Appendix L

Statistical mechanics recycled

(R. Mainieri)

spIN sYsTEM With long-range interactions can be converted into a chaoti
dynamical system that is fiierentiable and low-dimensional. The ther-

modynamic limit quantities of the spin system are then esjaivt to long
time averages of the dynamical system. In this way the spgtesy averages can
be recast as the cycle expansions. If the resulting dynasystem is analytic, the
convergence to the thermodynamic limit is faster than whith $tandard transfer
matrix techniques.

L.1 The thermodynamic limit

There are two motivations to recycle statistical mecharoce gets better control
over the thermodynamic limit and one gets detailed inforomabn how one is
converging to it. From this information, most other quaestof physical interst
can be computed.

In statistical mechanics one computes the averages ofwalides. These are
functions that return a number for every state of the systhay, are an abstraction
of the process of measuring the pressure or temperature as.aldne average of
an observable is computed in the thermodynamic limit — timét lof system with
an arbitrarily large number of particles. The thermodynafimit is an essential
step in the computation of averages, as it is only then thatatiserves the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamiogerties of
matter could not be derived within the framework of statistimechanics. There
would be no extensive quantities, no equivalence of ensesnahd no phase tran-
sitions. From experiments it is known that certain quagitire extensive, that is,
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they are proportional to the size of the system. This is ng# for an interact-
ing set of particles. If two systems interacting via paimvgotentials are brought
close together, work will be required to join them, and thaffilotal energy will
not be the sum of the energies of each of the parts. To avoidahiéict between
the experiments and the theory of Hamiltonian systems, eeesisystems with
an infinite number of particles. In the canonical ensembéeptobability of a
state is given by the Boltzman factor which does not imposectinservation of
energy; in the microcanonical ensemble energy is consesuéethe Boltzmann
factor is no longer exact. The equality between the ensestiily appears in the
limit of the number of particles going to infinity at constatensity. The phase
transitions are interpreted as points of non-analyticityhe free energy in the
thermodynamic limit. For a finite system the partition fuontcannot have a zero
as a function of the inverse temperatgeas it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in gtedy of field
theories. A field theory can be first defined on a lattice and the lattice spac-
ing is taken to zero as the correlation length is kept fixedis Tontinuum limit
corresponds to the thermodynamic limit. In lattice spaaings the correlation
length is going to infinity, and the interacting field theoncbe thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermalyfimit is slow.
If the thermodynamic limit exists for an interaction, thengergence of the free
energy per unit volumd is as an inverse power in the linear dimension of the
system.

f(g) — % (L.1)

wheren is proportional tovYd, with V the volume of thed-dimensional system.
Much better results can be obtained if the system can beibdeddny a transfer
matrix. A transfer matrix is concocted so that the trace ®fith power is exactly
the partition function of the system with one of the dimensigroportional to
n. When the system is described by a transfer matrix then theecgence is
exponential,

f(8) - en (L.2)

and may only be faster than that if all long-range corretatiof the system are
zero — that is, when there are no interactions. Thefumenta depends only on
the inverse correlation length of the system.

One of the dfficulties in using the transfer matrix techniques is that thesym
at first limited to systems with finite range interactions. aB¥ transitions can
happen only when the interaction is long range. One can tapoximate the
long range interaction with a series of finite range inteécenst that have an ever
increasing range. The problem with this approach is that fiormally defined

statmech - 1dec2001 ChaosBook.org version13, Dec 31 2009



APPENDIX L. STATISTICAL MECHANICS RECYCLED 870

transfer matrix, not all the eigenvalues of the matrix cepand to eigenvalues of
the system (in the sense that the rate of decay of corretat®not the ratio of
eigenvalues).

Knowledge of the correlations used in conjunction with &rsize scaling to
obtain accurate estimates of the parameters of systemghate transitions. (Ac-
curate critical exponents are obtained by series expassioransfer matrices,
and infrequently by renormalization group arguments or Mddarlo.) In a phase

transition the coficient « of the exponential convergence goes to zero and the

convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example ofiactional inte-
gral. For most interactions these integrals are ill-defined require some form
of normalization. In the spin models case the functionagdral is very simple,
as “space” has only two points and only “time” being infiniesho be dealt with.
The same problem occurs in the computation of the trace néfea matrices of
systems with infinite range interactions. If one tries to poite the partition func-
tion Z,

Zn=trT"

whenT is an infinite matrix, the result may be infinite for any This is not to
say thaiZ, is infinite, but that the relation between the trace of an afperand the
partition function breaks down. We could try regularizirge texpression, but as
we shall see below, that is not necessary, as there is a péttsical solution to
this problem.

What will described here solves both of these problems imétéid context:
it regularizes the transfer operator in a physically megfiihway, and as a con-
sequence, it allows for the faster than exponential comverg to the thermody-
namic limit and complete determination of the spectrum. 3te@s to achieve this
are:

o Redefine the transfer operator so that there are no limitdviad except for
the thermodynamic limit.

e Note that the divergences of this operator come from thetFeattit acts on
a very large space. All that is needed is the smallest subspaataining
the eigenvector corresponding to the largest eigenvaheeGibbs state).

e Rewrite all observables as depending on a lo@@otive field. The eigen-
vector is like that, and the operator restricted to this spadrace-class.

e Compute the spectrum of the transfer operator and obseeveéyic.
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L.2 Ising models

The Ising model is a simple model to study the cooperatiieces of many small
interacting magnetic dipoles. The dipoles are placed ottiadaand their interac-
tion is greatly simplified. There can also be a field that idelsithe &ects of an
external magnetic field and the averagkeet of the dipoles among themselves.
We will define a general class of Ising models (also called spstems) where the
dipoles can be in one of many possible states and the ini@maatxtend beyond
the nearest neighboring sites of the lattice. But before xtenel the 1sing model,
we will examine the simplest model in that class.

L.2.1 Ising model

One of the simplest models in statistical mechanics is ting Imodel. One imag-
ines that one has a 1-dimensional lattice with small magatst¢sch site that can
point either up or down.

©) (©) o @) o O @) o O.

Each little magnet interacts only with its neighbors. Ifitheth point in the same
direction, then they contribute an energy to the total energy of the system; and
if they point in opposite directions, then they contributé. The signs are chsen
so that they prefer to be aligned. Let us suppose that we haweall magnets
arranged in a line: A line is drawn between two sites to inidaat there is an
interaction between the small magnets that are locatedadrsitie

O—O0—0—0——0——0——0——0C0—>0. (L3

(This figure can be thought of as a graph, with sites beindoesrtand interacting
magnets indicated by edges.) To each of the sites we assaciatriable, that we
call a spin, that can be in either of two states: fipdr down (1). This represents
the two states of the small magnet on that site, and in gemerakill use the
notationX to represent the set of possible values of a spin at any ditsites
assume the same set of values. A configuration consists ighass a value to
the spin at each site; a typical configuration is

0—0—0—0—0—0—0—0—0 . (L4)

The set of all configurations for a lattice withsites is called2] and is formed
by the Cartesian produ€®g x Qq--- x Qo, the product repeatend times. Each
configurationo- € Q" is a string ofn spins

o ={o0,01,...0n}, (L.5)
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In the example configuration (L.4) there are two pairs of st have the
same orientation and six that have the opposite orientatidrerefore the total
energyH of the configuration is] x 6 — J x 2 = 4J. In general we can associate
an energyH to every configuration

H(o) = ) 35(01, i) (L.6)
i
where
+1 ifoy =
o(or1, 72) :{ 0 orzen X

One of the problems that was avoided when computing the greag what to do

at the boundaries of the 1-dimensional chain. Note that #@tewy (L.6) requires
the interaction of spim with spinn + 1. In the absence of phase transitions the
boundaries do not matter much to the thermodynamic limit\aedvill connect
the first site to the last, implementing periodic boundamditions.

Thermodynamic quantities are computed from the partitiomcfion Z" as
the sizen of the system becomes very large. For example, the free gpergsite
f at inverse temperatuggis given by

-B1(8) = lim %m zm (L.8)

The partition functionz®™ is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configamationtributes with
its Gibbs factor exp{BH(c")) and the partition functioZ®™ is

z0(@g) = Z e AH@) (L.9)

n
oeQf

The partition function can be computed using transfer roegi This is a
method that generalizes to other models. At first, it is delithysterious that
matrices show up in the study of a sum. To see where they camne five can
try and build a configuration on the lattice site by site. Thstfihing to do is to
expand out the sum for the energy of the configuration

Z(")(B) _ Z BI(o1,02) fIo(r2,09) ., hIo(orncra) (L.10)

TeQn

Let us use the configuration in (L.4). The first siteris=17. As the second site is
1, we know that the first term in (L.10) is a terefi’. The third spin is|, so the
second term in (L.10) is#7. If the third spin had been, then the term would
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have beer’ but it would not depend on the value of the first spin This means
that the configuration can be built site by site and that tomatenthe Gibbs factor
for the configuration just requires knowing the last spinetid/Ve can then think
of the configuration as being a weighted random walk wherb stap of the walk
contributes according to the last spin added. The randork ta&k place on the
transition graph

Choose one of the two sites as a starting point. Walk alongadioywed edge
making your choices randomly and keep track of the accumdlateight as you
perform then steps. To implement the periodic boundary conditions maike s
that you return to the starting node of the transition gralplthe walk is carried
out in all possible 2ways then the sum of all the weights is the partition function
To perform the sum we consider the matrix

¢ et

TB) = el Bl (L.11)

As in chapter 11 the sum of all closed walks is given by thegti@igpowers of the
matrix. These powers can easily be re-expressed in ternfedfio eigenvalues
A1 and A, of the transfer matrix:

Z0@E) = r T(B) = 1(@B)" + 12(8)". (L.12)

L.2.2 Averages of observables

Averages of observables can be re-expressed in terms ofglevectors of the
transfer matrix. Alternatively, one can introduce a modifteansfer matrix and
compute the averages through derivatives. Sounds fafiliar

L.2.3 General spin models

The more general version of the Ising model — the spin modelsit-be defined
on a regular latticeZP. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by th&sget

The transfer operatof” was introduced by Kramers and Wannier [L.12] to
study the Ising model on a strip and concocted so that the tbits nth power is
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the partition functiorZ, of system when one of its dimensionsnisThe method
can be generalized to deal with any finite-range interactibrihe range of the
interaction isL, then7 is a matrix of size 2x 2-. The longer the range, the larger
the matrix.

L.3 Fisher droplet model

In a series of articles [L.20], Fisher introduced the dropiedel. It is a model for

a system containing two phases: gas and liquid. At high teatpess, the typical

state of the system consists of droplets of all sizes floatinige gas phase. As the
temperature is lowered, the droplets coalesce, formirgetadroplets, until at the

transition temperature, all droplets form one large onds Ta first order phase
transition.

Although Fisher formulated the model in 3-dimensions, thalgtic solution
of the model shows that it is equivalent to a 1-dimensioritickagas model with
long range interactions. Here we will show how the model carsdived for an
arbitrary interaction, as the solution only depends on #ymtotic behavior of
the interaction.

The interest of the model for the study of cycle expansioritsiselation to
intermittency. By having an interaction that behaves agptigally as the scaling
function for intermittency, one expects that the analytiacture (poles and cuts)
will be same.

Fisher used the droplet model to study a first order phasaitiam [L.20].
Gallavotti [L.21] used it to show that the zeta functions rainin general be
extended to a meromorphic functions of the entire complexg@l The droplet
model has also been used in dynamical systems to explairésadf mode lock-
ing, see Artuso [L.22]. In computing the zeta function foe tiroplet model we
will discover that at low temperatures the cycle expansias & limited radius of
convergence, but it is possible to factorize the expansitmthe product of two
functions, each of them with a better understood radius n¥emence.

L.3.1 Solution

The droplet model is a 1-dimensional lattice gas where eéehcan have two
states: empty or occupied. We will represent the empty btafeand the occupied
state by 1. The configurations of the model in this notatiaathen strings of
zeros and ones. Each configuration can be viewed as groumsiti§eous ones
separated by one or more zeros. The contiguous ones reptesalioplets in the
model. The droplets do not interact with each other, but tidévidual particles
within each droplet do.

To determine the thermodynamics of the system we must assiggnergy
to every configuration. At very high temperatures we woulgent a gaseous
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phase where there are many small droplets, and as we detheasmperature
the droplets would be expected to coalesce into larger onlsat some point
there is a phase transition and the configuration is domidniayeone large drop.
To construct a solvable model and yet one with a phase tiamsite need long
range interaction among all the particles of a droplet. Om@ice is to assign a
fixed energy#d, for the interactions of the particles of a cluster of sizeln a
given droplet one has to consider all the possible clustaraéd by contiguous
particles. Consider for example the configuration 011101®as two droplets,
one of size three and another of size one. The droplet of sieehas only one
cluster of size one and therefore contributes to the enéditheaonfiguration with
01. The cluster of size three has one cluster of size three, lugers of size two,
and three clusters of size one; each cluster contributifigtarm to the energy.
The total energy of the configuration is then

H(0111010)= 46, + 20, + 165. (L.13)

If there where more zeros around the droplets in the abovégroation the en-
ergy would still be the same. The interaction of one site Withothers is assumed
to be finite, even in the ground state consisting of a singtplét, so there is a
restriction on the sum of the cluster energies given by

a:Zen<oo. (L.14)

n>0

The configuration with all zeros does not contribute to thergn

Once we specify the functioy, we can computed the energy of any config-
uration, and from that determine the thermodynamics. Herewil evaluate the
cycle expansion for the model by first computing the genegafiinction

cep =y 220 (L15)

n>0

and then considering its exponential, the cycle expan&tach partition function
Z, must be evaluated with periodic boundary conditions. Sceifwere computing
Z3 we must consider all eight binary sequences of three bitsydren computing
the energy of a configuration, say 011, we should determiaestiergy per three
sites of the long chain

...011011011011..

In this case the energy would le + 26,. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the condiipn would have
been the same. To compute the partition function we only neewnsider one
of the configurations and multiply by the length of the confagion to obtain the
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contribution of all its rotated shifts. The factofriin the generating function can-
cels this multiplicative factor. This reduction will not labif the configuration
has a symmetry, as for example 0101 which has only two rosféticonfigura-
tions. To compensate this we replace tha factor by a symmetry factor/5(b)
for each configuratiom. The evaluation of5 is now reduced to summing over
all configurations that are not rotated shift equivalent] e call these the basic
configurations and the set of all of theBn We now need to evaluate

COEDY j(—ge*ﬂmb’. (L16)

beB

The notation - | represents the cardinality of the set.

Any basic configuration can be built by considering the sedroplets that
form it. The smallest building block has size two, as we misi put a zero next
to the one so that when twoftirent blocks get put next to each other they do not
coalesce. The first few building blocks are

size droplets
2 01 (L.17)
3 001 011

4 0001 0011 0111
Each droplet of size contributes with energy

W= > (n—K+ 1) (L.18)

1<k<n

So if we consider the sum

Z 1 (ZZE—ﬁH(Ol) + (e PH00Y) | gpHOLY) |
n

n>1
+ (g PHO00L) | gAH(O01D) | gHOLID) | . ,)” (L.19)

then the power im will generate all the configurations that are made from many
droplets, while thez will keep track of the size of the configuration. The factor
1/nis there to avoid the over-counting, as we only want the bemnfigurations
and not its rotated shifts. The'ifactor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can befgahbly noticing
that it is a logarithmic series

-In(1- (Ze™ + 2™ + &)+, (L.20)

where theH(b) factors have been evaluated in terms of the droplet ereiie
A proof of the equality of (L.19) and (L.20) can be given , bua there was not
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enough space on the margin to write it down. The series thahb$racted from
one can be written as a product of two series and the loganithtten as

(1= @+ 2+ 2+ )ze™ + P+ ) (L.21)

The product of the two series can be directly interpretethagenerating function
for sequences of droplets. The first series adds one or mars ea configuration
and the second series add a droplet.

There is a whole class of configurations that is not incluaetthé above sum:
the configurations formed from a single droplet and the vatwenfiguration.
The vacuum is the easiest, as it has zero energy it only botes az. The sum
of all the null configurations of all sizes is

Z % ) (L.22)

n>0

The factor ¥nis here because the originalhad them and the null configurations
have no rotated shifts. The single droplet configuratioss db not have rotated
shifts so their sum is

n

——
Zne—ﬁH(ll. .10

Z —_— (L.23)

n>0

Because there are no zeros in the above configuration dusitell size exist and
the energy of the configuration i}, 6« which we denote bya

From the three sums (L.21), (L.22), and (L.23) we can eveltls generating
functionG to be

G(zB) = —In(L-2) - In(1 - 67 - In(L - 1%2 N ey, (L24)

n>1

The cycle expansiog~%(z B) is given by the exponential of the generating
functione ® and we obtain

Mz p) = (1-2eP) (1= AL+ ) P (L29)

n>1
To pursue this model further we need to have some assumpdiomst the
interaction strengths,. We will assume that the interaction strength decreases

with the inverse square of the size of the cluster, thatis; —1/n?. With this we
can estimate that the energy of a droplet of size asymptotically

Wh ~ —n+ Inn+0(%). (L.26)
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If the power chosen for the polynomially decaying interaisthad been other than
inverse square we would still have the droplet term propaéi ton, but there
would be no logarithmic term, and th@ term would be of a dferent power.
The term proportional to survives even if the interactions fall§f@xponentially,
and in this case the correction is exponentially small inaegmptotic formula.
To simplify the calculations we are going to assume that tiopldt energies are
exactly

Wh=-n+Inn (L.27)

in a system of units where the dimensional constants are doeevaluate the
cycle expansion (L.25) we need to evaluate the constattite sum of all the,,.
One can write a recursion for thiig

O = W — Z (n— K+ 1)6 (L.28)

1<k<n

and with an initial choice fo#; evaluate all the others. It can be verified that in-
dependent of the choice 6f the constan& is equal to the number that multiplies
thenterm in (L.27). In the units used

a=-1. (L.29)

For the choice of droplet energy (L.27) the sum in the cycleagsion can be
expressed in terms of a special function: the Lerch trardsmeatalg, . Itis defined
by

_Z
(n+c)s’

n@so =)

n=0

(L.30)

excluding from the sum any term that has a zero denominata.LErch function
converges foz < 1. The series can be analytically continued to the complex
plane and it will have a branch point at= 1 with a cut chosen along the pos-
itive real axis. In terms of Lerch transcendental functioa @an write the cycle
expansion (L.25) using (L.27) as

2P = (1-2¢)(1- A1+ 6u(2€¢.5, 1)) (L31)

This serves as an example of a zeta function that cannot keded to a mero-
morphic function of the complex plane as one could conjectur

The thermodynamics for the droplet model comes from the lsstaloot of

(L.31). The root can come from any of the two factors. Forédavglue of3 (low
temperatures) the smallest root is determined from thezéf) factor, which gave
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the contribution of a single large drop. For sm@(large temperatures) the root is
determined by the zero of the other factor, and it correspdndhe contribution
from the gas phase of the droplet model. The transition ccatien the smallest
root of each of the factors become numerically equal. Thisrd@nes the critical
temperatures; through the equation

1-eP(1+ () = 0 (L32)

which can be solved numerically. One finds tiat= 1.40495. The phase tran-
sition occurs because the roots from twdfelient factors get swapped in their
roles as the smallest root. This in general leads to a firgtrgutiase transition.
For largep the Lerch transcendental is being evaluated at the branict, pmd
therefore the cycle expansion cannot be an analytic fumetidow temperatures.
For large temperatures the smallest root is within the dificonvergence of
the series for the Lerch transcendental, and the cycle sigrahas a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a functightbé smallest root
and the branch point get closer together until at exactlyptiese transition they
collide. This is a sflicient condition for the existence of a first order phase tran-
sitions. In the literature of zeta functions [24.19] thewvé been speculations
on how to characterize a phase transition within the forsmali The solution of
the Fisher droplet model suggests that for first order phasesitions the factor-
ized cycle expansion will have its smallest root within theius of convergence
of one of the series except at the phase transition when thtecadlides with a
singularity. This does not seem to be the case for second phdese transitions.

The analyticity of the cycle expansion can be restored if aresier separate
cycle expansions for each of the phases of the system. Ifpaate the two terms
of £~1in (L.31), each of them is an analytic function and contaliressmallest root
within the radius of convergence of the series for the relggavalues.

L.4 Scaling functions

There is a relation between general spin models and dynasystem. If one
thinks of the boxes of the Markov partition of a hyperbolicst®m as the states
of a spin system, then computing averages in the dynamisaisyis carrying
out a sum over all possible states. One can even construnatbeal measure of
the dynamical system from a translational invariant “iatgion function” call the
scaling function.

There are many routes that lead to an explanation of whatlegdanction
is and how to compute it. The shortest is by breaking away fileenhistorical
development and considering first the presentation funcifca fractal. The pre-
sentation function is a simple chaotic dynamical systenpéhiyolic, unlike the
circle map) that generates the fractal and is closely rél&tethe definition of
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Figure L.1: Construction of the steps of the scaling - - -_
function from a Cantor set. From one level to the [ —— R
next in the construction of the Cantor set the covers
are shrunk, each parent segment into two children seg-"4
ments. The shrinkage of the last level of the construg °3r — = -
tion is plotted and by removing the gaps one has an oz —

approximation to the scaling function of the Cantor set. posiion

fractals of Hutchinson [L.24] and the iterated dynamicateyns introduced by
Barnsley and collaborators [G.13]. From the presentatimttion one can derive
the scaling function, but we will not do it in the most elegéaghion, rather we
will develop the formalism in a form that is directly applide to the experimental
data.

In the upper part of figure L.1 we have the successive stefreeafdnstruction
similar to the middle third Cantor set. The construction ame in levels, each
level being formed by a collection of segments. From onel levéhe next, each
“parent” segment produces smaller “children” segmentsdogaving the middle
section. As the construction proceeds, the segments lagipeoximate the Cantor
set. In the figure not all the segments are the same size, seneger and some
are smaller, as is the case with multifractals. In the middiel Cantor set, the
ratio between a segment and the one it was generated fronad$lyest/3, but in
the case shown in the figure the ratioffeli from 1/3. If we went through the last
level of the construction and made a plot of the segment nuate its ratio to
its parent segment we would have a scaling function, asateiicin the figure.
A function giving the ratios in the construction of a fracisthe basic idea for a
scaling function. Much of the formalism that we will introcki is to be able to
give precise names to every segments and to arrange thadiief segments
so that the children segments have the correct parent. Ifaveod take these
precautions, the scaling function would be a “wild functforarying rapidly and
not approximated easily by simple functions.

To describe the formalism we will use a variation on the qaidmap that
appears in the theory of period doubling. This is becausedhebinatorial ma-
nipulations are much simpler for this map than they are ferdincle map. The
scaling function will be described for a one dimensional rra@s shown in fig-
ure L.2. Drawn is the map

F(X) =5x(1 - x) (L.33)

restricted to the unit interval. We will see that this map lsoaa presentation
function.

It has two branches separated by a gap: one over the lefopasfithe unit
interval and one over the right. If we choose a painat random in the unit
interval and iterate it under the action of the nig(L.33), it will hop between the
branches and eventually get mapped to minus infinity. Art@dint is guaranteed
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Figure L.2: A Cantor set presentation function. The \
Cantor set is the set of all points that under iteration dq,. .
not leave the interval [@]. This set can be found by © i1 coverset
backwards iterating the gap between the two branches @
of the map. The dotted lines can be used to find these:!
backward images. At each step of the construction one "
is left with a set of segments that form a cover of the _ ___ IR 0%
Cantor set. [

- —_ "

to go to minus infinity if it lands in the gap. The hopping of thant defines the
orbit of the initial pointx: x +— X3 — X + ---. For each orbit of the map we
can associate a symbolic code. The code for this map is fofredOs and 1s
and is found from the orbit by associating a Xif< 1/2 and a 1 ifx; > 1/2, with
t=0,12,....

Most initial points will end up in the gap region between the toranches.
We then say that the orbit point has escaped the unit inteffz points that do
not escape form a Cantor set(or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describingthe points that do not
escape, the malp can be used as a presentation of the Cantat sehd has been
called a presentation function by Feigenbaum [27.13].

How does the map “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escapertiténterval in one
iteration of the map. These are the points that are not paieafap. These points
determine two segments, which are an approximation to thedCaet. In the
next step we determine the points that do not escape in twadidas. These are
the points that get mapped into the gap in one iteration, dsemext iteration
they will escape; these points form the two segmaﬁ,& and A(ll) at level 1 in
figure L.2. The processes can be continued for any numbeedtions. If we
observe carefully what is being done, we discover that gt step the pre-images
of the gap (backward iterates) are being removed from theintarval. As the
map has two branches, every point in the gap has two pre-snamel therefore
the whole gap has two pre-images in the form of two smallesg@p generate all
the gaps in the Cantor set one just has to iterate the gap bad&wEach iteration
of the gap defines a set of segments, with iitieiterate defining the segments
A(k”) at leveln. For this map there will be™segments at level, with the first few
drawn in figure L.2. Asn — o the segments that remain for at leasterates
converge to the Cantor sét

The segments at one level form a cover for the Cantor set afidm a cover
that all the invariant information about the set is extrecfne cover generated
from the backward iterates of the gap form a Markov partiionthe map as a
dynamical system). The segmemzté(”)} at leveln are a refinement of the cover
formed by segments at level- 1. From successive covers we can compute the
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trajectory scaling function, the spectrum of scalinffg), and the generalized
dimensions.

To define the scaling function we must give labels (namesheosegments.
The labels are chosen so that the definition of the scalingtifumallows for sim-
ple approximations. As each segment is generated from a&nsevmage of the
unit interval, we will consider the inverse of the preseiotatfunction F. Be-
causeF does not have a unique inverse, we have to consider restisctfF. Its
restriction to the first half of the segment, from 0 tf@21 has a unique inverse,
which we will call Fgl, and its restriction to the second half, froni2lto 1, also
has a unique inverse, which we will czﬂll'l. For example, the segment labeled
AP(0,1) in figure L.2 is formed from the inverse image of the unieival by
mappingA®©, the unit interval, withF;* and therFg%, so that the segment

A2, 1) = Fg* (Fi* (A)) . (L.34)

The mapping of the unit interval into a smaller interval isatldetermines its
label. The sequence of the labels of the inverse maps islleéddthe segment:

AV e, ... ) = Fgll oFlo...F1 (A(O)) .

=] €n

The scaling function is formed from a set of ratios of segmégmngth. We use
| - | around a segmemtt (¢) to denote its size (length), and define

1A (e e .. &)l

W =
T RS

We can then arrange the ratio&V (1, e, . . . , &) next to each other as piecewise
constant segments in increasing order of their binary labe, . . ., e, so that the
collection of steps scan the unit interval. As— o this collection of steps will
converge to the scaling function.

L.5 Geometrization

The £ operator is a generalization of the transfer matrix. It getse by consid-
ering less of the matrix: instead of considering the wholérixé is possible to
consider just one of the rows of the matrix. Teoperator also makes explicit
the vector space in which it acts: that of the observabletfons. Observables are
functions that to each configuration of the system assoaiatamber: the energy,
the average magnetization, the correlation between twes.slt is in the average
of observables that one is interested in. Like the transfatrisg the £ operator
considers only semi-infinite systems, that is, only the péthe interaction be-
tween spins to the right is taken into account. This may sauimdymmetric, but
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it is a simple way to count each interaction only once, eveoaises where the
interaction includes three or more spin couplings. To deffiree/ operator one
needs the interaction energy between one spin and all therés right, which is

given by the functiorp. The £ operators defined as

£9(0) = ), gloom)e ).

T0€Q0

To each possible value iy that the spirrg can assume, an average of the observ-
ableg is computed weighed by the Boltzmann factof?. The formal relations
that stem from this definition are its relation to the freerggavhen applied to the
observable that returns one for any configuration:

- | 1 n
-Bf(p) = n'[]go n In (I £
and the thermodynamic average of an observable

gl
= .
@= Iz

Both relations hold for almost all configurations. Thesatiehs are part of the-
orem of Ruelle that enlarges the domain of the Perron-Fiioketheorem and
sharpens its results. The theorem shows that just as thef@ranatrix, the largest
eigenvalue of the operator is related to the free-energy of the spin systeaisdt
hows that there is a formula for the eigenvector related ¢oldingest eigenvalue.
This eigenvectolp) (or the corresponding one for the adjoifit of £) is the Gibbs
state of the system. From it all averages of interest insttedil mechanics can be
computed from the formula

(@) = (eldlo) -

The Gibbs state can be expressed in an explicit form in teriibeointer-
actions, but it is of little computational value as it inved/the Gibbs state for a
related spin system. Even then it does have an enormoustlebivalue. Later
we will see how the formula can be used to manipulate the spfcbservables
into a more convenient space.

The geometrization of a spin system converts the shift dyceufmecessary
to define the Ruelle operator) into a smooth dynamics. Thégjisvalent to the

mathematical problem in ergodic theory of finding a smoottbedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set o§ gpsuch that

Fr(0)=0
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and
FrioFg,0---0Fs (0) = ¢(+,01,02,...,00,—,—,...).

This is a formal relation that expresses how the interaddn be converted into
a dynamical systems. In most examples is a collection of maps from a subset
of RP to itself.

If the interaction is complicated, then the dimension of $kéof maps may
be infinite. If the resulting dynamical system is infinite Bave gained anything
from the transformation? The gain in this case is not in teofradded speed of
convergence to the thermodynamic limit, but in the fact thatRuelle operator
is of trace-class and all eigenvalues are related to thesystem and not artifacts
of the computation.

The construction of the higher dimensional system is donbdrsyowing the
state space reconstruction technique from dynamical sstState space recon-
struction can be done in several ways: by using delay coatelr) by using deriva-
tives of the position, or by considering the value of severdependent observ-
ables of the system. All these may be used in the construcfithe equivalent
dynamics. Just as in the study of dynamical systems, the exethod does not
matter for the determination of the thermodynamit&y) spectra, generalized di-
mension), also in the construction of the equivalent dywartiie exact choice of
observable does not matter.

We will only consider configurations for the half line. This because for
translational invariant interactions the thermodynaniigitl on half line is the
same as in the whole line. One can prove this by consideriegliference in
a thermodynamic average in the line and in the semiline anthage the two as
the size of the system goes to infinity.

When the interactions are long range in principle one hapeoify the bound-
ary conditions to be able to compute the interaction enefgyamnfiguration in a
finite box. If there are no phase transitions for the inteoactthen which bound-
ary conditions are chosen is irrelevant in the thermodycaimit. When com-
puting quantities with the transfer matrix, the long rangeiiaction is truncated
at some finite range and the truncated interaction is thetousealuate the trans-
fer matrix. With the Ruelle operator the interaction is netrencated, and the
boundary must be specified.

The interactionp(c) is any function that returns a number on a configuration.

In general it is formed from pairwise spin interactions

$) = D b, I0)

n>0
with different choices of(n) leading to diferent models. 18(n) = Lonlyifn=1

and ) otherwise, then one has the nearest neighbor Isingimbdé) = n~2, then
one has the inverse square model relevant in the study ofahed<problem.
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Let us say that each site of the lattice can assume two valuesind the set
of all possible configurations of the semiline is the QetThen an observablg
is a function from the set of configuratiois to the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to thinkhef tonfiguration as
a string of spins. One can append a spjno its beginningy v o, in which case
7 is at site Ogwy at site 1, and so on.

The Ruelle operatal is defined as

L) = ), glwo v n)e P,

wpeQo

This is a positive and bounded operator over the space ofdemlinbservables.
There is a generalization of the Perron-Frobenius theorgiRielle that estab-
lishes that the largest eigenvalueffs isolated from the rest of the spectrum and
gives the thermodynamics of the spin system just as thedaaigenvalue of the
transfer matrix does. Ruelle also gave a formula for thereigetor related to the
largest eigenvalue.

The dfficulty with it is that the relation between the partition ftina and the
trace of itsnth power, tr£" = Z, no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observallego), ..., xi(c)}. The idea
is to choose the observables in such a way that from theiesatun a particular
configurationo- the configuration can be reconstructed. We also introduee th
interaction observablds;,.

To geometrize spin systems, the interactions are assunieittanslationally
invariant. The spingrx will only assume a finite number of values. For simplic-
ity, we will take the interactionp among the spins to depend only on pairwise
interactions,

9(0) = $(00.01,02,..) = Jo70+ ) Sy 1), (L35)

n>0

and limitog to be in{+, —}. For the 1-dimensional Ising modek is the external
magnetic field and;(n) = 1 if n = 1 and 0 otherwise. For an exponentially decay-
ing interactionJy(n) = e*". Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spinslok co with helical boundary
conditions is modeled by the potenti&l(n) = 6,1 + n.L.

The transfer operatof” was introduced by Kramers and Wannier [L.12] to
study the Ising model on a strip and concocted so that the tbits nth power is
the partition functiorZ, of system when one of its dimensionsnisThe method
can be generalized to deal with any finite-range interactibrthe range of the
interaction isL, then7™ is a matrix of size 2x 2-. The longer the range, the larger
the matrix. When the range of the interaction is infinite o ko define the
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7~ operator by its action on an observalgleJust as the observables in quantum
mechanicsg is a function that associates a number to every state (coafign

of spins). The energy density and the average magnetizatierexamples of
observables. From this equivalent definition one can recthes usual transfer
matrix by making all quantities finite range. For a semi-iténconfiguration

o ={00,01,...}:

Tgo) = g+ Vv )PV 4 g(— v g)e PVl (L.36)

By + Vv o we mean the configuration obtained by prependirtg the beginning of

o resulting in the configuratiofw, oo, 071, .. .}. When the range becomes infinite,
tr7 " is infinite and there is no longer a connection between theetemd the par-
tition function for a system of size (this is a case where matrices give the wrong
intuition). Ruelle [L.13] generalized the Perron-Frohentheorem and showed
that even in the case of infinite range interactions the &rge&genvalue of the
7 operator is related to the free-energy of the spin systentl@dorresponding
eigenvector is related to the Gibbs state. By applyintp the constant observable
u, which returns 1 for any configuration, the free energy peer sis computed as

-pf@B) = lim r—l] InI7"ul. (L.37)

To construct a smooth dynamical system that reproducesrtipegies of7",
one uses the phase space reconstruction technique of Batkd{L.6] and Tak-
ens [L.7], and introduces a vector of state observakie$ = {x1(c0), ..., xp(o)}.
To avoid complicated notation we will limit the discussianthe example(o) =
{X¢ (), X_ (o)}, with X, (o) = ¢(+ V o) andx_(o) = ¢(- V o); the more general
case is similar and used in a later example. The observatgassiricted to those
g for which, for all configurationsr, there exist an analytic functiod such that
G(x1(0), ..., xp(0)) = g(o). This at first seems a severe restriction as it may ex-
clude the eigenvector corresponding to the Gibbs stat@nlbe checked that this
is not the case by using the formula given by Ruelle [L.14]tfas eigenvector.
A simple example where this formalism can be carried out iiglie interaction
¢(c) with pairwise exponentially decaying potentihin) = a" (with |a| < 1). In
this cases(0) = Y0 00.0,8" @nd the state observables atgo) = Y0640, "
andx_(o) = Yns06-,a" In this case the observabie gives the energy of
spin at the origin, ane the energy of a spin.

Using the observables, andx_, the transfer operator can be re-expressed as

TG (X)) = Z G(x 7V o), x (nVa)ern) (L.38)

ne{+—}

In this equation the only reference to the configuratiois when computing the
new observable values.(n v o) andx_(n Vv o). The iteration of the function that
gives these values in terms gf (o) andx_(o) is the dynamical system that will
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reproduce the properties of the spin system. For the sinxplerentially decaying
potential this is given by two mapB,. andF_. The mapF, takes{x, (o), X, (o)}
into {X, (+ Vo), x_(+ VvV o)} which is{a(1+ x,),ax_} and the mag-_ takes{x,, x_}
into {ax,,a(1 + x_)}. In a more general case we have mépshat takex(c) to
X(n Vo).

We can now define a new operatgr

L£6() €760 = > G(F, () e, (L.39)

nef+.—}

where all dependencies enhave disappeared — if we know the value of the state
observables, the action of£ on G can be computed.

A dynamical system is formed out of the mapg. They are chosen so
that one of the state variables is the interaction energye €an consider the
two mapsF, and F_ as the inverse branches of a hyperbolic nfapthat is,
f1(x) = {F.(x).F_(X)}. Studying the thermodynamics of the interactipns
equivalent to studying the long term behavior of the orbftthe mapf, achiev-
ing the transformation of the spin system into a dynamicatesy.

Unlike the original transfer operator, thé operator — acting in the space
of observables that depend only on the state variables — tsaoé-class (its
trace is finite). The finite trace gives us a chance to relatetrtice of£" to the
partition function of a system of size We can do better. As most properties of
interest (thermodynamics, fallfoof correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholmrmadegnt det (1 z£)
by the technique of cycle expansions developed for dyndmjcdems [20.2]. A
cycle expansion consists of finding a power series exparisioifie determinant
by writing det (1- z£) = exp(tr In(1- z£)). The logarithm is expanded into a
power series and one is left with terms of the fornffrto evaluate. For evaluating
the trace, theL operator is equivalent to

2669 = [ dyoty= 100)60) (L.40)

from which the trace can be computed:

e—ﬁH(X)
2 , ldet (1 - axfEN () |

x= M (¥

trL" = (L.41)

with the sum running over all the fixed points 8" (all spin configurations of a
given length). Herg " is f composed with itselfi times, andH(x) is the energy
of the configuration associated with the poiatIn practice the mag is never

constructed and the energies are obtained directly fronsgiveconfigurations.
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To compute the value of #" we must compute the value 6§ fC"; this
involves a functional derivative. To any degree of accuraayumberx in the
range of possible interaction energies can be represegtadihite string of spins
€, such ax = ¢(+, €, €,...,—, —...). By choosing the sequeneeto have a
large sequence of spins the numberx can be made as small as needed, so in
particular we can represent a small variationdfy). As x.(e) = ¢(+ V ¢€), from
the definition of a derivative we have:

¢e v ™) — ¢(e)

o™y (L42)

on1() = Jm,

wherer(™ is a sequence of spin strings that make(™) smaller and smaller. By
substituting the definition of in terms of its pairwise interactiod(n) = na"™
and taking the limit for the sequence&” = {+,—,—,....0%me1 Tms2s ...} ONE
computes that the limitisif y = 1, 1ify < 1, and 0 ify > 1. It does not
depend on the positive value af Wheny < 1 the resulting dynamical system is
not hyperbolic and the construction for the operafbfails, so one cannot apply
it to potentials such as (2)Y". One may solve this problem by investigating the
behavior of the formal dynamical systemjas> 0.

The manipulations have up to now assumed that the mspsmooth. If
the dimensionD of the embedding space is too smdil,may not be smooth.
Determining under which conditions the embedding is sma®th complicated
question [L.15]. But in the case of spin systems with paienigteractions it is
possible to give a simple rule. If the interaction is of thenfo

$) =D Sooan ) PN (L.43)

n>1 k

where py are polynomials andey| < 1, then the state observables to use are
Xsk(0) = X 64.0,n%a]. For eachk one usesy, Xk, - - - Up to the largest power

in the polynomialpy. An example is the interaction withy(n) = n?(3/10)". It
leads to a 3-dimensional system with variablgg, x10, and xo. The action

of the mapF, for this interaction is illustrated figure L.3. Plotted atestpairs
{¢p(+ Vv 0),¢(+ V + v 0)}. This can be seen as the strange attractor of a chaotic
system for which the variableg o, x10, andxy provide a good (analytic) em-
bedding.

The added smoothness and trace-class oftleperator translates into faster
convergence towards the thermodynamic limit. As the retooted dynamics
is analytic, the convergence towards the thermodynamii Isxfaster than ex-
ponential [L.23, L.16]. We will illustrate this with the pgtomial-exponential
interactions (L.43) withy = 1, as the convergence is certainly faster than expo-
nential ify > 1, and the case @ has been studied in terms of another Fredholm
determinant by Gutzwiller [L.17]. The convergence is ithased in figure L.4
for the interactionn?(3/10)". Plotted in the graph, to illustrate the transfer ma-
trix convergence, are the number of decimal digits that iemachanged as the
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@+v+V0)

05 1

Figure L.3: The spin adding maf, for the poten-
tial J(n) = Y n?a"™. The action of the map takes
the value of the interaction energy betweemnd the
semi-infinite configuratiofioy, 05, o3, . . .} and returns

the interaction energy betweerand the configuration °s 0‘5 !
{+,01,02,03,...}. “g(+vo)

Orge T

X & x
Py *ex o ]
o X x
o T x
aF o T x 1
w» x

6 . x X ]
Figure L.4: Number of digits for the Fredholm .
method ¢) and the transfer function methogt); The 8 7]
size refers to the largest cycle considered in the Fred- *
holm expansions, and the truncation length in the case a0 5" — ‘1‘0‘ = ‘1‘5‘ o
of the transfer matrix. size

range of the interaction is increased. Also in the graphtaenimber of decimal
digits that remain unchanged as the largest power 6f tronsidered. The plot
is effectively a logarithmic plot and straight lines indicate erpntially fast con-
vergence. The curvature indicates that the convergenesstsrfthan exponential.
By fitting, one can verify that the free energy is convergingts limiting value
as expn®3), Cvitanovie [L.23] has estimated that the Fredholm deteant
of a map on & dimensional space should converge as erff(/®)), which is
confirmed by these numerical simulations.

Résum é

The geometrization of spin systems strengthens the capndmtween statistical
mechanics and dynamical systems. It also further estaslishe value of the
Fredholm determinant of th&€ operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and sassicial mechanics. The
example above emphasizes the high accuracy that can beetitéy computing
the shortest 14 periodic orbits of period 5 or less it is galssio obtain three digit
accuracy for the free energy. For the same accuracy withresfea matrix one
has to consider a 256 256 matrix. This make the method of cycle expansions
practical for analytic calculations.
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890

Remark L.1 Presentation functions. The best place to read about Feigenbaum’s work
is in his review article published ihos Alamos Scienc@geproduced in various reprint
collections and conference proceedings, such as ref.])20Feigenbaum’slournal of
Statistical Physicarticle [27.13] is the easiest place to learn about presientiunctions.

Remark L.2 Interactions are smooth

In most computational schemes for thermody-

namic quantities the translation invariance and the snrasth of the basic interaction are
never used. In Monte Carlo schemes, aside from the periadindary conditions, the in-
teraction can be arbitrary. In principle for each configimait could be possible to have a
different energy. Schemes such as the Sweneson-Wang clugterglgdgorithm use the
fact that interaction is local and are able to obtain dracsgeed-ups in the equilibration
time for the dynamical Monte Carlo simulation. In the georization program for spin
systems, the interactions are assumed translation imtaaied smooth. The smoothness
means that any interaction can be decomposed into a series s that depend only on

the spin arrangement and the distance between spins:

¢(0‘0, 01,072,.. ) = Jooo + Zﬁ(ag,on)Jl(n) + Zﬁ((rg,a'n],am).]z(nl, n2) 4+

where theJy are symmetric functions of their arguments and drere arbitrary discrete
functions. This includes external constant fieldg) (but it excludes site dependent fields

such as a random external magnetic field.

Exercises

L.1. Not all Banach spaces are also Hilbert.  If we are
given a nornj|-|| of a Banach spads, it may be possible
to find an inner produgt , - ) (so thatB is also a Hilbert
spaceH) such that for all vector$ € B, we have

L.2.

NIl = (F, £y,

This is the norm induced by the scalar product. If we
cannot find the inner product how do we know that we
just are not being clever enough? By checking the paral-
lelogram law for the norm. A Banach space can be made
into a Hilbert space if and only if the norm satisfies the

parallelogram law. The parallelogram law says that for_,3,

any two vectors andg the equality
If+ gl +1If =g = 217 + 2/gI,

must hold.

exerStatmech - 16aug99

Consider the space of bounded observables with the
norm given byllall = sup,.qvla(o)l. Show that there
is no scalar product that will induce this norm.

Automaton for a droplet.  Find the transition graph
and the weights on the edges so that the energies of con
figurations for the droplet model are correctly generated.
For any string starting in zero and ending in zero your
diagram should yield a configuration the weight”),

with H computed along the lines of (L.13) and (L.18).

Hint: the transition graph is infinite.
Spectral determinant for a” interactions. Compute

the spectral determinant for 1-dimensional Ising model
with the interaction

9(0) = )" (00,

k>0
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Takea as a number smaller thariZ
(a) Whatis the dynamical system this generates? That
is, findF, andF_ as used in (L.39).
(b) Show that
d

—Fp ooy =
dx {+ or-}

a 0
0 a

L.4. Ising model on a thin strip. Compute the transfer ma-
trix for the Ising model defined on the graph

Assume that whenever there is a bond connecting two
sites, there is a contributiai(c, o7j) to the energy.

L.5. Infinite symbolic dynamics. Let o be a func-
tion that returns zero or one for every infinite binary
string: o : {0,1}" — {0,1}. Its value is represented
by o(e1, €2, ...) where thee are either 0 or 1. We will
now define an operatdr that acts on observables on the
space of binary strings. A functiamis an observable if
it has bounded variation, that is, if

llall = suplaes ez, .. < 0.
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For these functions
Talen, e,...)=a0 e, e,.. )00 e, e,...)+E

The functiono is assumed such that anydfs “matri>
representations” in (a) have the Markov property
matrix, if read as an adjacency graph, correspon
a graph where one can go from any node to any
node).

(a) (easy) Consider a finite versidi of the operat
T

Tha(e, €,....6) =
a0, e, e,....-1)0(0, €1, €, ..., én-
alene,....en1)0(Ll e €,..., 6

Show thatT, is a 2' x 2" matrix. Show that i
trace is bounded by a number independent.of

(b) (medium) With the operator norm induced by
function norm, show thart is a bounded operat

(c) (hard) Show thal™ is not trace-class. (Hint: che
if 7~ is compact).

Classes of operators are nested; trace-clagsmpaci
bounded.
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