Chapter 12

Stretch, fold, prune

I.1. Introduction to conjugacy problems for diffeomor-
phisms. This is a survey article on the area of global anal-
ysis defined by dferentiable dynamical systems or equiv-
alently the action (dferentiable) of a Lie grou® on a
manifold M. Here Dit(M) is the group of all dfeomor-
phisms ofM and a difeomorphism is a dierentiable map
with a differentiable inverse. (.) Our problem is to study
the global structure, i.e., all of the orbits bf.

—Stephen Smaldifferentiable Dynamical Systems

E HAVE LEARNED that the Rossler attractor is very thin, but otherwise the r
W turn maps that we found were disquieting — figure 3.6 did nptap to
be a one-to-one map. This apparent loss of invertibilitynsdifact of
projection of higher-dimensional return maps onto theivdo-dimensional sub-
spaces. As the choice of a lower-dimensional subspace itsaaybthe resulting
snapshots of return maps look rather arbitrary, too. Suceations beg a ques-
tion: Does there exist a natural, intrinsic coordinate eyystn which we should
plot a return map?

We shall argue in sect. 12.1 that the answer is yes: The @itricpordinates
are given by the stablenstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediatehheidhood of the
unstable manifold. In chapter 5 we established that Floouatipliers of periodic
orbits are (local) dynamical invariants. Here we shall stioat every equilibrium
point and every periodic orbit carries with it stable andtabk manifolds which
provide topologically invarianglobal foliation of the state space. They will en-
able us to partition the state space in a dynamically inmaneay, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relativetepa@rdering of tra-
jectories, and separates the admissible and inadmistidearies. We illustrate
how this works on Hénon map example 12.3. Determining wisigimbol se-
quences are absent, or ‘pruned’ is a formidable problem wiemed in the state
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CHAPTER 12. STRETCH, FOLD, PRUNE 226

space, X1, X, ..., Xg] coordinates. It is equivalent to the problem of determinin
the location of all homoclinic tangencies, or all turningmie of the Hénon attrac-
tor. They are dense on the attractor, and show no self-gistilacture in the state
space coordinates. However, in the ‘danish pastry’ reptasien of sect. 12.3
(and the ‘pruned danish,” in American vernacular, of se2t4}, the pruning prob-
lem is visualized as crisply as the New York subway map; aimgiiary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the peddésn tempo of the
preceding chapter. Skip most of this chapter unless youyreakd to get into
nitty-gritty details of symbolic dynamics.

fast track:
W chapter 13, p. 249
12.1 Going global: stablgunstable manifolds

The complexity of this figure will be striking, and | shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic tan-
gles,Les méthodes nouvelles de la méchanique céleste

The Jacobian matrid! transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initdinitesimal sphere of

X+ 3

neighboring trajectories into an ellipsoid tirkater, as in figure 4.2.
Nearby trajectories separate exponentially along theabestirections, approach
each other along the stable directions, and creep along &ingimal directions.

The fixed pointq Jacobian matrixJ(x) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encirclitige fixed point is

linear in the sense of sect. 4

The continuations of the span of the local stable, unstabenedirections into
global curvilinear invariant manifolds are called thtable respectivelyunstable
manifolds They consist of all points which march into the fixed pointward,
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respectively backward in time

WS
WU

{xeM: ft(X)—Xq—>0aSt—>oo}
{xe M: 174(x) = xg - O ast — oo . (12.1)

Eigenvectorsl) of the monodromy matrix(x) play a special role - on them the
action of the dynamics is the linear multiplication Ry (for a real eigenvector)
along 1- dimensionalnvariant curve\lvgiS or spiral infout action in a 2D surface
(for a complex pair). Fot — +oco a finite segment oNVSC), respectiverW(“e)
converges to the linearized map eigenveaé, respectivelye®, where©, ©
stand respectively for ‘contracting,’ ‘expanding.’ In $hsense each eigenvector
defines a (curvilinear) axis of the stable, respectivelytatrie manifold.

Actual construction of these manifolds is the converse @it tihefinition (12.1):
one starts with an arbitrarily small segment of a fixed poigesvector and lets
evolution stretch it into a finite segment of the associatedifold. As a periodic
point x on cyclepis a fixed point off Te(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consideiith expanding eigen-
value, eigenvector pairA(, ") computed fromJ = Jp(X) evaluated at a fixed
point X,

IV = A (x), xeM,, Ai>1. (12.2)

Take an infinitesimal eigenvectet) (x), |67 (x)|| = & < 1, and its returm;e®(x)
after one periodr,. Sprinkle the straight interval betwees pig] ¢ Wi with a
large number of pointg®, for example equidistantly spaced on logarithmic scale
between Iz and InA; + Ine. The successive returns of these poiffits(x®),
£2To(x®), - .., £MTo(x()) trace out the d curve W) within the unstable manifold.
As separations between points tend to grow exponentiallgryeso often one
needs to interpolate new starting points between the rdriiees. Repeat for

—e(x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting directido an expanding one,
tracing out the curvilinear stable manifolif?) as a continuation af)

Expanding/contracting real negative Floquet multiplier. As above, but every
even iteratef2To(x), £4Te(x), £6Te(x{) continues in the directioe®), every
odd one in the directiorel),

Complex Floguet multiplier pair, expanding/contracting. The complex Flo-
quet multiplier pair(Aj, Aj.1 = Aj} has Floguet exponents (5.9) of fortf)) =
uD +iw® with the sign ofu®) # 0 determining whether the linear neighborhood
is out/ in spiralling. The orthogonal pair of real eigenvect¢Reel), Im &)}
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Figure 12.1: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of
complex eigenvalue pair of an unstable equilibriur
of plane Couette flow, a projection from a 61,506
dimensional state space ODE truncation of the (

dimensional) Navier-Stokes PDE. (J.F. Gibson,

Nov. 2005 blog entry [12.62])

spans a plane, as in (4.28). = 2r/w) is the time of one turn of the spiral,
JTReel)(x) = |AjIRe€V)(X). As in the real cases above, sprinkle the straight in-
terval betweend, |A|le] along Reg(x) with a large number of pointg®. The
flow will now trace out the @ invariant manifold as an oytin spiralling strip.
Two low-dimensional examples are the unstable manifoldthefLorenz flow,
figure 11.8 (a), and the Rossler flow, figure 11.10 (a). Forghlizi non-trivial
example, see figure 12.1.

The unstable manifolds of a flow adg-dimensional. Taken together with the
marginally stable direction along the flow, they are rathardnto visualize. A
more insightful visualization isféered by ¢l—1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see alsgts 3.1.1). Stable,
unstable manifolds for maps are defined by

Ws

WU

{xeP: P”(x)—xq—>0asn—>oo}
{xe®: P™(x) - xg - 0asn— o , (12.3)

whereP(X) is the @—1)-dimensional return map (3.1). In what follows, all invar
ant manifoldswV, W* will be restricted to their Poincaré sections', W5,

Example 12.1 A section at a fixed point with a complex Floquet multiplier pa ir:
(continued from example 3.1) The simplest choice of a Poincaré section for a fixed (or
periodic) point X4 with a complex Floquet multiplier pair is the plane P specified by the
fixed point (located at the tip of the vector Xg) and the eigenvector Im e® perpendicular
to the plane. A point X is in the section P if it satisfies the condition

(X—Xg) - Ime® = 0. (12.4)

In the neighborhood of Xq the spiral out/in motion is in the {Ree®, Ime®} plane, and
thus guaranteed to be cut by the Poincaré section P normal to €Y.

In general the full state space eigenvectors do not lie iniadace section; the
eigenvector€)) tangent to the section are given by (5.20). Furthermorelewhi
the linear neighborhood of fixed poirtthe trajectories return with approximate
periodicity Ty, this is not the case for the globally continued manifolds), or
the first return times (3.1) der, and thef\/(“j) restricted to the Poincaré section is
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CHAPTER 12. STRETCH, FOLD, PRUNE 229

obtained by continuing trajectories of the points from th# §tate space curve
W(“j) to the sectiorP.

For long times the unstable manifolds wander throughoutctirmected er-
godic component, and are no more informative than an ergwdjectory. For
example, the line with equitemporal knots in figure 12.1tstaut on a smoothly
curved neighborhood of the equilibrium, but after a ‘tudntl episode decays
into an attractive equilibrium point. The trick is to stopntimuing an invariant
manifold while the going is still good.

fast track:
W sect. 12.2, p. 230
Learning where to stop is a bit of a technical exercise, tadee might prefer
to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

J As the flow is nonlinear, there is no ‘natural’ linear basigepresent it.
Wistful hopes like ‘POD modes, ‘Karhunen-Loéve,” and @tlinear changes of
bases do not cut it. The invariant manifolds are curved, bhed toordinatizations
are of necessity curvilinear, just as the maps of our globelart infinitely foliated
and thus much harder to chart.

Let us illustrate this by parameterizing d dlice of an unstable manifold by its
arclength. Sprinkle evenly points(D, x@, ... x(N-1} between the equilibrium
point x; = X and pointx = x™), along the @ unstable manifold continuation
x® e W, of the unstableé) eigendirection (we shall omit the eigendirection

label (j) in what follows). Then the arclength from equilibrium poigt = x© to
x = XN is given by

N
2= im Y g b, -y, @25)
k=1

For the lack of a better idea (perhaps the dynamically detesdy = J™J would
be a more natural metric?) let us measure arclength in thedtarc metric,gjj =
dij, SO

N 1/2
s= lim [Z dx® } : (12.6)

k=1

By definition f7®(x) € W, (J), so f{(x) induces a @ maps(so, 7) = S(f7%0)(xg)).
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Turning pointsare points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterateshaf map, i.e., points at
which the manifold folds back onto itself arbitrarily shbtpFor our purposes,
approximate turning points fiice. The o curve\fv("j) starts out linear axy, then
gently curves until —under the influence of other unstabléiligia andor peri-
odic orbits— it folds back sharply at ‘turning points’ an@thnearly retraces itself.
This is likely to happen if there is only one unstable direfias we saw in the
Rossler attractor example 11.3, but if there are sevdral;ttrning point’ might
get stretched out in the non-leading expanding directions.

The trick is to figure out a gootlase segmertb the nearest turning point
L = [0, ], and after the foldback assign 8fx,t) > s, the nearest poins on
the base segment. If the stable manifold contraction isigirthe 2nd coordinate
connectings(x,t) — scan be neglected. We saw in example 11.3 how this works.
You might, by nature and temperament, take the dark viewssiRd has helpful
properties, namely insanely strong contraction along arfedsional stable direc-
tion, that are not present in real problems, such as turbeléma plane Couette
flow, and thus the lessons of chapter 11 of no use when it comesat plumb-
ing. For this reason, both of the training examples to comme billiards and the
Hénon map are of Hamiltonian, phase space preserving aypkthus as far from
being insanely contracting as possible. Yet, to a thoughdader, they unfold
themselves as pages of a book.

Assign to eacld-dimensional poink & Ly a coordinates = s(X) whose value
is the Euclidean arclength (12.5) xg measured along the 1-dimensiomg] sec-
tion of the x4 unstable manifold. Next, for a nearby poir§ & Lq determine
the pointx; € Lq which minimizes the Euclidean distance, (- %1)?, and as-
sign arc length coordinate valug = s(X;) to Xo. In this way, an approximate
1-dimensional intrinsic coordinate system is built alohg tinstable manifold.
This parametrization is useful if the non—wandering setificently thin that its
perpendicular extent can be neglected, with every poinhembn—wandering set
assigned the nearest point on the base segimgent

Armed with this intrinsic curvilinear coordinate paranigétion, we are now
in a position to construct a 1-dimensional model of the dyiesanon the non—
wandering set. Ik, is thenth Poincaré section of a trajectory in neighborhood of
Xg» ands, is the corresponding curvilinear coordinate, treany = f™(s,) models
the full state space dynamicg = X..1. We approximatef(s,) by a smooth,
continuous 1-dimensional map: Lq — Lq by taking X, € Ly, and assigning to
X1 the nearest base segment pant = S(Xnv1).

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract tpeb on page 230,
about ‘the action (dferentiable) of a Lie groufs on a manifoldM,’ time has
come to bring Smale to everyman. If you still remain mystiftedthe end of
this chapter, reading chapter 16 might help; for example Lilouville operators
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symmetric 3-disk pinball; a bounce in which the tra-
jectory returns to the preceding disk is labeled 0, and a
bounce which results in continuation to the third disk
is labeled 1.

Figure 12.2: Binary labeling of trajectories of the ‘
0

form a Lie group of symplectic, or canonical transformasi@cting on the, q)
manifold.

If a flow is locally unstable but globally bounded, any opefl bé initial

points will be stretched out and then folded. An example isdin®nsional in-

vertible flow sketched in figure 11.10 which returns a Poiacaaction of the flow

folded into a ‘horseshoe’ (we shall belabor this in figure4)2.We now dfer two exercise 12.1
examples of locally unstable but globally bounded flows Wireturn an initial

area stretched and folded into a ‘horseshoe,” such thatnikial iarea is inter-

sected at most twice. We shall refer to such mappings withcest i# transverse
self-intersections at theth iteration as thence-foldingmaps.

The first example is the 3-disk game of pinball figure 11.5,clhifor suf-
ficiently separated disks (see figure 11.6), is an example ainaplete Smale
horseshoe. We start by exploiting its symmetry to simplifyand then partition
its state space by its stahlenstable manifolds.

Example 12.2 Recoding 3-disk dynamics in binary. (continued from exam-
ple 11.2) The A = {1, 2,3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to quotient the symme-
tries of the dynamics in order to obtain a more efficient description. We do this in a
quick way here, and redo it in more detail in sect. 12.5.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what
is important is how a trajectory evolves as it hits subsequent disks, not what label the
starting disk had. We exploit this symmetry by recoding, in this case replacing the
absolute disk labels by relative symbols, indicating the type of the collision. For the 3-
disk game of pinball there are two topologically distinct kinds of collisions, figure 12.2:
exercise 11.1
exercise 12.6
0o : pinball returns to the disk it came from
S = { 1 : pinball continues to the third disk . (12.7)

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-bounces
is automatic. If the disks are sufficiently far apart there are no further restrictions on
symbols, the symbolic dynamics is complete, and all binary sequences (see table 15.1)
are admissible. exercise 11.2

It is intuitively clear that as we go backward in time (reverse the velocity vec-
tor), we also need increasingly precise specification of X = (S, Po) in order to follow a
given past itinerary. Another way to look at the survivors after two bounces is to plot
Mes, s,, the intersection of M s, with the strips Ms, obtained by time reversal (the ve-
locity changes sign sing — —sing). Ms, s,, figure 12.3(a), is a ‘rectangle’ of nearby
trajectories which have arrived from disk s; and are heading for disk s,. (continued
in example 12.6)
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Figure 12.3: The 3-disk game of pinball of fig-
ure 11.5, generated by starting from disk 1, pre-
ceded by disk 2, coded in binary, as in figure 12.2.
(a) StripsMs; which have survived a bounce in
the past and will survive a bounce in the future.
(b) Iteration corresponds to the decimal point shift;
for example, all points in the rectangle(1] map

; . ) ; -2.5 0 2.t

into the rectangles [@0], [0.11] in one iteration. (&) S (b)

The 3-disk repeller does not really look like a ‘horseshdhg ‘fold’ is cut
out of the picture by allowing the pinballs that fly betweea thisks to fall df the
table and escape. Next example captures the ‘stretch & faldseshoe dynamics
of return maps such as Rossler’s, figure 3.5.

Example 12.3 A Hénon repeller complete horseshoe: (continued from exam-
ple 3.7) Consider 2-dimensional H&non map exercise 3.5
(Xns1: Yne1) = (1 — @ + byn, Xn) . (12.8)

If you start with a small ball of initial points centered around the fixed point Xy, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
WY. Iterated backward in time,

(-1, Yn-1) = (Y, ~b7H(1 - @y - xa)) , (12.9)

this small ball of initial points traces out the stable manifold Wg. Their intersections
enclose the region M., figure 12.4(a). Any point outside WS border of M. escapes
to infinity forward in time, while —by time reversal— any point outside W border arrives
from infinity back in paste. In this way the unstable - stable manifolds define topologi-
cally, invariant and optimal initial region M_; all orbits that stay confined for all times are
confined to M. .

The Hénon map models qualitatively the Poincaré section return map of fig-
ure 11.10. For b = 0 the Hénon map reduces to the parabola (11.3), and, as shown in
sects. 3.3 and 29.1, forb # 0Q it is kind of a fattened parabola; by construction, it takes
a rectangular initial area and returns it bent as a horseshoe. Parameter a controls the
amount of stretching, while the parameter b controls the amount of compression of the
folded horseshoe. For definitiveness, fix the parameter values to a = 6, b = —1; the
map is then strongly stretching but area preserving, the furthest away from the strongly
dissipative examples discussed in sect. 11.2. The map is quadratic, so it has 2 fixed
points Xg = f(Xo), X1 = f(X1) indicated in figure 12.4(a). For the parameter values at
hand, they are both unstable.

Iterated one step forward, the region M_ is stretched and folded into a Smale
horseshoe drawn in figure 12.4 (b). Label the two forward intersections f (M) N M by
Ms., with s € {0,1}. The horseshoe consists of the two strips Mo, My, , and the bent
segment that lies entirely outside the Wj line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away.
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Figure 12.4: The Hénon map (12.8) far= 6,b = e
—1: fixed point0 with segments of its stable, unsta-

ble manifoldsws, W, and fixed pointL. (a) Their
intersection bounds the regiovl. = OBC Dwhich
contains the non—wandering €@t (b) The inter- 0.0
section of the forward imagé(M.) with M con-

sists of two (future) strips\o, My, with points

BCD brought closer to fixed poind by the sta-

ble manifold contraction. (c) The intersection of(a)fll1 -
the forward image (M) with the backward back-

ward f~1(M)) is a four-region cover of2. (d) The
intersection of the twice-folded forward horseshoe /
f2(M) with backward horseshoé*(M). (e) /
The intersection off2(M.) with f=2(M) is a 16- 10 f
region cover ofQ. lteration yields the complete /
Smale horseshoe non—wandering €eti.e., the /
union of all non-wandering points df, with ev- [
ery forward fold intersecting every backward fold. Zj/
(P. Cvitanovit and Y. Matsuoka) (c)°

Iterated one step backwards, the region M is again stretched and folded into
a horseshoe, figure 12.4(c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the horse-
shoe bend wander off to infinity as n — —oo, and we are left with the two (past) strips
Mo, M1 . lterating two steps forward we obtain the four strips Mi1, Mo, Moo, Mio.,
and iterating backwards we obtain the four strips M go, M o1, M 11, M 10 transverse to
the forward ones just as for 3-disk pinball game figure 12.2. lIterating three steps for-
ward we get an 8 strips, and so on ad infinitum. (continued in example 12.4)

What is the significance of the subscript suchgaswhich labels theM 11
future strip? The two stripgVi o, M 1 partition the state space into two regions
labeled by the two-letter alphabét = {0,1}. S* = .011 is thefuture itinerary
for all x e Mp11. Likewise, for the past strips al € Ms ... s, have thepast
itinerary S™ = s 1---S.1S% . Which partition we use to present pictorially the
regions that do not escape initerations is a matter of taste, as the backward
strips are the preimages of the forward ones

Mo, = F(M)), My = T(My).

Q, the non—wandering set (2.2) @#, is the union of all points whose forward
and backward trajectories remain trapped for all time, gikg the intersections
of all images and preimages #f:

Q= {x xe lim f(M)() f-”(M.)} . (12.10)

Two important properties of the Smale horseshoe are thastatomplete
binary symbolic dynamicand that it isstructurally stable

For acompleteSmale horseshoe every forward fdit{ M) intersects transver-
sally every backward fold ~"™(M), so a unique bi-infinite binary sequence can be
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Figure 12.5: Kneading orientation preserving danish

pastry: mimic the horsheshoe dynamics of figure 12.6 )/’,—\\

by: (1) squash the unit square by fact@?,1(2) stretch
it by factor 2, and (3) fold the right half back over the A B

left half.

associated to every element of the non—-wandering set. A poinQ is labeled
by the intersection of its past and future itinerar®x) = ---s251%.91% -,
where s,=s if f"(X)e Ms ,se{0,1}andne Z. remark A.1

The system is said to kstructurally stablef all intersections of forward and
backward iterates o remain transverse for fliciently small perturbation$ —
f + ¢ of the flow, for example, for slight displacements of the digkthe pinball
problem, or sfiiciently small variations of the H&Enon map parametets While section 1.8
structural stability is exceedingly desirable, it is alsaeedingly rare. About this,
more later. section 25.2

12.3 Symbol plane

Consider a system for which you have succeeded in constguatcovering sym-

bolic dynamics, such as a well-separated 3-disk system. $taw moving the

disks toward each other. At some critical separation a didkstart blocking

families of trajectories traversing the other two disks. eTnder in which trajec-

tories disappear is determined by their relative ordermggace; the ones closest

to the intervening disk will be pruned first. Determining dimaissible itineraries

requires that we relate the spatial ordering of trajectotie their time ordered
itineraries. exercise 12.7

So far we have rules that, given a state space patrtition,rgenatemporally
ordered itinerary for a given trajectory. Our next task ie ttonverse: given a
set of itineraries, what is thgpatial ordering of corresponding points along the
trajectories? In answering this question we will be aided&hyale’s visualization
of the relation between the topology of a flow and its symbdyjicamics by means
of ‘horseshoes,’ such as figure 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest bakenssfamation appropriate
to Héenon type mappings, yields a binary coordinatizatiballgpossible periodic
points.
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Figure 12.6: The dynamics maps two (past) strips
strips Mo, M into two (future) stripsMo,, M;..

The corners are labeled to aid visualization. Note 0 ’
that theBCGH strip is rotated by 180 degrees. (P. \/
Cvitanovit and Y. Matsuoka) (e) ‘ ‘ ‘

The symbolic dynamics of once-folding map is given by theistampastry
transformation. This generates both the longitudinal aadsverse alternating
binary tree. The longitudinal coordinate is given by theche&a symbolic se-
quence; the transverse coordinate is given by the tail ofymebolic sequence.
The dynamics on this space is given by symbol shift pernurtati volume pre-
serving, with 2 expansion and2lcontraction.

For a better visualization of 2-dimensional non—wandegatg, fatten the in-
tersection regions until they completely cover a unit sguas in figure 12.7. We
shall refer to such a ‘map’ of the topology of a given ‘stre&Hold’ dynami-
cal system as theymbol square The symbol square is a topologically accurate
representation of the non—wandering set and serves asasiap for labeling its
pieces. Finite memory ahsteps and finite foresight ofsteps partitions the sym-
bol square intoectangleds m.1- - .51 - - - Sy, such as those of figure 12.6. In
the binary dynamics symbol square the size of such rectasgld x 27"; it cor-
responds to a region of the dynamical state space whichiosrd points that
share commonmn future andm past symbols. This region maps in a nontrivial way
in the state space, but in the symbol square its dynamicseeeingly simple; all

of its points are mapped by the decimal point shift (11.20) exercise 12.2
exercise 12.3

(- S251%.919%" ") =+ S2515S1.93" " - , (12.11)

Example 12.4 A Hénon repeller subshift: (continued from example 12.3) The
Hénon map acts on the binary partition as a shift map. Figure 12.6 illustrates ac-
tion f(Mp) = Mo.. The square [01.01] gets mapped into the rectangles ¢[01.01] =
[10.1] = {[10.10], [10.11]}, see figure 12.4 (e). Further examples can be gleaned from
figure 12.4.

As the horseshoe mapping is a simple repetitive operatierexpect a simple
relation between the symbolic dynamics labeling of the éslise strips, and their
relative placement. The symbol square poitS*) with future itineraryS* are
constructed by converting the sequencesgs into a binary number by the algo-
rithm (11.9). This follows by inspection from figure 12.9. drder to understand
this relation between the topology of horseshoes and thgbslic dynamics, it
might be helpful to backtrace to sect. 11.4 and work througt anderstand first
the symbolic dynamics of 1-dimensional unimodal mappings.

smale - 19apr2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 12. STRETCH, FOLD, PRUNE 236

Figure 12.7: Kneading danish pastry: symbol

square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of (a) figure 12.6 (b) fig-
ure 12.4 into a unit square. Also indicated: the

fixed points0, 1 and the 2-cycle point®9110}. In 0
the symbol square the dynamics maps rectangles O
into rectangles by a decimal point shift. @ .0

Figure 12.8: Kneading orientation preserving
danish pastry: symbol square representation of a
orientation preserving once-folding map obtained
by fattening the intersections of two forward iter-
ates/ two backward iterates of Smale horseshoe
into a unit square.

Under backward iteration the roles of 0 and 1 symbols ,strezdhtinged;/\/((‘)1
has the same orientation A4, while Mll has the opposite orientation. We assigRercise 12.4
to an orientation preservingonce-folding map theast topological coordinate
6 = 6(S7) by the algorithm:

_ owy if s, =0 B
Wn-1 = {1_Wn IfSn=1 s Wo = S
0(S7) = OWoW_1W_p...= » wp_n/2". (12.12)
n=1

Such formulas are best derived by solitary contemplatich@fction of a folding
map, in the same way we derived the future topological coaitei (11.9).

The coordinate pairé(y) associates a poini(y) in the state space Cantor
set of figure 12.4 to a point in the symbol square of figure 1@r8serving the

001.
101.
111.

Figure 12.9: Kneading danish pastry: symbol squar@11.
representation of an orientation preserving once;
folding map obtained by fattening the Smale horse-
shoe intersections of figure 12.4 (e) into a unit squar&l10.
Also indicated: the fixed point§, 1, and the 3-cycle 1qq.

points{011,110,101}. In the symbol square the dynam- -
ics maps rectangles into rectangles by a decimal poﬂ?o' 0

shift. 00030191 61611911110 100
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topological ordering. The symbol squa® ] serves as a topologically faithful
representation of the non—wandering set of any once-fgldiap, and aids us in
partitioning the set and ordering the partitions for any flafvthis type.

fast track:
W chapter 13, p. 249
12.4 Prune danish

Anyone know where | can get a good prune danish in
Charlotte? | mean a real NY Jewish bakery kind of prune
danish!

— Googled

In general, not all possible symbol sequences are realg@thysical trajectories.
Trying to get from ‘here’ to ‘there’ we might find that a showth is excluded by
some obstacle, such as a disk that blocks the path, or a j@btéeige. In order to
enumerate orbits correctly, we needgrunethe inadmissible symbol sequences,
i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so fdhés straight-
forward, and sets the stage for situations that resembles the real life. A
generic once-folding map does not yield a complete horseswme of the horse-
shoe pieces might beruned i.e., not realized for particular parameter values of
the mapping. In 1 dimension, the criterion for whether a gisgmbolic sequence
is realized by a given unimodal map is easily formulated; arbjt that strays
to the right of the value computable from thkeeading sequencghe orbit of
the critical point (11.13)) is pruned. This is a topologisshatement, indepen-
dent of a particular unimodal map. Our objective is to gelimgahis notion to
2 — dimensionabnce-folding maps.

Adjust the parameters of a once-folding map so that thedatgion of the
backward and forward folds is still transverse, but no longamplete, as in fig-
ure 12.10 (a). The utility of the symbol square lies in the faat the surviving,
admissible itineraries still maintain the same relativatsp ordering as for the
complete case.

In the example of figure 12.10 the rectangles.I10/11.1] have been pruned,
and consequentlgnytrajectory containing blockb; = 101,b, = 111 is pruned,
the symbol dynamics is a subshift of finite type (11.24). Wenéo the border
of this primary pruned region as thpeuning front another example of a pruning
front is drawn in figure 12.11 (b). We call it a ‘front’ as it cée visualized as a
border between admissible and inadmissible; any trajgcttrose points would
fall to the right of the front in figure 12.11 is inadmissibliee., pruned. The
pruning front is a complete description of the symbolic dyines of once-folding
maps.For now we need this only as a concrete illustrationoaf pruning rules
arise.
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01. |

11. 11.1
Figure 12.10: (a) An incomplete Smale horse- 10. 101
shoe: the inner forward fold does not intersect the v 272722 Vo4 A& [ |
outer backward fold. (b) The primary pruned re- 00. i

gion in the symbol square and the corresponding
forbidden binary blocks.

Figure 12.11:(a) Anincomplete Smale horseshoe

which illustrates (b) the monotonicity of the prun- 5
ing front: the thick line which delineates the left =
border of the primary pruned region is monotone
on each half of the symbol square. The backwar‘(
folding in this figure and figure 12.10 is schematic

- in invertible mappings there are further miss-
ing intersections, all obtained by the forward anc
backward iterations of the primary pruned region.

- —100.10

- =10

QU0

W ==
N\

L L § ]

LelEM e m

— 10110

In the example at hand there are total of two forbidden blddis, 111, so
For now we concentrate on this kind of pruning because it iiquéarly clean
and simple.

fast track:
W chapter 13, p. 249
Though a useful tool, Markov partitioning is not without etzacks. One glar-
ing shortcoming is that Markov partitions are not uniquey ahmany diferent
partitions might do the job. Th€,- andD3- equivariant systems that we discuss

next dfers a simple illustration of éierent Markov partitioning strategies for the
same dynamical system.

12.5 Recoding, symmetries, tilings

,
J In chapter 9 we made a claim that if there is a symmetry of dyosymve
must use it. Here we shall show how to use it, on two concreaengles, and in
chapter 21 we shall be handsomely rewarded for our labonst, Fhe simplest
example of equivariance, a single ‘reflectid@y group of example 9.13.

Example 12.5 C, recoded: Assume that each orbit is uniquely labeled byeaise 9.6
infinite string {s}, S € {+, —} and that the dynamics is C,-equivariant under the + < —
interchange. Periodic orbits separate into two classes, the self-dual configurations +—,
++——, +++———, +——+—++—, - -, With multiplicity mp = 1, and the pairs +, —, ++—,
- — +, ---, with multiplicity my, = 2. For example, as there is no absolute distinction
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Table 12.1: Correspondence between te symmetry reduced cyclgs dnd the full state space
periodic orbitsp, together with their multiplicitiesn,. Also listed are the two shortest cycles
(length 6) related by time reversal, but distinct un@er

p p M
1 + 2
0 —+ 1
01 —— ++ 1
001 —++ 2
011 ——— +++ 1
0001 —+—— +—++ 1
0011 —+++ 2
0111 ———— ++++ 1
00001 —+-+- 2
00011 —-+-—-- +—+++ 1
00101 —-++-- +——++ 1
00111 —+-—-—— +—+++ 1
01011 ——-+++ 2
01117 - —--- + 4+ ++ 1
001011 - ++---+—-—-+++ 1
001101 - +++--+--—-++ 1

between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.7 (a), the Floquet
multipliers satisfy A, = A_, A, = A,__, and so on. exercise 21.5

The symmetry reduced labeling p; € {0,1} is related to the full state space
labeling s € {+, -} by

If s = s.1 then pi=1

If s # s.1 then pi=0 (12.13)
For example, the fixed point¥ = --- + + + +--- maps into - - - 111--- = 1, and so does
the fixed point —. The 2-cycle —+ = --- — + — +--- maps into fixed point - - - 000- - - = 0,
and the 4-cycle =+ +—=--+——++——+ +--- maps into 2-cycle - --0101--- = 01 A

list of such reductions is given in table 12.1.

Next, let us take the old pinball game and ‘guotient’ theestgtace by the
symmetry, or ‘desymmetrize.” As the three disks are eqtadity spaced, our
game of pinball has a sixfold symmetry. For instance, théesyk2, 23, and13 in
figure 12.12 are related to each other by rotationH2y/3 or, equivalently, by a

relabeling of the disks. We exploit this symmetry by recaglias in (12.7). exercise 11.1
exercise 12.6

Example 12.6 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (12.7) fixes the subsequent binary sym-
bols. Here we list an arbitrary ternary itinerary, and the corresponding binary sequence:

ternary : 3121312321231323
binary : - 10101101011010 (12.14)

The first 2 disks initialize the trajectory and its direction; 3 +— 1+ 2+ ---. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size state space partitions, and are
coded by a single binary sequence. (continued in example 12.7)
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Figure 12.12: The 3-disk game of pinball with the
disk radius : center separation ratio asR1:2.5.

(a) 2-cyclesl2, 13, 23, and 3-cycled23 andl32

(not drawn). (b) The fundamental domain, i.e., the
small I/6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed poin€s 1. See figure 9.6

for cycle 10 and further examples. (@)

(b)

exercise 12.7
exercise 14.2

Binary symbolic dynamics has two immediate advantages thesiternary
one; the prohibition of self-bounces is automatic, and thalirg utilizes the sym-
metry of the 3-disk pinball game in an elegant manner. exercise 11.2

The 3-disk game of pinball is tiled by six copies of fs@damental domaira
one-sixth slice of the full 3-disk system, with the symmedtres acting as reflect-
ing mirrors, see figure 12.12 (b). Every global 3-disk tr&geg has a correspond-
ing fundamental domain mirror trajectory obtained by replg every crossing
of a symmetry axis by a reflection. Depending on the symmdtthefull state
space trajectory, a repeating binary alphabet block cpomds either to the full
periodic orbit or to a relative periodic orbit (examples at®wn in figure 12.12
and table 12.2). A relative periodic orbit corresponds toedqalic orbit in the
fundamental domain.

Table 12.2 lists some of the shortest binary periodic orlbitigether with the
corresponding full 3-disk symbol sequences and orbit sytriese For a number
of deep reasons that will be elucidated in chapter 21, lif@igh simpler in the
fundamental domain than in the full system, so wheneverilplessur computa-
tions will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball: (continued from exam-
ple 12.6) The D3 recoding can be worked out by a glance at figure 12.12 (a) (con-
tinuation of example 9.14). For the symmetric 3-disk game of pinball the fundamental
domain is bounded by a disk segment and the two adjacent sections of the symme-
try axes that act as mirrors (see figure 12.12(b)). The three symmetry axes divide
the space into six copies of the fundamental domain. Any trajectory on the full space
can be pieced together from bounces in the fundamental domain, with symmetry axes
replaced by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation, figure 12.2: a collision of type O re-
flects the projectile to the disk it comes from (back—scatter), whereas after a collision of
type 1 projectile continues to the third disk. For example, 23 = ---232323 - - maps into
-..000--- =0 (and so do 12 and 13), 123= ---12312 - - maps into - - - 111--- = 1 (and
so does 132), and so forth. Such reductions for short cycles are given in table 12.2,
figure 12.12 and figure 9.7.
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Table 12.2: D3 correspondence between the binary labeled fundamentadidopnime
cyclesp'and the full 3-disk ternary labeled cyclpstogether with theD transformation
that maps the end point of thgcycle into the irreducible segment of thpecycle, see
sect. 9.12. Breaks in the above ternary sequences markisagehe irreducible segment;
for example, the full space 12-cycle 121231312323 consisi®12 and its symmetry
related segments 3131, 2323. The multiplicitypméycle ism, = 6nz/np. The shortest
pair of fundamental domain cycles related by time revetsat (o spatial symmetry) are
the 6-cycle9901011 and01101.

p p 95 p p 95
0 12 o1, 000001 121212131313 o3
1 123 C 000011  121212313131232323 C?
01 1213 o3 000101 121213 e
001 121232313 C 000111 121213212123 12
011 121323 o013 001011 121232131323 023
0001 12121313 o023 001101 121231323213 013
0011 121231312323 C2 001111 121231232312313123 C
0111 12132123 o2 010111  121312313231232123 C2
00001 121212323231313C 011111 121321323123 13
00011 1212132323 o13 0000001 12121212323232313131%
00101 1212321213 o012 0000011 12121213232323 13
00111 12123 e 0000101 12121232121213 12
01011 121312321231323C 0000111 1212123 e
01111 1213213123 oo - . .
Résum e

In the preceding and this chapter we start witd-dimensional state space and
end with a 1-dimensional return map description of the dyicanThe arc-length
parametrization of the unstable manifold maintains the-1-telation of thefull
d-dimensional state space dynamics and its 1-dimensionahrenap representa-
tion. To high accuracyo information about the flow is lo$ly its 1-dimensional
return map description. We explain why Lorenz equilibrig &eteroclinically
connected (it is not due to the symmetry), and how to geneithfeeriodic orbits
of Lorenz flow up to given length. This we do, in contrast to st of the thesis,
without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the critical rgpiand easy to
determine. In higher dimensions, the situation is not sarcleone can attempt
to determine the (fractal set of) folding points by lookingtlzeir higher iterates
- due to the contraction along stable manifolds, the fold getbe exponentially
sharper at each iterate. In practice this set is essentialbpntrollable for the
same reason the flow itself is chaotic - exponential growtaradrs. We prefer to
determine a folding point by bracketing it by longer and lengycles which can
be determined accurately using variational methods often&®, irrespective of
their period.

For a generic dynamical system a subshift of finite type iettweption rather
than the rule. Its symbolic dynamics can be arbitrarily ctarpeven for the lo-
gistic map the grammar is finite only for special parametdues Only some
repelling sets (like our game of pinball) and a few purely meatatical con-
structs (called Anosov flows) are structurally stable - farstnsystems of inter-
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est an infinitesimal perturbation of the flow destroys/and@reates an infinity of
trajectories, and specification of the grammar requiresrd@hation of pruning

blocks of arbitrary length. The repercussions are dramatit counterintuitive;

for example, the transport cfiients such as the deterministid¢fdsion constant

of sect. 25.2 are emphaticallyot smooth functions of the system parameters.
Importance of symbolic dynamics is often grossly unappted; as we shall se&ection 25.2
in chapters 20 and 23, the existence of a finite grammar isrtietat prerequisite

for construction of zeta functions with nice analyticityoperties. This generic

lack of structural stability is what makes nonlinear dynesrgo hard.

The conceptually simpler finite subshift Smale horseshaffice to motivate
most of the key concepts that we shall need for time being. Sategy is akin
to bounding a real number by a sequence of rational appraxsnave converge
toward the non—wandering set under investigation by a semuef self-similar
Cantor sets. The rule that everything to one side of the pgufiont is forbidden
might is striking in its simplicity: instead of pruning a Ganset embedded within
some larger Cantor set, the pruning front cleanly cuts axdgrapactregion in the
symbol square, and that is all - there are no additional pagimules. A ‘self-
similar’ Cantor set (in the sense in which we use the word )hisra Cantor set
equipped with asubshift of finite typsymbol dynamics, i.e., the corresponding
grammar can be stated as a finite number of pruning rules,fegaidding a finite
subsequences; s, ... S,_. Here the notations; s, . .. s,_ stands fom consecutive
symbolss 1, s, .. ., S, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topolagjmruning into
pruning rules for inadmissible sequences; those are imghéea by constructing
transition matrices aridr graphs, see chapters 14 and 15.

Commentary

Remark 12.1 Stable/unstable manifolds. For pretty hand-drawn pictures of invariant
manifolds, see Abraham and Shaw [9.10]. Construction dcdiriant manifolds by map
iteration is described in Simo [12.35]. Fixed point stablenstable manifolds and their
homoclinic and heteroclinic intersections can be computgdg DsTool [12.59, 12.60,
12.61]. Unstable manifold turning points were utilized éfis. [12.13, 22.2,12.32, 12.33,
12.34] to partition state space and prune inadmissible sysdgruences. The arclength
parameterized return maps were introduced by Christiaeseh. [12.63], and utilized
in ref. [12.37]. Even though no dynamical system has beegiesiumore exhaustively
than the Lorenz equations, the analysis of sect. 11.2 is iéw.desymmetrization fol-
lows Gilmore and Lettelier [9.13], but the key new idea isaiakirom Christiansermt
al. [12.63]: the arc-length parametrization of the unstablaifioédd maintains the 1-to-1
relation of thefull d-dimensional state space dynamics and its 1-dimensionahrenap
representation, in contrast to 1-dimensigmaijectionsof the (d-1)-dimensional Poincaré
section return maps previously deployed in the literaturether words, to high accuracy
no information about the flow is lobly its 1-dimensional return map description.

Remark 12.2 Smale horseshoe. S. Smale understood clearly that the crucial ingre-
dient in the description of a chaotic flow is the topology sfribn—wandering set, and he
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provided us with the simplest visualization of such setmgrsections of Smale horse-
shoes. In retrospect, much of the material covered hereloaady be found in Smale’s
fundamental paper [1.27], but an engineer or a scientist g®orun into a chaotic time
series in his laboratory might not know that he is investigathe action (dferentiable)
of a Lie groupG on a manifoldM, and that the Lefschetz trace formula is the way to go.

Remark 12.3 Pruning fronts. The ‘partition conjecture’ is due to Grassberger and
Kantz [29.3]. The notion of a pruning front and the ‘prunifignt conjecture’ was for-
mulated by Cvitanovi@t al. [12.13], and developed by K.T. Hansen for a number of
dynamical systems in his Ph.D. thesis [12.20] and a seripapérs [12.21]-[12.25]. The
‘multimodal map approximation’is described in the K.T. l4an thesis [12.20]. Hansen'’s
thesis is still the most accessible exposition of the prgtieory and its applications. De-
tailed studies of pruning fronts are carried out in refs.J¥2 12.16, 12.15]; ref. [29.5] is
the most detailed study carried out so far. The rigorousrghebpruning fronts has been
developed by Y. Ishii[12.17, 12.18] for the Lozi map, and ACharvalho [12.19] in a very
general setting. Beyond the orbit pruning and its infinityadmissible unstable orbits, an
attractor of Henon type may also own an infinity of attragtorbits coexisting with the
strange attractor [12.64, 12.65]. W&er heuristic arguments and numerical evidence that
the coexistence of attractive orbits does not destroy tlamge attractgrepeller, which is
also in this case described by the 2limensionalianish pastry plot.
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Exercises
12.1. A Smale horseshoe. The HEnon map of example 3.7 of figure 12.4 into a unit square. In the symbol square
) the dynamics maps rectangles into rectangles by a dec-
;(, } - [ 1-ax + by (12.15) imal point shift. together with the inverse mapping.
X

Sketch a few rectangles in symbol square and their for-

maps the X, y] plane into itself - it was constructed ward and backward images. (Hint: the mapping is very
by Hénon [3.6] in order to mimic the Poincaré section much like the tent map (11.4)).

of once-folding map induced by a flow like the one

sketched in figure 11.10. For definitiveness fix the pa2.3. Kneading danish without f||pp|ng The baker’s map
rametersta = 6,b = -1. of exercise 12.2 includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the &y) — (X Y) mapping that implements an
orientation preserving baker’s map (no flip; Jacobian de-
) terminant= 1). Sketch and label the first few folds of the
b) Construct the inverse of the (12.15). symbol square.

c) lterate the rectangle back in the time; how many

intersections are there between théorward and 12.4. Orientation reversing once-folding map. By adding
mbackward iterates of the rectangle? areflection around the vertical axis to the horseshoe map

g we get the orientation reversing mggshown in the
second Figure abové&), andQ; are oriented a§, and
Q1, so the definition of the future topological coordi-
natey is identical to they for the orientation preserving
horseshoe. The inverse intersectiads' and Q;* are
oriented so tha@Q;," is opposite taQ, while Q;* has the

a) Draw a rectangle in thex(y) plane such that its
nth iterate by the HEnon map intersects the rectan-
gle 2" times.

d) Use the above information about the intersections
to guess thex y) coordinates for the two fixed
points, a 2-periodic point, and points on the two
distinct 3-cycles from table 15.1. The exact peri-
odic points are computed in exercise 13.13.

12.2. Kneading Danish pastry. Write down the & y) — same_orient_atiqn aQ. Check that the past topological
(%, y) mapping that implements the baker's map coordinates is given by
1-w, ifs,=0
Who1 = {Wn " if:zl’ Wo = S

eyt .

\l T . 500 = OWWaW....= > win/2"(12.16)
— : < AN n=1

BN
% ) 12.5. Infinite symbolic dynamics. Let oo be a func-

0 fied point

tion that returns zero or one for every infinite binary

string: o : {0,1}Y — {0,1}. Its value is represented

" by o(e1, e, ...) where theg are either 0 or 1. We will

now define an operatdr that acts on observables on the

o —~ space of binary strings. A functicmis an observable if
- it has bounded variation, that is, if

[

1

a0 ! : llall = supla(er, €2, ...)] < .

no , {e}

FIG, 4, Tterative construction of the symbol plane.

For these functions

Figure: Kneading danish pastry: symbol square repre-
sentation of an orientation reversing once-folding map
obtained by fattening the Smale horseshoe intersections +ta(Le,e,..)Jo(Le,e,...).

Ta(er,e,...) = al0,e,e,..)00,e,e,...)
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(a) (easy) Consider a finite versidR of the operator in the fundamental domain, and interpret the symbols
T {0, 1} by relating them to topologically distinct types of
collisions. Compare with table 12.2. Then try to sketch

Tha(er. €. ... e1n) = the location of periodic points in the Poincaré section of
a0, e, e,....60-1)0(0, €1, €, ..., €n-1) + the billiard flow. The point of this exercise is that while
a(le,e,....en1)0(l e, e,...,611). in the configuration space longer cycles look like a hope-

less jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
(b) (medium) With the operator norm induced by the space coordinates, or any other subset of state space cc

Show thatT, is a 2' x 2" matrix. Show that its
trace is bounded by a number independent.of

function norm, show thaf™ is a bounded operator. ordinates which does not respect the topological organi-
(c) (hard) Show thaf™ is not trace class. zation of the flow.
_ ) _ 12.7. 3-disk pruning. (Not easy) Show that for 3-disk
12.6. 3-disk fundamental domain cyEIe_s._ _(cgtmued game of pinball the pruning of orbits startsRt: a =
from exercise 9.6) Try to sketd®, 1, 01,001,011,---. 2.04821419. , figure 11.6. (K.T. Hansen)
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