Chapter 36

Chaotic multiscattering

(A. Wirzba and P. Cvitanovic)

number of non-overlapping finite scattering regions. Whthis inter-

esting at all? The semiclassics of scattering systems haadivantages
compared to the bound-state problems such as the heliuntization discussed
in chapter 37.

WE piscuss HERE the semiclassics of scattering in open systems with a finite

For bound-state problem the semiclassical approximataes ahot respect
guantum-mechanical unitarity, and the semi-classicareigergies are not
real. Here we construe manifestly unitarsemiclassical scattering matrix.

The Weyl-term contributions decouple from the multi-segttg system.

The close relation to the classical escape processes skstirschapter 1.

For scattering systems the derivation of cycle expansi®nsore direct and
controlled than in the bound-state case: the semiclassycd expansion
is the saddle point approximation to the cumulant expansiahe determi-
nant of the exact quantum-mechanical multi-scatteringimat

The region of convergence of the semiclassical spectrattitom is larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a ppenticle from finite
collection of non-overlapping scattering regions in teohthe standard textbook
scattering theory, and then develop the semiclassicaksitef trace formulas and
spectral determinants for scatterinfj b disks in a plane.
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36.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point parfrom finite collection
of N non-overlapping reflecting disks in a 2-dimensional plakethe point par-
ticle moves freely between the static scatterers, the tidependent Schrodinger
equation outside the scattering regions is the Helmholtzton:

(?,2 + |22) w(F) =0, F outside the scattering regions. (36.1)

Herey(F) is the wave function of the point particle at spatial pasit’ andE =
72k2/2miis its energy written in terms of its massand the wave vectd of the
incident wave. For reflecting wall billiards the scatteripgoblem is a boundary
value problem with Dirichlet boundary conditions:

w() =0, " on the billiard perimeter (36.2)

As usual for scattering problems, we expand the wave funati@) in the
(2-dimensional) angular momentum eigenfunctions basis

pr) = ). uk(r)e ™, (36.3)
M=—co
wherek and®y are the length and angle of the wave vector, respectivelylaAg
wave in two dimensions expaned in the angular momentum [sasis

eier — gkreos@r—a) _ Z Jm(kr)eim(“""”k) , (36.4)

m=—co

wherer and®; denote the distance and angle of the spatial vetas measured
in the global 2-dimensional coordinate system.

Themth angular componeniy,(kr)é™® of a plane wave is split into a super-
position of incoming and outgoing 2-dimensional spherigales by decompos-
ing the ordinary Bessel functiod(2) into the sum

@ = 5 (D + HO ) (36.5)

of the Hankel functions-lr(%)(z) andH,(ﬁ)(z) of the firstand second kind. Ff > 1
the Hankel functions behave asymptotically as:

2 prmry '
HOG) ~ /n_ze—l(Z-am-z) incoming,

2 .
HY@ ~ /=e'@i™D outgoing. (36.6)
7z
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Thus forr — o andk fixed, themth angular componeniy,(kr)é™® of the plane
wave can be written as superposition of incoming and outg@dimensional
spherical waves:

1

Jm(kr)em®r ~ o [erie=ama) . dlr=5m=3)] gmor (36.7)
r

In terms of the asymptotic (angular momentum) compongfitsf the wave
functiony(F), the scattering matrix (35.3) is defined as

1 S(kr— Ty Skr—E =TV iy
k —i(kr—Znm—%) (kr=Zm—Z)] Jnm'd;
Ym~ —— E Omn € 20 A+ Smmé 2M-a)| ¢ . (36.8)
m m 24 [ ]

The matrix elemenS, describes the scattering of an incoming wave with an-
gular momentunm into an outgoing wave with angular momentum If there
are no scatterers, théh= 1 and the asymptotic expression of the plane naie

in two dimensions is recovered frog(r).

36.1.1 1-disk scattering matrix

In general,S is nondiagonal and nonseparable. An exception is the 1stiak
terer. If the origin of the coordinate system is placed atceter of the disk, by
(36.5) themth angular component of the time-independent scatteringeviianc-
tion is a superposition of incoming and outgoing 2-dimenalespherical waves

exercise 35.2

1 .
Ui = 5 (HR00) + SmoH (k) €™

(3t - iETmmH,ﬁ})(kr))e‘m“" .

The vanishing (36.2) of the wave function on the disk perenet
0= Jm(ka) - iETmer(nl)(ka)

yields the 1-disk scattering matrix in analytic form:

@
2Jm(kas)] Sy = T (K& ¢ (36.9)

SS (K) = [1 - m
m H (kas) H (kas)

wherea = as is radius of the disk and the ix S indicates that we are dealing
with a disk whose label is. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect. 36.3.
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36.1.2 Multi-scattering matrix

Consider next a scattering region consisting\ohon-overlapping disks labeled
se€{1,2,---,N}, following the notational conventions of sect. 11.6. Thatsgy

is to construct the fulllT-matrix (35.3) from the exact 1-disk scattering matrix
(36.9) by a succession of coordinate rotations and traoskisuch that at each
step the coordinate system is centered at the origin of a dikkn theT-matrix

iN Smnt = dmm — i Tmm €an be split into a product over three kinds of matrices,

N )

Tom® = Y > Cru(OM K5 DY (K.

lly
5,8/=1ls,lg=—c0

The outgoing spherical wave scattered by the disk obtained by shifting the
global coordinates origin distand®; to the center of the disk, and measuring
the angle®s with respect to directiork of the outgoing spherical wave. As in
(36.9), the matri>xC* takes form

s 2i JWIS(kRS)ém‘I’s.

= — 36.10
me = 7as 1O (kag) (36.10)

If we now describe the ingoing spherical wave in the diskoordinate frame by
the matrixDs’

Dfs’,m = —ag -1, (kRy)Jy, (kag )& ™ s | (36.11)

and apply the Bessel function addition theorem

I +2 = D) Inc)A@.

{=—00

we recover thél -matrix (36.9) for the single disk = s’, M = 1 scattering. The
Bessel function sum is a statement of the completness optrerisal wave basis;
as we shift the origin from the diskto the disks’ by distanceRy , we have to
reexpand all basis functions in the new coordinate frame.

The labelsm andn refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate systerdls, |s refer to the
(angular momentum) basis fixed at tht ands’th scatterer, respectively. Thus,
Cs andD® depend on the origin and orientation of the global coordirststem
of the 2-dimensional plane as well as on the internal coatémof the scatterers.
As they can be made separable in the scatterer Ightbley describe the single
scatterer aspects of what, in general, is a multi-scagesioblem.
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Figure 36.1: Global and local coordinates for a gen-

eral 3-disk problem.

The matrixM is called themulti-scattering matrix If the scattering problem
consists only of one scatterdy) is simply the unit matrifoi, = 65§6|5|5,.
For scattering from more than one scatterer we separate ‘@ingle traversal”
matrix A which transports the scattered wave from a scattering negiQ to the
scattering regionMs,

MPS = %61, - AT - (36.12)

lely Iy

The matrixAS® reads:

as Jokas)

ss ss
=-(1-6>°) 7
ay H|(:;)(kas') ls=lgr

sly ™

(KRsg) glsass7ls(@ss=m) - (36,13)

Here, as is the radius of thesth disk. R and®g are the distance and angle,
respectively, of the ray from the origin in the 2-dimensibpiane to the center of
disk s as measured in the global coordinate system. Furtherrfe~ Ry is
the separation between the centers ofdffieands’th disk andvg s of the ray from
the center of disks to the center of disls’ as measured in the local (body-fixed)
coordinate system of disk(see figure 36.1).

Expanded as a geometrical series about the unit matilke inverse matrix
M -1 generates a multi-scattering series in powers of the simglersal matrixA.
All genuine multi-scattering dynamics is contained in thatrx A; by construc-
tion A vanishes for a single-scatterer system.

36.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the specpabdperties of thes-
matrix: resonances, time delays and phase shifts. Theaases are given by the
poles of theS-matrix in the lower complex wave humbdq) plane; more precisely,

by the poles of thé& on the second Riemann sheet of the complex energy plane.

As the S-matrix is unitary, it is also natural to focus on its totalask shifty(k)
defined by de§ = exp?®. The time-delay is proportional to the derivative of
the phase shift with respect to the wave number
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As we are only interested in spectral properties of the edag problem, it
sufices to study de$. This determinant is basis and coordinate-system indepen-
dent, whereas th&-matrix itself depends on the global coordinate system and o
the choice of basis for the point particle wave function.

As the S-matrix is, in general, an infinite dimensional matrix, itriet clear
whether the corresponding determinant exists at all-ihatrix is trace-class, the
determinant does exist. What does this mean?

36.2.1 Trace-classoperators

An operator (an infinite-dimensional matrix) is callgdce-classif and only if,
for any choice of orthonormal basis, the sum of the diagonatris elements
converges absolutely; it is called “Hilbert-Schmidt,” ife sum of the absolute
squared diagonal matrix elements converges. Once an opéadiagnosed as
trace-class, we are allowed to manipulate it as we maniptiaite-dimensional
matrices. We review the theory of trace-class operatorppeadix J; here we
will assume that th& -matrix (35.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det{ zA), as defined by the cumulant
expansion, exists and is an entire functiorzofFurthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation g40F expansion in
the book-keeping variabl® of the determinant

det(L - zA) = exp[tr In(L - zA)] = exp[— i ;tr (AM] .
n=1
That means
det( - zA) := i 2"Qm(A) (36.14)
m=0

where the cumulant®m(A) satisfy the Plemelj-Smithies recursion formula (J.19),
a generalization of Newton’s formula to determinants ofiité-dimensional ma-
trices,

1

—%ZQ,H(A)U(A]) form>1, (36.15)
=1

Qo(A)
Qm(A)

in terms of cumulants of order < mand traces of ordem < m. Because of the
trace-class property &, all cumulants and traces exist separately.

multscat - 25jul2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 36. CHAOTIC MULTISCATTERING 658

For the general case bf < oo non-overlapping scatterers, tiiematrix can be
shown to be trace-class, so the determinant ofStneatrix is well defined. What
does trace-class property mean for the corresponding eeat@®, DS andAS®?
Manipulating the operators as though they were finite medrieve can perform
the following transformations:

detS = det(1-iCM~'D)
Det (1-iM~*DC) = Det(M (M -iDC))
Det(M - iDC)

Det(M)

(36.16)

In the first line of (36.16) the determinant is taken over $rigthe angular mo-
mentum with respect to the global system). In the remainflé3&16) the deter-
minant is evaluated over the multiple indices = (s,1s). In order to signal this
difference we use the following notation: det and tr. .. refer to the|¢) space,
Det...and Tr... refer to the multiple index space. The matrices in the migltip
index space are expanded in the complete H#sis} = {|s, £s)} which refers for
fixed indexs to the origin of thesth scatterer and not any longer to the origin of
the 2-dimensional plane.

Let us explicitly extract the product of the determinantstiué subsystems
from the determinant of the total system (36.16):

Det(M — iDC)
Det(M)

Det(M —iDC) [Ta dets®
DetM 1Y, detss

N Det(M —iDC)/ [TV, detS®
| | dets® il JALS .
i DetM

detS

(36.17)

The final step in the reformulation of the determinant of Smatrix of the N-
scatterer problem follows from the unitarity of tf&matrix. The unitarity of
Sf(k*) implies for the determinant

det S(k*)") = 1/detS(K) (36.18)

where this manipulation is allowed because Thmatrix is trace-class. The uni-
tarity condition should apply for th&matrix of the total system$, as for the
each of the single subsystenss, s = 1,---, N. In terms of the result of (36.17),
this implies

Det (M (K) — iD(K)C(K)

[13., dets® = DetM(K))
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since all determinants in (36.17) exist separately ancksine determinants d&t
respect unitarity by themselves. Thus, we finally have

N DetM (k*)’
dets(k) = { [ | (detss)} —=——~ | (36.19)
{Dl } DetM (k)

where all determinants exist separately.

In summary: We assumed a scattering system &hige number ofnon-
overlappingscatterers which can be offtérent shape and size, but are all of
finite extent. We assumed the trace-class character of smatrix belonging to
the total system and of the single-traversal ma#&iand finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering fromigefhumber of
scatterers of arbitrary shape and size? As long as eaksh<ofo single scatterers
has a finite spatial extent, i.e., can be covered by a finite, die total system
has a finite spatial extent as well. Therefore, it too can bdrnmided a circular
domain of finite radiud, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of thigkds larger than the disk
size (actually larger thare(2) x b), then theT matrix elements of th&l-scatterer
problem become very small. If the wave numligs kept fixed, the modulus of
the diagonal matrix elements|T i with the angular momentum > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

36.2.2 Quantum cycle expansions

In formula (36.19) the genuine multi-scattering terms apesated from the single-
scattering ones. We focus on the multi-scattering terras, @n the ratio of the
determinants of the multi-scattering matihk = 1 — A in (36.19), since they are
the origin of the periodic orbit sums in the semiclassicaluetion. The reso-
nances of the multi-scattering system are given by the zefr@etM (k) in the
lower complex wave number plane.

In order to set up the problem for the semiclassical redogtice express the
determinant of the multi-scattering matrix in terms of tineces of the powers
of the matrixA, by means of the cumulant expansion (36.14). Because of the
finite numberN > 2 of scatterers trA") receives contributions corresponding to
all periodic itinerariess; $,S3 - - - $h-1S, of total symbol lengtm with an alphabet
s €{1,2,...,N}. of N symbols,

tr ASIZASS . ASHIS ASS (36.20)
+00 +00 +00
— Z Z Z A15192 SS3 ._.Afmsa ShS1
sile” Tsls sioalen” Tanlsy
lyymwolgmmco  lgi=—co
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Remember our notation that the trace tr) refers only to thel) space. By con-
structionA describes only scatterer-to-scatterer transitions, scsyimbolic dy-
namics has to respect the no-self-reflection pruning raeadmissible itineraries
the successive symbols have to b@eatient. This rule is implemented by the factor
1-6%in (36.13).

The trace tA" is the sum of all itineraries of lengtin,

AN = Z trASIZARS .. ASISIASS (36.21)
(81950}

We will show for theN-disk problem that these periodic itineraries correspond
in the semiclassical limitkas > 1, to geometricalperiodic orbits with the same
symbolic dynamics.

For periodic orbits with creeping sections the symbolichalpet has to be
extended, see sect. 36.3.1. Furthermore, depending oretmeedry, there might
be nontrivial pruning rules based on the so called ghostgrbée sect. 36.4.1.

36.2.3 Symmetry reductions

The determinants over the multi-scattering matrices rusr tive multiple index
of the multiple index space. This is the proper form for thensyetry reduction
(in the multiple index space), e.g., if the scatterer comigian is characterized
by a discrete symmetry group, we have

DetM = [ | (detMp, (k)* ,

where the indexr runs over all conjugate classes of the symmetry gréugnd
D, is the ath representation of dimensiat,. The symmetry reduction on the
exact quantum mechanical level is the same as for the c#ssiolution oper-
ators spectral determinant factorization (21.17) of s&t#.2.

36.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. Ireotd be concrete, we
will consider the semiclassical reduction of the scattgoha single disk in plane.

Instead of calculating the semiclassical approximatiotheéodeterminant of
the one-disk system scattering matrix (36.9), we do so for

d(k) = %dik IndetS'(ka) = %diktr (Ins'(ka)) (36.22)
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the so calledime delay

_1d _ 1y (HPka) d HP(ka)
dR = ot (IndetS'(ka) ) = o Zm: (Hfﬁ)(ka) @H(ml)(ka)]

_ oAy (HYka) H%)’(ka)]_ (36.23)
2ni L\ HP(ka)  H{Y(ka)

Here the prime denotes the derivative with respect to theraent of the Hankel
functions. Let us introduce the abbreviation

H? (ka)  HY (ka)

= . 36.24
T ke Wk (o024
We apply the Watson contour method to (36.23)
a a 1 e—iwr
=2 =2 =
9 = o m;m Am = o 2i Sgcdv sine) " (36.25)

Here the contou€ encircles in a counter-clockwise manner a small semiiminit
strip D which completely covers the realaxis but which only has a small finite
extent into the positive and negative imaginangirection. The contou€ is then
split up in the path above and below the realxis such that

a +oo+i€e g vt +oo—ie e vt
dk) = — dv ———x, — dy ——— .
® =z {LW " sinG)* Lc_if Vsm(wr))”}

Then, we perform the substitution— —v in the second integral so as to get

a +oo+€ e—iwr e+iwr
d(k — dy ——y, +dv ———x-,
® 4n {iwif Vsm(vn)X * Vsm(wr)X }

a +oo+ie e2iwr +00
ﬁ{zf v m*v*f deV} . (36.26)
—oo+le - —00

where we used the fact that, = y,. The contour in the last integral can be de-
formed to pass over the realaxis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassicak., under the
assumptiorka > 1. As the two contributions in the last line of (36.26)tdr by
the presence or absence of the Watson denominator, theljavil to be handled
semiclassically in dferent ways: the first will be closed in the upper complex
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plane and evaluated at the poleypfthe second integral will be evaluated on the
realv-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles gf, in the upper complex
plane are given by the zeros Hﬁl)(ka) which will be denoted by, (ka) and by
the zeros oHSZ)(ka) which we will denote by-v,(ka), ¢ = 1,2,3,---. In the Airy
approximation to the Hankel functions they are given by

vekd) = ka+ia(ka), (36.27)
uka) = —ka+i(a(ka) = - (v(k'a)" . (36.28)

with

, ix (ka\¥® (62 & 1 o

6\ 1 (209 281
(E) 3150( e 1806t (36.29)

wi

+ d
Hereq, labels the zeros of the Airy integral
A(Q) = f dr cosfrr — t°) = 3 3xAi(-37Y3q) ,
o

with Ai(2) being the standard Airy function; approximatety, ~ 63[3x(¢ —
1/4)]%3/2. In order to keep the notation simple, we will abbreviate= v,(ka)
andv, = v,(ka). Thus the first term of (36.26) becomes finally

a +co+ie e2|wr © e2ivnr e—2il7[7r
ﬁ{sz o ez'v"*”} 232(1_ezw+1_e-zm)-

In the second term of (36.26) we will insert the Debye apprations for the
Hankel functions:

HYD(x) ~ 2z exp(ii VX2 =2z ivarccoss ¥ iz) for [x| > v
A VX2 =2 X 4
(36.30)
Hsl/z)(x) ~ Fi 2z exp(— V2 — X2 + vArcCoshZ) for|x <v.
VY2 — X2 X

Note that fory > kathe contributions iy, cancel. Thus the second integral of
(36.26) becomes

+00 +ka _ 9
%f dvy, = if dvﬂi(\/kZaz—vz—varccosl)+
—o0 —ka

2ri a dk ka

ka 2
71f dvvkea® 24 = Sk, (36.31)
Kt Jva 2
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where- - - takes care of the polynomial corrections in the Debye appration
and the boundary correction terms in thitegration.

In summary, the semiclassical approximatiordtk) reads

0 eZI vem e—2i ver a2
d(k) = 232(1 S 71_€2im)_3k+...

Using the definition of the time delay (36.22), we get thedwihg expression for
detS!(ka):

In detSt(ka) — Iim In detSt(koa) (36.32)

o 27 —i2rv;(ka)
- 2ria dk ——+2Z gere R |
1-— e|27rv,(ka) 1 — g-izmve(ka)

~ —2niN(k)+2ZfO dR@{—ln(l—éZ"Vf@a))Jr|n(1—e*i2”Vf(Ra))}+u-,
=1

where in the last expression it has been used that semﬂ}iﬁysﬁd—kw(ka) ~
ﬂjg(ka) ~ a and that the Weyl term for a single disk of radiasgoes like
N(k) = ma?k?/(4r) + --- (the next terms come from the boundary terms in the
v-integration in (36.31)). Note that for the lower limikg — 0, we have two
simplifications: First,

—HP (o)

koﬁo H(l)(koa)
1

- kII:TOdetS (koa)

I|m Sﬁnm(koa) — e St = 1X0mm  YmnY

|
-

Secondly, fokkg — 0, the two terms in the curly bracket of (36.32) cancel.

36.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the detemtS(ka) is given
by

—2i ki
o k)m 1(1 &2 a))

detS(ka) ~ (36.33)
H[=1 (l eZIm/[ ka))
with
ve(ka) = ka+ia(ka) = ka+e""3(ka/6)Y3q, + - - -
vekka) = ka—i(ae(ka)* = ka+e™3(ka/6)3q +---
= (v(kq)
multscat - 25jul2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 36. CHAOTIC MULTISCATTERING 664 CHAPTER 36. CHAOTIC MULTISCATTERING 665

Hankel functionH?(ka) of complex-valued index reads
Figure 36.2: Right- and left-handed firactive v (k3 P

creeping paths of increasing mode numlfefor

a single disk. @ 2 .6 1/3

W) ~ a5 (2] A
b ka

with

1/3
g = i3 (k_Ga) (v —ka) + 0((ka)'l)'

andN(ka) = (ra?k?)/4r + --- the leading term in the Weyl approximation for

the staircase function of the wavenumber eigenvalues imligleinterior. From Hence the zeros, of the Hankel function in the complex plane follow from

the point of view of the scattering particle, the interiomuiins of the disks are the zerosy, of the Airy integral A(q) (see (36.3). Thus if we set = m (with m
excluded relatively to the free evolution without scatigriobstacles. Therefore integer), we have the following semiclassical conditiorkt#
the negative sign in front of the Weyl term. For the same neatite subleading
boundary term has here a Neumann structure, although tke bave Dirichlet m ~ Ka+ia(K%)
boundary conditions. ) resa\1/3 A 13 42 3
= (kesa) @ - et (krSSa) %) B 70k1reSa( B %}
Let us abbreviate the r.h.s. of (36.33) for a dis&s
5
O E )
> * =, . kesa) 3150 62 3 k
. P Zs(k*as) qu(k*as) kresa 3150 6 180- 6
detS(kas) ~ (eNKkas))® L2 T2 780 (36.34) ol
( ) Z5(kas) Ze(kae) with| =1,2,3,---. (36.35)
= = ) ) ) ) For a given index this is equivalent to
whereZ; (kas) andZ;’(kas) are thediffractional zeta functions (here and in the fol-
lowing we will label semiclassical zeta functiongth diffractive corrections by a K _ay2na
tilde) for creeping orbits around theth disk in the left-handed sense and the right- 0~1-¢ v,
handed sense, respectively (see figure 36.2). The two atiens of the creeping
orbits are the reason for the exponents 2 in (36.33). Equ486.33) describes the de-Broglie condition on the wave function that encsdiee disk. Thus the
the semiclassical approximation to the incoherent pathg curly bracket on the semiclassical resonances of the 1-disk problem are givahéyeros of the fol-

r.h.s.) of the exact expression (36.19) for the case thatdhtterers are disks. lowing product

In the following we will discuss the semiclassical resoremn the 1-disk
scattering problem with Dirichlet boundary conditiong.ithe so-called shape
resonances. The quantum mechanical resonances are tseptieS-matrix in
the complexk-plane. As the 1-disk scattering problem is separableStheatrix
is already diagonalized in the angular momentum eigenlzasgistakes the sim-
ple form (36.9). The exact quantummechanical poles of thttexsing matrix are
therefore given by the zerdgSs of the Hankel functionﬂ-i,ﬁ})(ka) in the lower
complexk plane which can be labeled by two indicesandn, wherem denotes
the angular quantum number of the Hankel function arid a radial quantum
number. As the Hankel functions have to vanish at spekifialues, one cannot
use the usual Debye approximation as semiclassical appatixin for the Hankel H(_l%(ka) = (—1)’“Hr(%)(ka),
function, since this approximation only works in case th@ké function is dom-
inated by only one saddle. However, for the vanishing of thekel function, one
has to have the interplay of two saddles, thus an Airy appretion is needed as
in the case of the creeping poles discussed above. The Ainpaination of the

s

(1 _ e(ik—m)era) .

IR
N

which is of course nothing else thﬁi.disk(k), the semiclassical firaction zeta
function of the 1-disk scattering problem, see (36.34). eNbft this expression
includes just the pure creeping contribution and no gengeemetrical parts.
Because of

the zeros are doubly degeneratenif« 0, corresponding to right- and left handed
creeping turns. The case = 0 is unphysical, since all zeros of the Hankel func-
tion H(()l)(ka) have negative real value.
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Figure 36.3: The shape resonances of the 1-disk
system in the complek plane in units of the disk
radiusa. The boxes label the exact quantum me-
chanical resonances (given by the zeroslft(ka)

for m = 0,1, 2), the crosses label thefftactional
semiclassical resonances (given by the zeros of
the creeping formula in the Airy approximation
(36.35) up to the orded([ka]*?)).
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Figure 36.4: Same as in figure 36.3. However,
the subleading terms in the Airy approximation
(36.35) are taken into account up to the order
O([ka] /%) (upper panel) and up to ordé[ka] )
(lower panel).
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From figure 36.3 one notes that the creeping terms in the Adgr@([ka]/3),
which are used in the Keller construction, systematicatigilarestimate the magni-
tude of the imaginary parts of the exact data. However, theging data become
better for increasing Rieand decreasingmk|, as they should as semiclassical
approximations.

In the upper panel of figure 36.4 one sees the change, wheregtieorder
in the Airy approximation (36.35) is taken into account. Tdmproximation is
nearly perfect, especially for the leading row of resonanc&he second Airy
approximation using (36.35) up to ordéX[ka] 1) is perfect up to the drawing
scale of figure 36.4 (lower panel).
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Figure 36.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed.

linerary:
il
~e—

36.4 From quantum cycleto semiclassical cycle

The procedure for the semiclassical approximation of a ggperiodic itinerary
(36.20) of lengtm is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods depelbfor the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

oo oo

frASS .. ASS — Z Z AT L pon
| sls smlsy
S —00

= lgp=—0c0

still has the structure of a “multi-trace” with respect tagatar momentum.

Each of the sumi)r;’?oc —as in the 1-disk case — is replaced byatson
contourresummation in terms of complex angular momentwnThen the paths
below the reals-axes are transformed to paths above these axes, and thelate
split into expressionwiith andwithoutan explicit Watson sinfs ) denominator.

1. In the singsn) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate theessfon in
the saddle point approximation: either left or rigggecular reflectiorat
disks or ghost tunnelinghrough disks result.

2. For the sinks ) -dependent integrals, we close the contour in the upger
plane and evaluate the integral at the resiﬁii?(kas):o. Then we use

the Airy approximation ford,, (kas) and H&)(kas): left and rightcreeping
pathsaround disks result.

In the above we have assumed that no grazing geometricad pafrear. If
they do show up, the analysis has to be extended to the casrintitling saddles
between the geometrical paths witf2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contacthe point particle
with the disks:

1. either geometrical which in turn splits into three altgives
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(a) specular reflectiono the right,
(b) specular reflectiorto the left,

(c) or ‘ghost tunneling’where the latter induce the nontrivial pruning
rules (as discussed above)

2. orright-handed creeping turns

3. orleft-handed creeping turns

see figure 36.5. The specular reflection to the right is linkeléft-handed creep-
ing paths with at least one knot. The specular reflection éléift matches a
right-handed creeping paths with at least one knot, whefeashortest left- and
right-handed creeping paths in the ghost tunneling caséopmogically trivial.
In fact, the topology of the creeping paths encodes the eHmétween the three
alternatives for the geometrical contact with the disk. sTisi the case for the
simple reason that creeping sections have to be positiveiefn length: the
creeping amplitude has to decrease during the creepinggspas tangential rays
are constantly emitted. In mathematical terms, it meantsttigacreeping angle
has to be positive. Thus, the positivity of ttveo creeping angles for the shortest
left andright turn uniquely specifies the topology of the creepingtises which
in turn specifies which of the three alternatives, eithercafs reflection to the
right or to the left or straight “ghost” tunneling throughsHij, is realized for the
semiclassical geometrical path. Hence, the existence ofcue saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in theédwing to the scat-
tering fromN < oo non-overlappinglisksfixed in the 2-dimensional plane. The
semiclassical approximation of the periodic itinerary

trASrlSzAszss . ASn-lsnASnSl

becomes a standard periodic orbit labeled by the symboksegs; s, - - - s,. De-
pending on the geometry, the individual legs — s — S+1 result either from a
standard specular reflection at diglor from a ghost path passing straight through
disk s. If furthermore creeping contributions are taken into astpthe symbolic
dynamics has to be generalized from single-letter symisgl$o triple-letter sym-
bols {s, o x 6} with ¢ > 1 integer valued and = 0,+1 * By definition, the
valueo; = 0 represents the non-creeping case, such{thdix ¢} = {s, 0} = {s}
reduces to the old single-letter symbol. The magnitude obmzaro(; corre-
sponds to creeping sections of mode nunihgmwhereas the siger; = +1 signals
whether the creeping path turns around the disk the positive or negative sense.
Additional full creeping turns around a diskcan be summed up as a geometrical
series; therefore they do not lead to the introduction ofreth&ar symbol.
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Figure 36.6: (a) The ghostitinerary (2, 3, 4). (b) °
The parent itinerary (13, 4).

36.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, sayk djscan be shown to
have the same weight as the corresponding itinerary wittfweits th symbol.
Thus, semiclassically, they cancel each other in the fr 4nd) expansion, where
they are multiplied by the permutation factofr with the integer counting the
repeats. For example, let,@ 3,4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order trad¥"tr By convention,
an underlined disk index signals a ghost passage (as in f8fufa), with cor-
responding semiclassical ghost traversal matrices alderined, AX+2IALI+2,
Then its semiclassical, geometrical contribution to tidlr(A) cancels exactly
against the one of its “parent” itinerary,@, 4) (see figure 36.6b) resulting from
the 3rd-order trace:

_711 (4 AL2723p34 A“) _ % (3 AL3p34 A4-1)

= (+1-1)AMBA34A4T =0,

The prefactors-1/3 and-1/4 are due to the expansion of the logarithm, the fac-
tors 3 and 4 inside the brackets result from the cyclic peatnn of the periodic
itineraries, and the cancellation stems from the rule

"'ALH_:LAH_LHZ'” — _”(_Ai.i+2)_” . (3636)

The reader might study more complicated examples and coaviarself that the
rule (36.36).is sficient to cancel any primary or repeated periodic orbit witle 0
or more ghost sections completely out of the expansion af(fr+ A) and there-
fore also out of the cumulant expansion in the semiclassiwét: Any periodic
orbit of lengthm with n(< m) ghost sections is cancelled by the sum of all ‘par-
ent’ periodic orbits of lengtm — i (with 1 <i < nandi ghost sections removed)
weighted by their cyclic permutation factor and by the pcéda resulting from
the trace-log expansion. This is the way in which the nontrivial pruning floe
N-disk billiards can be derived from the exact quantum meickémxpressions
in the semiclassical limit. Note that there must exist asteme index in any
given periodic itinerary which corresponds to a non-ghost section, sirtbere
wise the itinerary in the semiclassical limit could only heaight and therefore
nonperiodic. Furthermore, the series in the ghost caroaldias to stop at the

1Actually, these are double-letter symbolscasandl; are only counted as a product.
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2nd-order trace, th?, as trA itself vanishes identically in the full domain which
is considered here.

36.5 Heisenberg uncertainty

Where is the boundaria ~ 2™1L/a coming from?

This boundary follows from a combination of the uncertaiptinciple with
ray optics and the non-vanishing value for the topologicdtapy of the 3-disk
repeller. When the wave numbkis fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topologicaleyn.The quantum wave
packet which explores the repelling set has to disentanylgifierent sections
of sized ~ a/2" on the “visible” part of the disk surface (which is of ordax
between any two successive disk collisions. SuccessiVisioak are separated
spatially by the mean flight length, and the flux spreads with a factbya. In
other words, the uncertainty principle bounds the maxireabkgble truncation in
the cycle expansion order by the highest quantum resolatimable for a given
wavenumbek.

Commentary

Remark 36.1 Sources. This chapter is based in its entirety on ref. [J.1]; the reade
is referred to the full exposition for the proofs and disd¢ossof details omitted here.
sect. 36.3 is based on appendix E of ref. [J.1]. We follow Ef@5.19] in applying the
Watson contour method [35.20] to (36.23). The Airy and Dehgproximations to the
Hankel functions are given in ref. [35.21], the Airy expamsbdf the 1-disk zeros can be
found in ref. [35.22].For details see refs. [35.19, 35.2223, J.1]. That the interior do-
mains of the disks are excluded relatively to the free evmfuithout scattering obstacles
was noted in refs. [35.24, 35.15].

The procedure for the semiclassical approximation of a gerperiodic itinerary
(36.20) of lengthn can be found in ref. [J.1] for the case of thedisk systems. The
reader interested in the details of the semiclassical temtucs advised to consult this
reference.

The ghost orbits were introduced in refs. [35.12, 35.24].

Remark 36.2 Krein-Friedel-Lloyd formula.  In the literature (see, e.g., refs. [35.14,
35.15] based on ref. [35.11] or ref. [35.1]) the transitioom the quantum mechan-
ics to the semiclassics of scattering problems has beepmpeeti via the semiclassical
limit of the left hand sides of the Krein-Friedel-Lloyd sumr fthe (integrated) spectral

density [J.5, J.6, 35.8, 35.9]. See also ref. [35.13] for alemn discussion of the Krein-

Friedel-Lloyd formula and refs. [35.1, 35.17] for the contien of (35.17) to the Wigner

time delay.

The order of the two limits in (35.18) and (35.17) is essénsae e.g. Balian and
Bloch [35.11] who stress that smoothed level densitiesshoeliinserted into the Friedel
sums.
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The necessity of theie in the semiclassical calculation can be understood by purel
phenomenological considerations: Without théerm there is no reason why one should
be able to neglect spurious periodic orbits which solelythege because of the introduc-
tion of the confining boundary. The subtraction of the sec@mdpty) reference system
helps just in the removal of those spurious periodic orbhgclv never encounter the scat-
tering region. The ones that do would still survive the finstit b — oo, if they were not
damped out by theie term. exercise 35.1

Remark 36.3 T, CS, DS and ASS matrices are trace-class  In refs. [J.1] it has ex-
plicitly been shown that th@-matrix as well as theCS, DS and ASS-matrices of the
scattering problem fronN < oo non-overlapping finite disks are all trace-class. The
corresponding properties for the single-disk systems isquéary easy to prove.
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