which
areperiodicin the full phase space.

For a periodic orbit the natural coordinate system is thensic one, withg,
axis pointing in theg direction along the orbit, and, , the rest of the coordinates
transverse tg. The jth periodic orbit contribution to the trace of the semicieak
Green’s function in the intrinsic coordinates is

_ 1 dgi a1 i 11/205Si-2m;
trGJ(E)_WﬁFﬁd qJ_|detDJ_| e~ 27

where the integration i goes from 0 td_j, the geometric length of small tube
around the orbit in the configuration space. As always, irsthdonary phase ap-
proximation we worry only about the fast variations in theap&S;(q;, ., E),
and assume that the density varies smoothly and is well appated by its
value Di(q”,o, E) on the classical trajectorng, = 0 . The topological index
m;(qy, d., E) is an integer which does not depend on the initial pgjnand not
change in the infinitesimal neighborhood of an isolatedqgakcei orbit, so we set

m;(E) = m;(ay, .. B).

The transverse integration is again carried out by theostaty phase method,
with the phase stationary on the periodic orhit,= 0. The result of the transverse
integration can depend only on the parallel coordinate

trGy(E) = 56 d(;"

detD“(q”, 0 E)
detD’ ;(q;. 0, E)
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 626

where the new determinant in the denominator,l]ilejt:

8°S(q.q', E) . 8°S(q,q', E) . 8°S(q,q, E) . 8°S(q.q', E)

det
dduidqy  oqu0qy  ddudd,; 0,00

’

is the determinant of the second derivative matrix comirgnfrthe stationary
phase integral in transverse directions.

The ratio deDLj/detD’“. is here to enforce the periodic boundary condition
for the semiclassical Green’s function evaluated on a deriorbit. It can be given
a meaning in terms of the monodromy matrix of the periodidtdsip following
observations

ap. Hﬁ(q;, p.)
B Ham a(d., q,)
detD’ = Ham oL, dpy 9P, Ha(m ppql—q;),‘
+ an_ a an_ 8 5(%, qL) .

Defining the 2D — 1)-dimensional transverse vectgr = (q., p.) in the full
phase space we can express the ratio

detD’, _ Ha(pL -pLaL—4ad)) Ha(xl
detDL 6(ql’ pJ_)
= det(M-1), (34.2)

in terms of the monodromy matriM for a surface of section transverse to the
orbit within the constant enerdy = H(q, p) shell.

The classical periodic orbit actid®;(E) = § p(qy, E)dq, is an integral around
a loop defined by the periodic orbit, and does not depend ostréng pointg
along the orbit, see figure 34.2. The eigenvalues of the ntonog matrix are
also independent of wheid; is evaluated along the orbit, so det{Mj) can also
be taken out of the integral

1 1 ig _itm Q|
: — = JGSimzm)
BT 2 |det (1- Mj)ll/zer T a

Here we have assumed thislt; has no marginal eigenvalues. The determinant
of the monodromy matrix, the actid,(E) = § p(qy, E)dq, and the topological
index are all classical invariants of the periodic orbit.eTihtegral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a deriorbit is also a
periodic orbit. The action and the topological index areitakelalong the trajec-
tory, so forrth repeat they simply get multiplied sy The monodromy matrix of
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 627

therth repeat of a prime cycle is (by the chain rule for derivatived)lL, where
M, is the prime cycle monodromy matrix. Let us denote the timgopeof the
prime cyclep, the single, shortest traversal of a periodic orbiflgy The remain-
ing integral can be carried out by change of varialoles dg;/q(t)

Lp dql Tp
TN — dt = T .
j(; q(t) 0 P

Note that the spatial integral corresponds tirayletraversal. If you do not see
why this is so, rethink the derivation of the classical trémenula (18.23) - that
derivation takes only three pages of text. Regrettablyhénguantum case we do
not know of an honest derivation that takes less than 30 pafes final result,
the Gutzwiller trace formula

1 > 1 i ix
trGe(E) =trGo(E) + — > T — —  JGSeIm)  (34.3
so(E) = tr Go(E) Ih; » 2. et (@ M (34.3)

an expression for the trace of the semiclassical Greenwtifamin terms of peri-
odic orbits, is beautiful in its simplicity and elegance.

The topological indexn,(E) counts the number of changes of sign of the ma-
trix of second derivatives evaluated along the prime péciotbit p. By now we
have gone through so many stationary phase approximatiemgaou have surely
lost track of what the totamn,(E) actually is. The rule is this: The topological
index of a closed curve in al2phase space is the sum of the number of times
the partial derivativeé(% for each dual paird;, p),i = 1,2,...,D (no sum on)
change their signs as one goes once around the curve.

34.1.1 Averagedensity of states

We still have to evaluate @q(E), the contribution coming from the infinitesimal
trajectories. The real part of @y(E) is infinite in theq” — q limit, so it makes
no sense to write it down explicitly here. However, the inmagy part is finite,
and plays an important role in the density of states formukach we derive next.

The semiclassical contribution to the density of states1(Blis given by
the imaginary part of the Gutzwiller trace formula (34.3) Itiplied with —1/7.
The contribution coming from the zero length trajectorieghie imaginary part of
(33.48) forg’ — qintegrated over the configuration space

1
o(E) = —— f dPqIm Go(, 6, E),

The resulting formula has a pretty interpretation; it esties the number of
quantum states that can be accommodated up to the eBebyycounting the
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 628

available quantum cells in the phase space. This numberasa biy theWeyl rule
, as the ratio of the phase space volume bounded by eiediyided byhP, the
volume of a quantum cell,

NulE) = 15 [ d°pePaO(E - H(a.p). (34.4)

where®(X) is the Heaviside function (31.22)s(E) is an estimate of the spectral
staircase (31.21), so its derivative yields the averagsitieof states

d
co(E) = 3eNsolE) = 5 [ P PPAS(E - H(a. ). (345

precisely the semiclassical result (34.6).  For Hamiltosiaf type p?/2m +

V(q), the energy shell volume in (34.5) is a sphere of radj)(ﬁ(E -V(Qq)). The

surface of ad-dimensional sphere of radiusis 792r9-1/1'(d/2), so the averageexercise 34.2
density of states is given by

2m

_ D _ D/2-1
hDZdzrDzl"(D/Z) V(q)<Ed q[zm(E V(Q))] s (346)

do(E) =

and

1 ﬂ.D/2

il D _ D/2
hD T(1+ D/2) V(q)<Ed a[2m(E - V(a)]~'*. (34.7)

Ns(E) =

Physically this means that at a fixed energy the phase spacsup@ortNsy(E)
distinct eigenfunctions; anything finer than the quanturth b8 cannot be re-
solved, so the quantum phase spacdtisctively finite dimensional. The average

density of states is of a particularly simple form in one gdatimension exercise 34.3
T(E)
do(E) = ——= 34.8
o(E) =5~ (34.8)

whereT (E) is the period of the periodic orbit of fixed ener@y In two spatial
dimensions the average density of states is

MA(E)
2nh2

do(E) = (34.9)

whereA(E) is the classically allowed area of configuration space flaichvV(q) <
E. exercise 34.4
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 629

The semiclassical density of states is a sum of the averaggitglef states and
the oscillation of the density of states around the averd@€) = do(E)+dosd E),
where

i cosSy(E)/h — rmyn/2) (34.10)

1
OosdE)=— > T
os{E) nth: P |det (1- MJ)[L/2

r=1

follows from the trace formula (34.3).

34.1.2 Regularization of thetrace

The real part of they — q zero length Green’s function (33.48) is ultraviolet
divergent in dimensiondl > 1, and so is its formal trace (31.17). The short
distance behavior of the real part of the Green’s functiom loa extracted from
the real part of (33.48) by using the Bessel function exgangr smallz

.2 ~ ~irp) (%) forv#0
’ 2(In(z/2) +y) forv=0"

wherey = 0.577... is the Euler constant. The real part of the Green’s functamn f
short distance is dominated by the singular part

_Zhrzn g I'((d- 2)/2)W ford # 2

Gsing(la-d',E) =
s (IN(2M(E - V)la - '|/2) +) ford =2

TheregularizedGreen'’s function

Greg(q’ q,’ E) = G(q’ q,’ E) - Gsing(|q - q,|a E)

is obtained by subtracting thg¢ — q ultraviolet divergence. For the regularized
Green’s function the Gutzwiller trace formula is

1 20 o (1Sp(E)-Emy(E)
trGreg(E) = —indo(E) + — > T . 34.11

Now you stand where Gutzwiller stood in 1990. You hold thedrédormula in
your hands. You have no clue how good is the» 0 approximation, how to
take care of the sum over an infinity of periodic orbits, ancethler the formula
converges at all.
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 630

Figure 34.3: A sketch of how spectral determinants
convert poles into zeros: The trace show$EL- E,)
type singularities at the eigenenergies while the spe -f»,..u_,j
tral determinant goes smoothly through zeroes. deter minawt =

34.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge wherenged them, at
the individual energy eigenvalues. What to do? Much of thantum chaos
literature responds to the challenge of wrestling the tfaceulas by replacing
the delta functions in the density of states (31.18) by Ganoss But there is no
need to do this - we can compute the eigenenergies withoufuather ado by
remembering that the smart way to determine the eigenvaliiésear operators
is by determining zeros of their spectral determinants.

A sensible way to compute energy levels is to construct tketsgl determin-
ant whose zeroes yield the eigenenergies, ldet E)sc = 0. A first guess might
be that the spectral determinant is the Hadamard productrof f

det@ - E) = H(E - En),

but this product is not well defined, since for fixedve multiply larger and larger
numbers E — E,)). This problem is dealt with byegularization discussed below
in appendix 34.1.2. Here wefer an impressionistic sketch of regularization.

The logarithmic derivative of det{ — E) is the (formal) trace of the Green's
function

d
dEIndet(H E) = ZE = = tr G(E).

This quantity, not surprisingly, is divergent again. Thiatien, however, opens a
way to derive a convergent version of det ¢ E)gc, by replacing the trace with
the regularized trace

d ~
~5E IndetH — E)sc = tr Greg(E).

The regularized trace still hag(E — E,) poles at the semiclassical eigenenergies,
poles which can be generated only if ddt{ E)sc has a zero aE = E,, see
figure 34.3. By integrating and exponentiating we obtain

E
detH — E)sc = exp(— f dE’ tr Greg(E’))
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Now we can use (34.11) and integrate the terms coming frorogierorbits,
using the relation (33.17) between the action and the pexfa periodic orbit,
dSy(E) = Tp(E)dE, and the relation (31.21) between the density of statestand t
spectral staircaselNs(E) = do(E)dE. We obtain thesemiclassical zeta function

© 1 dr(Sp/i-mpr/2)

det® - E)sc = €™ exp[ - >* >
p r=1

= |, (34.12)
i T [det (1— ME)Y/2

chapter 20

We already know from the study of classical evolution opmrapectra of chap-
ter 19 that this can be evaluated by means of cycle expansitresbeauty of this
formula is that everything on the right side — the cycle act, the topological
indexm, and monodromy matrii, determinant —is intrinsic, coordinate-choice
independent property of the cycpe

34.3 One-dof systems

It has been a long trek, a stationary phase upon stationagephLet us check
whether the result makes sense even in the simplest casgydotum mechanics
in one spatial dimension.

In one dimension the average density of states follows flmerltdof form of
the oscillating density (34.10) and of the average den8iyd)

d(E) =

To(E) . Z To(E) costSp(E)/h — rmp(E)/2). (34.13)

2nh nh

The classical particle oscillates in a single potentiall wéth period T(E). There
is no monodromy matrix to evaluate, as in one dimension tisasaly the parallel
coordinate, and no transverse directions. Thepetition sum in (34.13) can be
rewritten by using the Fourier series expansion of a deliteesjpain

[ee)

Z S(x—n) = i d2kx = 1 4 i 2 cos(2kx).
k=—o0 k=1

N=—oco
We obtain

To(E)
21th

d(E) = Z 5(Sp(E)/2rh — mp(E)/4 — ). (34.14)

This expression can be simplified by using the relation (BBletweenT, and
Sp, and the identity (16.7)(x — x*) = |f/(X)I6(f(x)), wherex" is the only zero of
the functionf(x*) = 0 in the interval under consideration. We obtain

d(E) = ) 6(E - En),
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 632
where the energiels, are the zeroes of the arguments of delta functions in (34.14)

wheremy(E) = mp = 2 for smooth potential at both turning points, amg(E) =
m, = 4 for two billiard (infinite potential) walls. These are pisely theBohr-
Sommerfeld quantized energieg, Elefined by the condition

95 p(a, En)dg = h(n - %) (34.15)

In this way the trace formula recovers the well known 1-do&mfization rule.
In one dimension, the average of states can be expressedtisoguantization
condition. AtE = E, the exact number of statesnswhile the average number
of states iqn1 — 1/2 since the staircase functidéfi{ E) has a unit jump in this point

Nso(E) = n— 1/2 = Sp(E)/2xh — my(E) /4 — 1/2. (34.16)

The 1-dof spectral determinant follows from (34.12) by d¢vimg the mon-
odromy matrix part and using (34.16)

detM@ — E)sc = exp(—lﬁsIO + Igmp) exp{— Z %e%rsp‘%rmp] . (34.17)
r

Summation yields a logarithm by, t"/r = —In(1 - t) and we get

imp

detH - E)sc = e_%SPJrT#?"(l _ e%Sp—i%)
2sin(Sp(E) /7 — mp(E)/4) .

So in one dimension, where there is only one periodic orbitfgiven energy E,
nothing is gained by going from the trace formula to the sédeterminant. The
spectral determinant is a real function for real energiad,its zeros are again the
Bohr-Sommerfeld quantized eigenenergies (34.15).

34.4 Two-dof systems

For flows in two configuration dimensions the monodromy mawi, has two
eigenvalues\, and YA, as explained in sect. 7.2. Isolated periodic orbits can
be elliptic or hyperbolic. Here we discuss only the hyperabse, when the
eigenvalues are real and their absolute value is not equedeo The determinant
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 633

appearing in the trace formulas can be written in terms ofetiganding eigen-
value as

et (1- Mp)[M2 = |ALM2 (1- 1/AL)

and its inverse can be expanded as a geometric series

(o)

1 Z 1
det (1- MR)I/2 - &4 |AG2AK

With the 2-dof expression for the average density of steBd9)) the spectral
determinant becomes

~ - o & G (Sp/h-mpr/2)
detH -E = €22 exp|- -
H )sc p[ ;r g FIAT |1/2Alr<)r ]
| mAE = eiSp—%mp
= e 2 1- 34.18
L] lk_c[)[ A |1/2Ak) 43
Résum é

Spectral determinants and dynamical zeta functions ange in classical and
guantum mechanics because in both the dynamical evolutiotbe described by
the action of linear evolution operators on infinite-dimenal vector spaces. In
guantum mechanics the periodic orbit theory arose fromiatuaf semi-conductors,
and the unstable periodic orbits have been measured inigr@s on the very
paradigm of Bohr’s atom, the hydrogen atom, this time inrgjrexternal fields.

In practice, most “quantum chaos” calculations take theastary phase ap-
proximation to quantum mechanics (the Gutzwiller tracarfola, possibly im-
proved by including tunneling periodic trajectoriesffidiction corrections, etc.)
as the point of departure. Once the stationary phase appatixin is made, what
follows is classicalin the sense that all quantities used in periodic orbit calcu
lations - actions, stabilities, geometrical phases - aassital quantities. The
problem is then to understand and control the convergenatas$ical periodic
orbit formulas.

While various periodic orbit formulas are formally equieat, practice shows
that some are preferable to others. Three classes of perwhit formulas are
frequently used:

Trace formulasThe trace of the semiclassical Green'’s function

{r Ged(E) = f dq Ged(a. 0. E)
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 634

is given by a sum over the periodic orbits (34.11). While estsio derive, in cal-
culations the trace formulas are inconvenient for anytlatiger than the leading
eigenvalue estimates, as they tend to be divergent in th@refphysical interest.
In classical dynamics trace formulas hide under a varietgpgfellations such as
the f —a or multifractal formalism; in quantum mechanics they arewn as the
Gutzwiller trace formulas.

Zeros ofRuelle or dynamical zeta functions

1

_ LS —irmy/2
t, = en>p~Hp
p

[Apl2

yie =] ]a-1),
p

yield, in combination with cycle expansions, the semidtadestimates ofjuan-
tumresonances. For hyperbolic systems the dynamical zetddaschave good
convergence and are a useful tool for determination of akand quantum me-
chanical averages.

Spectral determinants, Selberg-type zeta functions, Heded determinants,
functional determinantare the natural objects for spectral calculations, with-con
vergence better than for dynamical zeta functions, but {eitls transparent cycle
expansions. The 2-dof semiclassical spectral determ((3dni 8)

e|Sp/h inmp/2
det ¢ - E)sc —énNSC(E)nn( e )

is a typical example. Most periodic orbit calculations agsdd on cycle expan-
sions of such determinants.

As we have assumed repeatedly during the derivation of &e fiormula that
the periodic orbits are isolated, and do not form familiesiéthe case for inte-
grable systems or in KAM tori of systems with mixed phase spate formulas
discussed so far are valid only for hyperbolic and elliptcipdic orbits.

For deterministic dynamical flows and number theory, spécteterminants
and zeta functions are exact. The quantum-mechanical desged by the Gutzwiller
approach, are at best only the stationary phase approxinsato the exact quan-
tum spectral determinants, and for quantum mechanics aarten conceptual
problem arises already at the level of derivation of the stamsical formulas; how
accurate are they, and can the periodic orbit theory be syteally improved?

Commentary

Remark 34.1 Gutzwiller quantization of classically chaotic systems. The derivation
given here and in sects. 33.3 and 34.1 follows closely thele exposition [30.2] by
Martin Gutzwiller, the inventor of the trace formula. Theridation presented here is self
contained, but refs. [30.3, 34.1] might also be of help tostuelent.
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CHAPTER 34. SEMICLASSICAL QUANTIZATION 635

Remark 34.2 Zeta functions. For “zeta function” nomenclature, see remark 19.4 on
page 374.
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Exercises
34.1. Monodromy matrix from second variationsof theac- whereT(E) is the time period of the 1-dimensional mo-
tion. Show that tion and show that
— S(E
D,j/D’j=(1-M) (34.19) N(E) = % , (34.20)
34.2. Volume of d-dimensional sphere. Show that the whereS(E) = § p(q, E) dgis the action of the orbit.
Vg|UTe of ad-dimensional sphere of radiusequals 34.4. Averagedensity of statesin 2dimensions. Show that
a%2rd/T(1+d/2). Show thar'(1 + d/2) = I'(d/2)d/2. in 2 dimensions the average density of states is given by
34.3. Averagedensity of statesin 1 dimension. Show that (34.9)
in one dimension the average density of states is given 4(E) = MA(E)
by (34.8) (E) = i
_ T(E) v_vhere?l(E) is the_classically allowed area of configura-
d(E) = 5= tion space for whictJ(q) < E.
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