Chapter 18

Trace formulas

The trace formula is not a formula, it is an idea.
—Martin Gutzwiller

quire global information. How can we use a local descriptidra flow

to learn something about the global behavior? In chapter d have re-
lated global averages to the eigenvalues of appropriateitamo operators. Here
we show that the traces of evolution operators can be eealus integrals over
Dirac delta functions, and in this way the spectra of evolutbperators become
related to periodic orbits. If there is one idea that one &htearn about chaotic
dynamics, it happens in this chapter, and it is this: theeefimdamental locab
global duality which says that

DYNAMICS 1s PoseD In terms of local equations, but the ergodic averages re-

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analy&s,dynamics on well-
tiled manifolds, Selberg traces and zetas; and for genenidimear dynamical
systems the duality is embodied in the trace formulas thatwllenow derive.

These objects are to dynamics what partition functionsasétistical mechanics.

The above phrasing is a bit too highfalutin, so it perhapsspaygo again
through the quick sketch of sects. 1.5 and 1.6. We have a spatee that we
would like to tessellate by periodic orbits, one short ogat neighborhood, as in
figure 18.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit geiser with time,
so we only have to keep track of those who are moving away aloaginsta-
ble directions. The fraction of those who remain in the nbahood for one
recurrence timél, is given by the overlap ratio along the initial sphere and the
returning ellipsoid, figure 18.1 (b), and along the expagdiigen-directionel)
of Jp(X) this is given by the expanding Floquet multiplief|Ap;|. A bit more
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Figure 18.1: (a) Smooth dynamics tesselated by

the skeleton of periodic points, together with their
linearized neighborhoods. (b) Jacobian mathix
maps spherical neighborhood xf — ellipsoidal
neighborhood tim&, later, with the overlap ratio
along the expanding eigdirectiaf of J,(X) given

by the expanding eigenvalug|a ;. (a)

ios

dyoami

thinking leads to the conclusion that one also cares aboutidrg it takes to re-
turn (the long returns contributing less to the time avesageo the weightp

of the p-neighborhoodt, = e S™/|Ay| decreases exponentially both with the
shortest recurrence period and the product (5.7) of expgnBloquet multipli-
ersAp = [leApe. With emphasis orexpanding- the flow could be a 60,000-
dimensional dissipative flow, and still the neighborhoodégined by the handful
of expanding eigen-directions. Now the long-time averafye physical observ-
able -let us say poweD dissipated by viscous friction of a fluid flowing through a
pipe- can be estimated by its mean value (1Dg)T, computed on each neigh-
borhood, and weighted by the above estimate

DpesT

D) = -

AN v
p

Wrong in detail, this estimate is the crux of manfPhys. Rev. Letteand in its
essence the key result of this chapter, the ‘trace formtdare we redo the argu-
ment in a bit greater depth, and derive the correct formule2@) for a long time
average(D) as a weighted sum over periodic orbits. It will take threeptbes,
but it is worth it - the reward is aaxact(i.e., not heuristic) and highly convergent
and controllable formula for computing averages over dodtws.

18.1 A trace formula for maps

Our extraction of the spectrum af commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simplefijrstederive the
trace formula for maps, and then, in sect. 18.2, for flows. firfe formula (18.23)
covers both cases.

To compute an expectation value using (17.21) we have tgriate over all
the values of the kernef"(x,y). Were £" a matrix sum over its matrix elements
would be dominated by the leading eigenvaluenas o (we went through the
argument in some detail in sect. 15.1). As the trac€'dis also dominated by the
leading eigenvalue as— oo, we might just as well look at the trace for which we
have a very explicit formula exercise 15.3
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trL= f dxL"(x, X) = f dxs(x— f"(x)) A" (18.1)

On the other hand, by its matrix motivated definition, theérés the sum over
eigenvalues,

L= e (18.2)
a=0

We find it convenient to write the eigenvalues as exponeftgather than as
multipliers A, and we assume that spectrum/is discrete s, 1, &, - - -, ordered
so that Res, > Res,,1.

For the time being we choose not to worry about convergensict sums,
ignore the question of what function space the eigenfunstizelong to, and com-
pute the eigenvalue spectrum without constructing anyi@km@igenfunctions.
We shall revisit these issues in more depth in chapter 23daudiss how lack of
hyperbolicity leads to continuous spectra in chapter 24.

18.1.1 Hyperbolicity assumption

We have learned in sect. 16.2 how to evaluate the deltaibtmuttegral (18.1). section 16.2

According to (16.8) the trace (18.1) picks up a contributisheneverx —
f'(x) = 0, i.e., whenevex belongs to a periodic orbit. For reasons which we
will explain in sect. 18.2, it is wisest to start by focusing discrete time systems.
The contribution of an isolated prime cycfeof periodn, for a mapf can be
evaluated by restricting the integration to an infinitediofen neighborhoodM,,
around the cycle,

troL™ = f dxs(x - f™(x))
Mp

_ M 1 |
 [det(1 - my) npD|l—Ap.i| (18.3)

For the time being we set here and in (16.9) the obseneiBte= 1. Periodic orbit
Jacobian matrixMp, is also known as thenonodromy matrixand its eigenvalues
Ap1, Ap2, ..., Apg as the Floguet multipliers. section 5.1.2

We sort the eigenvalueSp 1, Ap2, ..., Apg of the p-cycle [dxd] monodromy
matrix M, into expanding, marginal and contracting sgtsn, c}, as in (5.6). As
the integral (18.3) can be evaluated onlyMf{, has no eigenvalue of unit magni-
tude, we assume that no eigenvalue is marginal (we shall §hgect. 18.2 that
the longitudinalApg,1 = 1 eigenvalue for flows can be eliminated by restricting
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the consideration to the transverse monodromy maiiiy, and factorize the trace
(18.3) into a product over the expanding and the contraaiggnvalues

a1 1 1
|det(1- M) = T E[ A U A (18.4)

where Ap = [[eApe is the product of expanding eigenvalues. Both. and
1/Ape are smaller than 1 in absolute value, and as they are eitakoreome in
complex conjugate pairs we are allowed to drop the absokitee\brackets: - - |

in the above products.

Thehyperbolicity assumptiorequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

[Apel > eteTr any p, any expandingApel > 1
[Apc < e o any p, any contractingApcl < 1, (18.5)

wherele, Ac > 0 are strictly positive bounds on the expanding, contractiycle
Lyapunov exponents. If a dynamical system satisfies therbpfieity assump-
tion (for example, the well separated 3-disk system cledwlys), theLt spectrum
will be relatively easy to control. If the expansjoontraction is slower than ex-
ponential, let us sap\pj| ~ sz, the system may exhibit “phase transitions,” and
the analysis is much harder - we shall discuss this in ch&dter

Example 18.1 Elliptic stability. Elliptic stability, i.e., a pair of purely imaginary
exponents Ay = €' is excluded by the hyperbolicity assumption. While the contribution
of a single repeat of a cycle

1 1

(I-€e)T-e) ~ 2(1-cosh) (18.6)

does not make (16.9) diverge, if Am = €2P/" js rth root of unity, 1/ |det(1— M;,)| di-
verges. For a generic 6 repeats cosf6) behave badly and by ergodicity 1 — cosf6) is
arbitrarily small, 1 — cos6) < e, infinitely often. This goes by the name of “small divisor
problem,” and requires a separate treatment.

It follows from (18.4) that for long times, = rT, — oo, only the product of
expanding eigenvalues mattefset(1 - Mrp)| — |Apl". We shall use this fact to
motivate the construction of dynamical zeta functions ict.s&9.3. However, for
evaluation of the full spectrum the exact cycle weight (188 to be kept.

18.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and eliqdic points have
Floquet multipliers|A,,;| # 1 strictly bounded away from unity, the trac®' is
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given by the sum over afieriodic points iof periodn:

n n _ A
trL' = de.L (X, X) = Z m (187)

xeFixfn

Here Fix f" = {x : f'(x) = X} is the set of all periodic points of periag and

A is the observable (17.5) evaluated omatiscrete time steps along the cycle to
which the periodic point; belongs. The weight follows from the properties of
the Dirac delta function (16.8) by taking the determinandigk; — f"(x);). If a
trajectory retraces itself times, its monodromy matrix id;,, whereM, is the
[dx d] monodromy matrix (4.6) evaluated along a single traveasathe prime
cycle p. As we saw in (17.5), the integrated observahleis additive along the
cycle: If a prime cyclep trajectory retraces itself times,n = rn,, we obtainA,
repeated times,A; = A"(X) = rAp, X € Mp.

A prime cycle is a single traversal of the orbit, and its lalsed non-repeating
symbol string. There is only one prime cycle for each cyckerputation class.

For example, the four periodic poin@11= 1001= 1100= 0110 belong to thechapter 11

same prime cycle = 0011 of length 4. As both the stability of a cycle and the
weight A, are the same everywhere along the orbit, each prime cyckngttn,
contributesn,, terms to the sum, one for each periodic point. Hence (18:7hea
rewritten as a sum over all prime cycles and their repeats

&BAp

trL= anz|detl v |5n,npra (18.8)

with the Kronecker deltdnn,r projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward stilt the
continuous time flows, where it would yield a series of Diradta spikes. In both
cases a Laplace transform rids us of the time periodicitystamt.

In the sum over all cycle periods,

pf gBA
le”trL”—tr1 27 Z Z |detp1 NIIJ' ' (18.9)

the constrain®nn,r is replaced by weight". Such discrete time Laplace trans-
form of tr £ is usually referred to as a “generating function.” Why théswsform?
We are actually not interested in evaluating the sum (1&8aufy particular fixed
periodn; what we are interested in is the long time— co behavior. The trans-
form trades in the large time behavior for the smalt behavior. Expressing the
trace as in (18.2), in terms of the sum of the eigenvalue§, efe obtain therace
formula for maps

e D npi Pﬁﬂ . (18.10)

a=0 1-zen p et(l Mr)|
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This is our second example of the duality between the spectfieigenvalues
and the spectrum of periodic orbits, announced in the intctdn to this chapter.
(The first example was the topological trace formula (15)10)

fast track:
W sect. 18.2, p. 354

Example 18.2 A trace formula for transfer operators: For a piecewise-linear map
(17.17), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Ap = AS"AT, where the cycle p contains ng symbols 0 and ny symbols 1, the
trace (18.7) reduces to

)

% (n 1 1 1)
trL"= ( ) = [ + ) , 18.11
;0 m/[1— ATAT™| Z IAolAl  [AL|AK ( )

k=0

with eigenvalues

1 1
e = — et — . (18.12)
[AolAg  IA1IAT
As the simplest example of spectrum for such dynamical system, consider the symmet-
ric piecewise-linear 2-branch repeller (17.17) for which A = A1 = —Ao. In this case all
odd eigenvalues vanish, and the even eigenvalues are given by €% = 2/AK*!, k eegexcise 16.7

Asymptotically the spectrum (18.12) is dominated by the lesser of the two fixed
point slopes A = Ag (if |Ag| < |A1], otherwise A = A1), and the eigenvalues € fall off
exponentially as 1/AX, dominated by the single less unstable fixed-point. example 23.1

For k = 0 this is in agreement with the explicit transfer matrix (17.19) eigenval-
ues (17.20). The alert reader should experience anxiety at this point. Is it not true that
we have already written down explicitly the transfer operator in (17.19), and that it is
clear by inspection that it has only one eigenvalue e® = 1/|Ao| + 1/|A1|? The example
at hand is one of the simplest illustrations of necessity of defining the space that the
operator acts on in order to define the spectrum.  The transfer operator (17.19) is
the correct operator on the space of functions piecewise constant on the state space
partition {Mo, My}, on this space the operator indeed has only the eigenvalue €%*. As
we shall see in example 23.1, the full spectrum (18.12) corresponds to the action of the
transfer operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (17.17)
follows from (18.9)

TR )
l—Z£ 1- Z(

1 ) (18.13)
o1 T AT

verifying the trace formula (18.10).
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18.2 A trace formula for flows

Amazing! | did not understand a single word.
—Fritz Haake

(R. Artuso and P. Cvitanovit)

Our extraction of the spectrum dff commences with the evaluation of the trace
tret=tre = f dx L% x) = f dxa(x - ft(x))e’f'”x) . (18.14)

We are not interested in any particular tirhebut into the long-time behavior
ast — oo, so we need to transform the trace from the “time domain” iht®
“frequency domain.” A generic flow is a semi-flow defined fordidn time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evmfubperator
yields the resolvent (16.31). This is a delicate step, stheeevolution operator
becomes the identity in the— 0* limit. In order to make sense of the trace we
regularize the Laplace transform by a lower dtitosmaller than the period of any
periodic orbit, and write

™ —(s-A)e X o (s-s)e
€ €
f dtesttr £ =tr S = , (18.15)

-A a=0 S™%

whereA is the generator of the semigroup of dynamical evolutior,sest. 16.5.
Our task is to evaluate #! from its explicit state space representation.

18.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself elyaat each cycle
period, the eigenvalue of the Jacobian matrix correspantinthe eigenvector

along the flow necessarily equals unity for all periodic tsbHence for flows thesection 5.2.1

trace integral t£! requires a separate treatment for the longitudinal dioectiro
evaluate the contribution of an isolated prime cyplef period Ty, restrict the in-
tegration to an infinitesimally thin tub&{,, enveloping the cycle (see figure 1.12),
and consider a local coordinate system with a longitudicalrdinatedx; along
the direction of the flow, and—1 transverse coordinates ,

tr,,[;‘:fM dx, dx; 6(x, — (%) 6(x - f'(x) - (18.16)
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(we setg = 0 in the expg - A) weight for the time being). Pick a point on the
prime cycle p, and let

d 1/2
v(x) = [Z vi(x)z] (18.17)
i=1

be the magnitude of the tangential velocity at any pairt (x,0,---,0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time at(x) = 0 points, and that would get us nowhere.

As 0 < 7 < Tp, the trajectoryx(r) = f7(x,) sweeps out the entire cycle, and
for larger timesy; is a cyclic variable of periodicityl,

X)(7) = X (r +rTp) r=212--- (18.18)

We parametrize both the longitudinal coordinaggr) and the velocityv(r) =
Vv(x(7)) by the flight timer, and rewrite the integral along the periodic orbit as

¢ ol - 1) =  drua (o) - x(r + ). (18.19)
p p

By the periodicity condition (18.18) the Diratfunction picks up contributions
fort =Ty, so the Laplace transform can be split as

fo dtes's(x(r) - (T +1)) = Z e ST |,
r=1
I, = f dteto(x(r) = X (r + 1T +1).

Taylor expanding and applying the periodicity conditio.(18), we have(r +
Mp+1) =X +v(Ot+...,

0= [ dte ol - xtr+ o+ ) = .

so the remaining integral (18.19) oveiis simply the cycle perioqﬁ dr = Tp.
The contribution of the longitudinal integral to the Laptatcansform is thus

mdt ’S‘Sgd 8(x — f! =T 3 ~STor 18.20
fo e P ax (3 - 1'09)) p;e (18.20)

This integration is a prototype of what needs to be done foheaarginal direc-
tion, whenever existence of a conserved quantity (enerdyamiltonian flows,
angular momentum, translational invariance, etc.) ingpégistence of a smooth
manifold of equivalent (equivariant) solutions of dynaaliequations.
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18.2.2 Stability in the transverse directions

Think of ther = 0 point in above integrals along the cygbeas a choice of a
particular Poincaré section. As we have shown in sect.tBetransverse Flo-
quet multipliers do not depend on the choice of a Poincacéiase so ignoring
the dependence ox(7) in evaluating the transverse integral in (18.16) is justi-
fied. For the transverse integration variables the Jacamiatmix is defined in a
reduced Poincaré surface of sectirof fixed x. Linearization of the periodic
flow transverse to the orbit yields

dxes(x - FP00) = —=— 18.21
L X (x (x)) |det(1—M{))| ( )

whereM;, is the p-cycle [d—1xd-1] transversemonodromy matrix. As in (18.5)
we have to assume hyperbolicity, i.e., that the magnitudledl ransverse eigen-
values are bounded away from unity.

Substitution (18.20), (18.21) in (18.16) leads to an exgicesfor trL! as a
sum over all prime cyclep and their repetitions

00 s . 2 @ BA=sTy)
fg dtesttr £t = ZTpZ |det v | (18.22)

Thee — 0 limit of the two expressions for the resolvent, (18.15) é1®122), now
yields theclassical trace formula for flows

2, g BA=sTy)

ZS _Z Z|det1 M) (1829

a=0

exercise 18.1

(If you are worried about the convergence of the resolvent,seep thes regu-
larization.)

This formula is still another example of the duality betwdlea (local) cycles
and (global) eigenvalues. T, takes only integer values, we can replacg— z
throughout, so the trace formula for maps (18.10) is a speeise of the trace
formula for flows. The relation between the continuous arstréte time cases
can be summarized as follows:

Tp © np

e S

e o L. (18.24)

© Z

We could now proceed to estimate the location of the leadingutarity of
tr (s— A)~* by extrapolating finite cycle length truncations of (18.Bg)methods
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such as Padé approximants. However, it pays to first perfosimple resumma-
tion which converts this divergence of a trace integoof a spectral determinant.
We shall do this in sect. 19.2, but first a brief refresher of/tadl this relates to
the formula for escape rate (1.8fered in the introduction might help digest the
material.

fast track:
W sect. 19, p. 361
18.3 An asymptotic trace formula

§
J In order to illuminate the manipulations of sect. 18.1 andtesthem to
something we already possess intuition about, we now neglére heuristic sum
of sect. 1.5.1 from the exact trace formula (18.10). The &eptransforms (18.10)
or (18.23) are designed to capture the timex asymptotic behavior of the trace
sums. By the hyperbolicity assumption (18.5), fer Tpr large the cycle weight
approaches

|det(l - M;J)| > 1Al (18.25)

whereA, is the product of the expanding eigenvaluesvy. Denote the corre-
sponding approximation to theh trace (18.7) by

(n)
Z Ai (18.26)

and denote the approximate trace formula obtained by rigpjale cycle weights
det(l - M[))' by |Apl" in (18.10) byI'(2). Equivalently, think of this as a replace-
ment of the evolution operator (17.23) by a transfer oper@®in example 18.2).
For concreteness consider a dynamical system whose synyolamics is com-
plete binary, for example the 3-disk system figure 1.6. Is tlaise distinct periodic
points that contribute to theth periodic points sum (18.8) are labeled by all ad-
missible itineraries composed of sequences of leees{0, 1}:

@ Zzn Sy 2
I'(2 = T'h= _—
! n=1 Fixfn IAil
xeFixf
{ fho BA } {EZBAO fha BAo  @2BA }
= — + + + +
Aol |A4] [Aol? Aol |A10l  1A1P
ePBho Ao Ao ghAoo
{—3 + + + +.. } (18.27)
[Aol®  [Aco1l  |Aoid  [Aaodl
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Both the cycle average and the stabilitieg\; are the same for all pointg € M
in a cyclep. Summing over repeats of all prime cycles we obtain

@ = Z 1”Etfp, tp = 2P M /IA . (18.28)
p

This is precisely our initial heuristic estimate (1.9). Rabhat we could not per-
form such sum over in the exact trace formula (18.10) +§et(l— M[,)| *

.
|det(1 - Mp)| : the correct way to resum the exact trace formulas is to fist e

pand the factors /11 — Ap;l, as we shall do in (19.9). section 19.2

If the weightse®A"® are multiplicative along the flow, and the flow is hyper-
bolic, for givenp the magnitude of eaclg?"*)/A;| term is bounded by some
constantM". The total number of cycles grows a% @r ase€™, h = topological
entropy, in general), and the sum is convergengz&ufficiently small,|z] < 1/2M.
For largen the nth level sum (18.7) tends to the leadidd eigenvalueg™®. Sum-
ming this asymptotic estimate level by level

Z€e0
1-zed

@~ i (z60)" = (18.29)
n=1

we see that we should be able to determspéy determining the smallest value
of z= e % for which the cycle expansion (18.28) diverges.

If one is interested only in the leading eigenvalue/pfit suffices to consider
the approximate trac€(z). We will use this fact in sect. 19.3 to motivate the
introduction of dynamical zeta functions (19.14), and ints&9.5 we shall give
the exact relation between the exact and the approximate foamulas.

Résum é

The description of a chaotic dynamical system in terms ofes/can be visual-
ized as a tessellation of the dynamical system, figure 18ith, avsmooth flow
approximated by itperiodic orbit skeletoneach regionM; centered on a peri-
odic pointx; of the topological lengtm, and the size of the region determined
by the linearization of the flow around the periodic point.€eTihtegral over such
topologically partitioned state space yields thessical trace formula
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of global eigenvalues to the unthinkable infinity of locaktable cycles. However,
it is a good stepping stone on the way to construction of sgledéterminants (to
which we turn next), and a first hint that when the going is gabe theory might

turn out to be convergent beyond our wildest dreams (ch&8gr In order to

implement such formulas, we will have to determine “all’mé cycles. The first
step is topological: enumeration of all admissible cycledartaken in chapter 12.
The more onerous enterprize of actually computing the syale first approach
traditionally, as a numerical task in chapter 13, and thererboldly as a part and
parcel of variational foundations of classical and quantlymamics in chapter 29.

Commentary

Remark 18.1 Who's dunne it?  Continuous time flow traces weighted by cycle pe-
riods were introduced by Bowen [18.1] who treated them asi¢@wé section suspen-
sions weighted by the “time ceiling” function (3.5). Theyneeaised by Parry and Polli-
cott [18.2].

Remark 18.2 Flat and sharp traces. In the above formal derivation of trace formulas
we cared very little whether our sums were well posed. In tieelRolm theory traces like
(18.14) require compact operators with continuous fumckiernels. This is not the case
for our Dirac delta evolution operators: neverthelessiehe a large class of dynamical
systems for which our results may be shown to be perfectlyldg the mathematical lit-
erature expressions like (18.7) are calfiedtraces (see the review [18.4] and chapter 23).
Other names for traces appear as well: for instance, in théegbof 1— dimensional
mappingssharptraces refer to generalizations of (18.7) where contrdngiof periodic
points are weighted by the Lefschetz sigh, reflecting whether the periodic point sits
on a branch ofith iterate of the map which crosses the diagonal starting foelow or
starting from above [19.10]. Such traces are connectedetéhtory of kneading invari-
ants (see ref. [18.4] and references therein). Traces weidhy+1 sign of the derivative
of the fixed point have been used to study the period doubépelter, leading to high
precision estimates of the Feigenbaum consiargfs. [18.5, 20.6, 18.6].

Exercises
Z Z i e B-Ap=sTp) 18.1. t — 0O, regularization of eigenvalue sums'.  In tak- the divergent sum in (18.23) and assign to such vc
s—s, |det 1 Mr I . ing the Laplace transform (18.23) we have ignored the ~ term some interesting role in the theory of classica
(Y—

t — 0, divergence, as we do not know how to regularize onance spectra. E-mail the solution to the authors.
the delta function kernel in this limit. In the quantum
(or heat kernel) case this limit gives rise to the Weyl

Now that we have a trace formula, we might ask for what is itdfods it stands, it C ) _ /
or Thomas-Fermi mean eigenvalue spacing.Regularize

is little more than a scary divergent formula which relates ainspeakable infinity
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18.2. General weights. (easy) Letf! be a flow and/! the (b) Restrictt and s to be integers and show that the
operator most general form ofvis
£ = [ dystx- fi)utt. o) )
w(n, X = gg(f ()g(F(¥) - g(F" (%)),
wherew is a weight function. In this problem we will
try and determine some of the propertiesust satisfy. for someg that can be multiplied. Could be a

(2) Compute£s£ig(x) to show that function fromR™ — R™? (n; € N.)

w(s FLOW(E X) = w(t +5,X).
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