Chapter 35

Quantum scattering

Scattering is easier than gathering.
—Ilrish proverb

(A. Wirzba, P. Cvitanovi¢ and N. Whelan)

consideration is bound. As we shall now see, we are in luck s#miclas-

sics of bound systems is all we need to understand the sessizddor open,
scattering systems as well. We start by a brief review of thentum theory of
elastic scattering of a point particle from a (repulsive)gmial, and then develop
the connection to the standard Gutzwiller theory for bouysteams. We do this
in two steps - first, a heuristic derivation which helps usensthnd in what sense
density of states is “density,” and then we sketch a genendation of the cen-
tral result of the spectral theory of quantum scattering, Kiein-Friedel-Lloyd
formula. The end result is that we establish a connectiowdsn the scattering
resonances (both positions and widths) of an open quantstarayand the poles
of the trace of the Green function, which we learned to areigzarlier chapters.

S FAR the trace formulas have been derived assuming that thensysteer

35.1 Density of states

For a scattering problem the density of states (31.18) appefined since for-
mulas such as (34.6) involve integration over infinite spagktent. What we will
now show is that a quantity that makes sense physically islifference of two
densities - the first with the scatterer present and the skwoth the scatterer
absent.

In non-relativistic dynamics the relative motion can beasaped from the
center-of-mass motion. Therefore the elastic scatterinigvo particles can be
treated as the scattering of one particle from a static piaievi(g). We will study
the scattering of a point-particle of (reduced) masby a short-range potential
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CHAPTER 35. QUANTUM SCATTERING 639

V(q), excludinginter alia the Coulomb potential. (The Coulomb potential decays
slowly as a function ofj so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose #patial coordinate
frame freely, it is advisable to place its origin somewheeamthe geometrical
center of the potential. The scattering problem is solved,dcattering solution
to the time-independent Schrodinger equation (31.5)

K 92
(—%a—q2 . V(q)) #(@) = () (35.1)

can be constructed. Hekeis the energyp = 7K the initial momentum of the
particle, andk the corresponding wave vector.

When the argument = |q| of the wave function is large compared to the typ-
ical sizea of the scattering region, the Schrodinger equatifinatively becomes
a free particle equation because of the short-range nafule @otential. In the
asymptotic domaim > a, the solutiong(q) of (35.1) can be written as superpo-
sition of ingoing and outgoing solutions of the free padiSchrodinger equation
for fixed angular momentum:

#(0) = ApO)(@) + Bs(@),  (+ boundary conditions)

where in 1-dimensional problem#)(q), ¢{*)(qg) are the “left,” “right” moving
plane waves, and in higher-dimensional scattering proslémm “incoming,” “out-
going” radial waves, with the constant matrio&sB fixed by the boundary con-
ditions. What are the boundary conditions? The scattenemoadify only the
outgoing waves (see figure 35.1), since the incoming onedebyition, have yet
to encounter the scattering region. This defines the quantaohanical scattering
matrix, or theS matrix

Pm(r) = B (1) + Smm (1) . (35.2)

All scattering dfects are incorporated in the deviation®from the unit matrix,
the transition matrixt

S=1-iT. (35.3)

For concreteness, we have specialized to two dimensiotmuglh the final for-
mula is true for arbitrary dimensions. The indiamsandnY are the angular mo-
menta quantum numbers for the incoming and outgoing statbeo&cattering
wave function, labeling th&-matrix elementsSy,y. More generally, given a set
of quantum numbers, y, theS matrix is a collectiors, of transition amplitudes
B — y normalized such thayds,gyl2 is the probability of thg8 — + transition. The
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CHAPTER 35. QUANTUM SCATTERING 640

Figure 35.1: (a) Incomingspherical waves run-
ning into an obstacle. (b) Superpositionaiftgo-

ing spherical waves scattered from an obstacle. (a) (b)

total probability that the ingoing stafeends up in some outgoing state must add
up to unity

DlIsplP=1, (35.4)
Y

so theS matrix is unitary:S'S=SS' = 1.

We have already encountered a solution to the 2-dimensjanodlem; free
particle propagation Green’s function (33.48) is a rad@lson, given in terms
of the Hankel function

im
GO(r, Oa E) = _ﬁ H(()+)(kr) 5

where we have use8q(r,0,E)/n = kr for the action. Themth angular mo-
mentum eigenfunction is proportional ¢ (q) « H (kr), and given a potential
V(q) we can in principle compute the infinity of matrix elemegn;. We will
not need much information aboH\ﬁ,?(kr), other than that for largeits asymptotic
formis

H* o eiikr

In general, the potentia¥(q) is not radially symmetric and (35.1) has to be

solved numerically, by explicit integration, or by diagtimeg a large matrix in

a specific basis. To simplify things a bit, we assume for thetbeing that a ra-
dially symmetric scatterer is centered at the origin; thalfformula will be true
for arbitrary asymmetric potentials. Then the solutionshef Schrodinger equa-
tion (31.5) are separablen(q) = ¢(r)é™, r = |q, the scattering matrix cannot
mix different angular momentum eigenstates, &risldiagonal in the radial basis
(35.2) with matrix elements given by

Sim(k) = e#om() (35.5)
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CHAPTER 35. QUANTUM SCATTERING 641

The matrix is unitary so in a diagonal basis all entries are phases. This means
that an incoming state of the forhl}({)(kr)eim" gets scattered into an outgoing state
of the formSm(k)Hr(TT)(kr)émg, whereHr(,T)(z) are incoming and outgoing Hankel
functions respectively. We now embed the scatterer in aiiafgylindrical well

of radiusR, and will later takeR — oo. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresptmsome value ah.
For larger > a each eigenstate is of the asymptotically free form

ém(r)

Q

™ (SmHE (kr) + HE (k)
-+-CoSKr + om(K) — xm) » (35.6)

Q

where: - - is a common prefactor, ang, = mr/2+xr/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions thiitplay no role in
what follows.

The state (35.6) must satisfy the external boundary candttiat it vanish at
r = R This implies the quantization condition

kKnR+ 6m(kn) —xm=n7(n+12) .

We now ask for the dierence in the eigenvalues of two consecutive states of
fixedm. SinceR s large, the density of states is high, and the pliagk) does
not change much over such a small interval. Therefore, tilgaorder we can
include the &ect of the change of the phase on statel by Taylor expanding. is

Knt1R + 0m(Kn) + (Kni1 — Kn)dm(Kn) = xm = 7 + (N + 12).

Taking the diference of the two equations we obtaik ~ (R + 6/,(k))~. This
is the eigenvalue spacing which we now interpret as the savef the density of
states withirm angular momentum sbuspace

dn(l) > = (R+ 54(09).

TheRterm is essentially the 2 d Weyl term (34.8), appropriate to1d radial
quantization. For largR, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative of sbattering phase shift,
approximation accurate to ordeyR. However, not all is well: the area under
consideration tends to infinity. We regularize this by satiting from the result
from the free particle density of statdg(k), for the same size container, but this
time without any scatterer, figure 35.2. We also sum ovemalalues so that

409 - o) = ~ > 51K

I
Ny
3]
Q.
-~
o
(o}
%
3

= i_Tr (sfd—s). (35.7)
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CHAPTER 35. QUANTUM SCATTERING 642

Figure 35.2: The “difference” of two bounded refer- [
ence systems, one with and one without the scattering o @
system.

The first line follows from the definition of the phase shif8&é (5) while the second
line follows from the unitarity ofS so thatS~! = ST. We can now take the limit
R — oo since theR dependence has been cancelled away.

This is essentially what we want to prove since for the lefichaide we al-
ready have the semiclassical theory for the trace of tifergince of Green’s func-
tions,

d(K) - do(K) = —%(Im (tr (G(K) — Go(K)) . (35.8)

There are a number of generalizations. This can be done imamper of
dimensions. It is also more common to do this as a functionnefgy and not
wave numbelk. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumbdér we have adaptel as the natural variable in the
above discussion.

Finally, we state without proof that the relation (35.7) lggeven when there
is no circular symmetry. The proof is mordfiiult since one cannot appeal to the
phase shift$y, but must work directly with a non-diagon&l matrix.

35.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there mnaection between the
scattering matrix and the trace of the quantum Green'’s fomdmore formally
between the dierence of the Green’s function with and without the scattgri
center.) We now show how this connection can be derived in gemigorous
manner. We will also work in terms of the energyrather than the wavenumber
k, since this is the more usual exposition. Suppose partictesact via forces of
suficiently short range, so that in the remote past they were ieegagarticle state
labeledgs, and in the distant future they will likewise be free, in atsttabeledy.

In the Heisenberg picture tie-matrix is defined a$ = Q_Qi in terms of the
Mgller operators

Q. = lim ght/igiHot/n (35.9)

- t—+o0

where H is the full Hamiltonian, whereasly is the free Hamiltonian. In the
interaction picture th&-matrix is given by

s = Qla = lim Hot/h g=2iHt/h gHot/h
—00
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CHAPTER 35. QUANTUM SCATTERING 643

= T@m(ifﬁMMHﬁﬂ, (35.10)

whereH’ = V = H — Hg is the interaction Hamiltonian andis the time-ordering
operator. In stationary scattering theory thematrix has the following spectral
representation

s - [ d _

[ aes@sto-B)

S(E) = Q.E)QYE), Q.E)=1+(Ho-E=xie)lv, (35.11)
such that

1 1

Ho—E—ie H-E_jc €7 79|-(512

Tr [ST(E)%S(E)] = Tr[

The manipulations leading to (35.12) are justified if therapms Q. (E) can be appendix J
linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formulhiah is the
central result of this chapter. The Krein-Lloyd formula yictes the connection
between the trace of the Green'’s function and the poles of¢h#ering matrix,
implicit in all of the trace formulas for open quantum sysgewhich will be pre-
sented in the subsequent chapters.

35.3 Kren-Friede-Lloyd formula

The link between quantum mechanics and semiclassics ftiesog problems is
provided by the semiclassical limit of the Krein-Frieddb{d sum for the spectral
density which we now derive. This derivation builds on theutes of the last
section and extends the discussion of the opening section.

In chapter 33 we linked the spectral density (see (31.18&)unded system

d(E) = Z §(En - E) (35.13)

via the identity

1 1
0E B = M E e e
- —En
1

= —lim - Im(E —|E
EI—>O7Z' m n|E—H+|e| &
1 1 1

= — lim (E — — —| E 35.14
2ni e—>0<nE—H—Ie E-H+ie ”> (35.14)
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CHAPTER 35. QUANTUM SCATTERING 644

to the trace of the Green’s function (34.1.1). Furthermaraghe semiclassical
approximation, the trace of the Green'’s function is giverthsy Gutzwiller trace
formula (34.11) in terms of a smooth Weyl term and an osdailtatontribution of
periodic orbits.

Therefore, the task of constructing the semiclassics ob#texing system is
completed, if we can find a connection between the spectraityed(E) and the
scattering matridXS. We will see that (35.12) provides the clue. Note that thbtrig
hand side of (35.12) has nearly the structure of (35.14) whenatter is inserted
into (35.13). The principal dierence between these two types of equations is that
the S matrix refers tooutgoingscattering wave functions which are not normal-
izable and which have eontinuousspectrum, whereas the spectral dendltf)
refers to a bound system with normalizable wave functiorth widiscrete spec-
trum. Furthermore, the bound system is characterized bgrenitian operator,
the HamiltonianH, whereas the scattering system is characterized byitary
operator, thes-matrix. How can we reconcile these completelyfetient classes
of wave functions, operators and spectra? The trick is tmpuscattering system
into a finite box as in the opening section. We choose a sgiarimatiner with
radiusR and with its center at the center of our finite scatteringesystOur scat-
tering potentiaV (F) will be unaltered within the box, whereas at the box walls we
will choose an infinitely high potential, with the Dirichlbbundary conditions at
the outside of the box:

¢(Nlr=r=0. (35.15)

In this way, for any finite value of the radi® of the box, we have mapped our
scattering system into a bound system with a spectral dedé; R) over dis-
crete eigenenergieBy(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which exphaimg the Coulomb
potential requires special care.) The hope is that in thé IRn— co we will
recover the scattering system. But some care is requirethjsleimenting this.
The smooth Weyl terrd(E; R) belonging to our box with the enclosed potential
diverges for a spherical 2-dimensional box of radiiguadratically, asR?/(4x)

or asRe in the 3-dimensional case. This problem can easily be ciibe ispec-
tral density of an empty reference box of th@mesize (radiusR) is subtracted
(see figure 35.2). Then all the divergences linked to theeaming radiusk in
the limit R — oo drop out of the dierence. Furthermore, in the limMR —» o
the energy-eigenfunctions of the box are only normalizalla delta distribution,
similarly to a plane wave. So we seem to recover a continoastgpm. Still the
problem remains that the wave functions do not discrimirteg®veen incoming
and outgoing waves, whereas this symmetry, namely the kLeityiis broken in
the scattering problem. The last problem can be tackled ifepéace the spec-
tral density over discrete delta distributions by a smodthgectral density with a
small finite imaginary parg in the energyE:

1 1 1
d(E +in;R) = @;{E_EH(R)_W - E_EH(R)HU} . (35.16)
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CHAPTER 35. QUANTUM SCATTERING 645

Note thatd(E + in; R) # d(E — in; R) = —d(E + in; R). By the introduction of the
positivefinite imaginary part; the time-dependent behavior of the wave function
has dfectively been altered from an oscillating one to a decaying and the
hermiticity of the Hamiltonian is removed. Finally the limgi — O can be carried
out, respecting the order of the limiting procedures. Fitts¢ limit R — oo has

to be performed for dinite value ofn, only then the limity — 0 is allowed. In
practice, one can try to work with a finite value Rf but then it will turn out (see
below) that the scattering system is only recovereRfy > 1.

Let us summarize the relation between the smoothed speensitiesd(E +
in; R) of the boxed potential andf®(E + in; R) of the empty reference system and
the S matrix of the corresponding scattering system:

1 d
im i o RY - dO(Evin- - Ll L
UILrQO FL[nm(d(E+un,R) dO(E+in; R) zﬂiTr[S (E) dES(E)]
1_d 1 d
_%TrEInS(E) = ﬁﬁlndetS(E). (35.17)

This is theKrein-Friedel-Lloyd formula It replaces the scattering problem by
the diference of two bounded reference billiards of the same raiwdich fi-
nally will be taken to infinity. The first billiard contains ¢hscattering region or
potentials, whereas the other does not (see figure 35.2)e d{Er+ in; R) and
dO(E + in; R) are thesmoothedspectral densities in the presence or in the ab-
sence of the scatterers, respectively. In the semicldsgipaoximation, they are
replaced by a Weyl term (34.10) and an oscillating sum oveogie orbits. As in
(34.2), the trace formula (35.17) can be integrated to gixe&ation between the
smoothed staircase functions and the determinant dbthmeatrix:

lim lim (N(E+in; R) - NOE+inR) = %IndetS(E). (35.18)

n—+0R—0

Furthermore, in both versions of the Krein-Friedel-Lloyarhulas the energy ar-
gumentE +in can be replaced by the wavenumber argunketity’. These expres-
sions only make sense for wavenumbers on or above thé&-@eds. In particular,

if kis chosen to be realf’ must be greater than zero. Otherwise, the exact left
hand sides (35.18) and (35.17) would give discontinuouscak®e or even delta
function sums, respectively, whereas the right hand sides@ntinuous to start
with, since they can be expressed by continuous phase.slitiiss the order of
the two limits in (35.18) and (35.17) is essential.

The necessity of thein prescription can also be understood by purely phe-
nomenological considerations in the semiclassical appraton: Without then
term there is no reason why one should be able to neglectoguperiodic or-
bits which are there solely because of the introduction efabnfining boundary.
The subtraction of the second (empty) reference systemwesnihose spurious
periodic orbits which never encounter the scattering negian addition to the re-
moval of the divergent Weyl term contributions in the lirRit— co. The periodic
orbits that encounter both the scattering region and thereat wall would still
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CHAPTER 35. QUANTUM SCATTERING 646

survive the first limitR — oo, if they were not exponentially suppressed by the
+in term because of their

LR V2m(E+in) _ dLRK o LR

behavior. As the length(R) of a spurious periodic orbit grows linearly with the

radiusR. The boundRy’ > 1 is an essential precondition on the suppression of

the unwanted spurious contributions of the container ifKinein-Friedel-Lloyd

formulas (35.17) and (35.18) are evaluated at a finite valu® o exercise 35.1

Finally, the semiclassical approximation can also helmuse interpretation
of the Weyl term contributions for scattering problems. ¢atsering problems the
Weyl term appears with a negative sign. The reason is theastiton of the empty
container from the container with the potential. If the poia is a dispersing bil-
liard system (or a finite collection of dispersing billiayds/e expect an excluded
volume (or the sum of excluded volumes) relative to the ergptytainer. In other
words, the Weyl term contribution of the empty containeragyér than of the
filled one and therefore a negative net contribution is leftro Second, if the
scattering potential is a collection of a finite number of foverlapping scatter-
ing regions, the Krein-Friedel-Lloyd formulas show that ttorresponding Weyl
contributions are completely independent of the positibthe single scatterers,
as long as these do not overlap.

35.4 Wigner timedelay

The termdiE In detS in the density formula (35.17) is dimensionally time. This
suggests another, physically important interpretatioauzh formulas for scatter-
ing systems, the Wigner delay, defined as

d(k)

d

JcArgdet §(K)
d

= i log det &(K)

_ iw (sf(k)‘;—i(k)) (35.19)

and can be shown to equal the total delay of a wave packet iatgesng system.
We now review this fact.

A related quantity is the total scatteripipase shifd(k) defined as
detS(k) = e @K |

so thatd(k) = SO(K).
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CHAPTER 35. QUANTUM SCATTERING 647

The time delay may be both positive and negative, reflectitrgaive re-
spectively repulsive features of the scattering systenellicidate the connection
between the scattering determinant and the time delay vy stplane wave:

The phase of a wave packet will have the form:
¢ = K-X-wt + 0.

Here the term in the parenthesis refers to the phase shiftvithaccur if scattering
is present. The center of the wave packet will be determinetth® principle of
stationary phase:

0=dp=dk-X—dwt + dO.

Hence the packet is located at

The first term is just the group velocity times the given timd&hus the packet is
retarded by a length given by the derivative of the phase shili respect to the
wave vectork. The arrival of the wave packet at the positignvill therefore be

delayed. Thigime delay can similarly be found as

00(w)

T((U) = W

To show this we introduce thrdownes®f the phase = I?/cu for whichs- vy = 1,
wherevy is the group velocity to get

dK-X= 8 Row = = dw .,
Vg

since we may assumg is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

t:l +M_
Vg ow

If the scattering matrix is not diagonal, one interprets

. _165” 00jj
At” =Re _ISij % =Re %
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CHAPTER 35. QUANTUM SCATTERING 648

as the delay in thgth scattering channel after an injection in fle The proba-
bility for appearing in channej goes asS;;|*> and therefore the average delay for
the incoming states in channdb

(Atj)

. . 0Sij . oS
Zj: |Sij|2Atij =Re(i ZJ: Sij %) = Re(li S %)ii

0S
—-ilst.- =] ,
I( a“))ii

where we have used the derivatig¢gw, of the unitarity relatiors- S = 1 valid
for real frequencies. This discussion can in particular lz@lenfor wave packets
related to partial waves and superpositions of these likm@sming plane wave
corresponding to free motion. The total Wigner delay thaneetorresponds to the
sum over all channel delays (35.19).

Commentary

Remark 35.1 Krein-Friedel-Lloyd formula. The third volume of Thirring [35.1], sec-
tions 3.6.14 (Levison Theorem) and 3.6.15 (the proof), @dherer’s thesis [35.15] (ap-
pendix) discusses the Levison Theorem.

It helps to start with a toy example or simplified exampleéast of the general the-
orem, namely for the radially symmetric potential in a synmcecavity. Have a look at
the book of K. Huang, chapter 10 (on the "second virialfio®nt”), or Beth and Uhlen-
beck [35.5], or Friedel [35.7]. These results for the catimtto the density of states are
particular cases of the Krein formula [35.3]. The Kreindekel-Lloyd formula (35.17)
was derived in refs. [35.3, 35.7, 35.8, 35.9], see also {811, 35.14, 35.15, 35.17,
35.18]. The original papers are by Krein and Birman [35.34Bbut beware, they are
mathematicans.

Also, have a look at pages 15-18 of Wirzba's talk on the Casiffiect [35.16]. Page
16 discusses the Beth-Uhlenbeck formula [35.5], the preskar of the more general
Krein formula for spherical cases.

Remark 35.2 Weyl term for empty container. For a discussion of why the Weyl term
contribution of the empty container is larger than of thedllbne and therefore a negative
net contribution is left over, see ref. [35.15].

Remark 35.3 Wigner time delay. Wigner time delay and the Wigner-Smith time delay
matrix, are powerful concepts for a statistical descriptad scattering. The diagonal
elementx,, of the lifetime matrixQ = -iS19S/dw, whereSis the [2Nx2N] scattering
matrix, are interpreted in terms of the time spent in theteciaig region by a wave packet
incident in one channel. As shown by Smith [35.26], they aeegum over all ouput
channels (both in reflection and transmissionAtf, = Re [(—i/Sap)(0San/dw)] weighted
by the probability of emerging from that channel. The sumhei®,, over all 2N channels

is the Wigner time delayw = Y., Qaa, Which is the trace of the lifetime matrix and is
proportional to the density of states.
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Exercises

35.1. Spurious orbits under the Krein-Friedel-Lloyd con-

truction. Draw examples for the three types of period

orbits under the Krein-Friedel-Lloyd construction: (@)

the genuine periodic orbits of the scattering region, (b)

spurious periodic orbits which can be removed by the

subtraction of the reference system, (c) spurious peri-

odic orbits which cannot be removed by this subtraction. | |
What is the role of the double limit — 0, container size ' '

R

b— c?

35.2. The one-disk scattering wave function.  Derive the The full quantum mechanical version of this problem
one-disk scattering wave function. can be solved by finding the zeros lnfor the deter-

minant of the matrix
(Andreas Wirzbha) 1Y J(k
Mmn = Omn + (=1)" Im(ka)

(HE2(KR) + (~1)"HG(

. _ _ 2 HP(ka)
35.3. Quantum two-disk scattering.  Compute the quasi-

classical spectral determinant whereJ, is thenth Bessel function andl? is the Han-

kel function of the first kind. Find the zeros of the de-
j+1 terminant closest to the origin by solving dé¢k) = O.
Z(e) = l_l [1 - t_PZI) (Hints: note the structur® = | + A to approximate the
bl Ay determinant; or rea@haos2, 79 (1992))

35.4. Pinball topological index. Upgrade your pinball sim-

for the two disk problem. Use the geometry ulator so that it computes the topological index for each

orbit it finds.
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