Chapter 3

Discrete time dynamics

(R. Mainieri and P. Cvitanovic)

HE TIME PARAMETER iN the sect. 2.1 definition of a dynamical system can be ei-
T ther continuous or discrete. Discrete time dynamical systarise naturally
from flows; one can observe the flow at fixed time intervals (bgtsng it),
or one can record the coordinates of the flow when a speciait é&appens (the
Poincaré section method). This triggering event can bempls as vanishing
of one of the coordinates, or as complicated as the flow guthirough a curved
hypersurface.

3.1 Poinca sections °

Successive trajectory intersections witPaincaré sectiona d — 1)-dimension-
al hypersurface or a set of hypersurfaggembedded in the-dimensional state
spaceM, define thePoincaré return map ), a (d— 1)-dimensional map of form

X =P(X) = f™¥x, X, xeP. (3.1)

Here théfirst return functionr(x)—sometimes referred to as tbeiling functior-is
the time of flight to the next section for a trajectory stagtit x. The choice of

Figure 3.1: A x(t) trajectory that intersects a Poincaré
section P at timesty,tp,t3,t;, and closes a cycle
(X1, X2, X3, Xa), X« = X(t) € P of topological length 4
with respect to this section. Note that the intersection:
are not normal to the section, and that the crosging
does not count, as it in the wrong direction.
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the section hypersurfacg is altogether arbitrary. It is rarely possible to define
a single section that cuts across all trajectories of istertn practice one often
needs only a local section—a finite hypersurface of codiiens intersected by
a swarm of trajectories near to the trajectory of interes$te iypersurface can be
specified implicitly through a functiokl (x) that is zero whenever a poirntis on
the Poincaré section,

xeP iff U(X)=0. (3.2)

The gradient ofJ (x) evaluated ak € ¥ serves a two-fold function. First, the
flow should pierce the hypersurfa@® rather than being tangent to it. A nearby
point x + 6x is in the hypersurfac® if U(x + 6x) = 0. A nearby point on the
trajectory is given bysx = vét, so a traversal is ensured by thransversality
condition

9

7 U(x), xe®P. (3.3)

d
(v-0U) = Y (U #0, 4U(K) =
=1

Second, the gradied;U defines the orientation of the hypersurf&eThe flow

is oriented as well, and a periodic orbit can piefeéwice, traversing it in either
direction, as in figure 3.1. Hence the definition of Poinaatérn mapP(x) needs
to be supplemented with the orientation condition

Xni1 = P(Xn), U(1) =U(x) =0, neZ*

d
Vi(%n) U (xn) > 0. (3.4)
j=1

J

In this way the continuous timeflow f!(x) is reduced to a discrete timese-

guencex, of successiv@rientedtrajectory traversals oP. chapter 17

With a suficiently clever choice of a Poincaré section or a set of eestiany
orbit of interest intersects a section. Depending on théi@djon, one might need
to convert the discrete time back to the continuous flow time. This is accom-
plished by adding up the first return function timex,), with the accumulated
flight time given by

thr =t +7(%). =0, Xh €P. (3.5)

Other quantities integrated along the trajectory can baddfin a similar manner,
and will need to be evaluated in the process of evaluatingualjcal averages.

A few examples may help visualize this.
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1 1

12123 13132

a)

b)

c)

Figure 3.2: Some examples of 3-disk cycles: (a

. 1213 1232 1323
12123 andl3132 are mapped into each other by th
flip across 1 axis. Similarly (123 andL32 are related 2 2
by flips, and (c)1213,1232 andl323 by rotations. (d)
The cycles121212313 and 21212323 are related by d! 1 1
rotationand time reversal. These symmetries are dic 3 3
cussed in chapter 9. (From ref. [3.1]) 12121213 121212323

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a plane
P specified by a point (located at the tip of the vector ro) and a direction vector a
perpendicular to the plane. A point X is in this plane if it satisfies the condition

U(x) =(x-rg)-a=0. (3.6)

Consider a circular periodic orbit centered at ro, but not lying in . It pierces the hy-
perplane twice; the (v - a) > O traversal orientation condition (3.4) ensures that the first
return time is the full period of the cycle. (continued in example 12.1)

The above flat hyperplane is ad hocconstruct; one Poincaré section rarely
sufices to capture all of the dynamics of interest. A more insiglgticture of the
dynamics is obtained by partitioning the state space Migualitatively distinct
regions{Mai, M, ..., My} and constructing a Poincaré sectifq per region.
Thed-dimensional flow is thus reduced reduced to composition section 11.1

Psicsii 0 0 Pses 0 Pseg
of a set of {l—1)-dimensional maps
Psues © X X1,  S€(L,2...,N} (8.7

that map the coordinates of Poincaré secffanto those ofPs,,,, the next section
traversed by a given trajectory.

A return map R, from sectionPs, to itself now has a contribution from any

admissible (i.e., there exist trajectories that traveeggonsMg, — Ms, — --- —
Ms, = Mg, in the same temporal sequence) periodic sequence of caopesi

Psosisis = Pspesig © -0 Pges 0 P g (3.8)
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Figure 3.3: Poincaré section coordinates for the 3-dis|
game of pinball.

psinG, | 1D

)

psin @, )

(s2:P2)

Sz

y
L]
psin @, (ap3)
Figure 3.4: Collision sequences{, p;) = (. p2) —
(ss, ps) from the boundary of a disk to the boundary of
the next disk is coded by the Poincaré sections maps
sequencés. Py ;. S5

The next exampleféers an unambiguous set of such Poincaré sections whieiter 11

do double duty, providing us both with an exact represemtatf dynamics in
terms of maps, and with a covering symbolic dynamics, a stbbfet will will
return to in chapter 11.

Example 3.2 Pinball game, Poincar é dissected. A phase space orbit is fully
specified by its position and momentum at a given instant, so no two distinct phase
space trajectories can intersect. The configuration space trajectories, however, can
and do intersect, in rather unilluminating ways, as e.g. in figure 3.2 (d), and it can be
rather hard to perceive the systematics of orbits from their configuration space shapes.
The problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional configuration subspace. A much clearer picture of the
dynamics is obtained by constructing a set of state space Poincaré sections.

Suppose that the pinball has just bounced off disk 1. Depending on its posi-
tion and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces—the ball just travels at constant velocity along a straight line—so
we can reduce the 4-dimensional flow to a 2-dimensional map Py, that maps the
coordinates (Poincaré section $1) of the pinball from one disk edge to another. Just
after the moment of impact the trajectory is defined by s,, the arc-length position of the
nth bounce along the billiard wall, and p, = p sing, the momentum component parallel
to the billiard wall at the point of impact, figure 3.3. These coordinates (due to Birkhoff)
are smart, as they conserve the phase space volume. Trajectories originating from one
disk can hit either of the other two disks, or escape without further ado. We label the
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CHAPTER 3. DISCRETE TIME DYNAMICS 60

over and over. We would rather replace the whole continuausly of solutions
by one.

A smart way to do would be to replace dynamigd,(f) by dynamics on the
quotient state spacéM/G, f). We will discuss this in chapter 9, but in generahapter 9
constructing explicit quotient state space fldwappears either flicult, or not
appreciated enough to generate much readable literatupgrbaps impossible.

So one resorts to method of sections.

Time evolution itself is a 1-parameter Abelian Lie groueit a highly non-
trivial one (otherwise this book would not be much of a domp3t The invariants
of the flow are its infinite-time orbits; particularly usefulvariants are compact
orbits such as equilibrium points, periodic orbits and.t&ior any orbit it stfices
to pick a single state space poxt M, the rest of the orbit is generated by the
flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamicgstls called a
“Poincaré section,” and in theoretical physics this gogthle exceptionally unin-
formative name of “gauge fixing.” The price is that one getesdghosts,” or, in
dynamics, increases the dimensionality of the state spaadditional constraints
(see sect. 13.4). Itis a commonly deployed but inelegartquiore where sym-
metry is broken for computational convenience, and redtordy at the end of
the calculation, when all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You park as many
sections as convenient. (b) For ease of computation, pigati sections (3.6)
if you can. (c) If equilibria play important role in organim a flow, pick sec-
tions that go through them (see example 3.5). (c) If you hageobal discrete chapter 9
or continuous symmetry, pick sections left invariant by sgenmetry (see exam-
ple 9.10). (d) If you are solving a local problem, like findiageriodic orbit, you
do not need a global section. Pick a section or a set of (rehtibting) sections
on the fly, requiring only that they are locally transversehe flow. (e) If you
have another rule of thumb dear to you, let us know.

Example 3.5 Sections of Lorenz flow: (continued from example 2.2) The plane
P fixed by the x =y diagonal and the z-axis depicted in figure 3.7 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilibria,
Xeq, = (0,0,0) and the (2.13) pair Xeq,, Xeq,- A section has to be supplemented
with the orientation condition (3.4): here points where flow pierces into the section are
marked by dots.

Xeq,, Xeq, are centers of out-spirals, and close to them the section to EQy
trajectories pass the z-axis either by crossing the section P or staying on the viewer's
side. We are free to deploy as many sections as we wish: in order to capture the whole
flow in this neighborhood we add the second Poincaré section, ', through they = —x
diagonal and the z-axis. Together the two sections, figure 3.7 (b), capture the whole
flow near EQy. In contrast to Réssler sections of figure 3.5, these appear very singular.
We explain this singularity in example 4.7, and postpone construction of a Poincaré
return map to example 9.10. (E. Siminos and J. Halcrow)

maps - 13jun2008 ChaosBook.org version13, Dec 31 2009
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Figure 3.7: (a) Lorenz flow figure 2.5 cut by = x
Poincaré section plan® through thez axis and
both EQ,» equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near th& Q, equilibrium, the flow

is cut by the second Poincaré secti#h, through

y = —xand thez axis. (b) Poincaré sectiodand

%’ laid side-by-side. The singular nature of these
sections close t&Q, will be elucidated in exam-
ple 4.7 and figure 11.8 (b). (E.
Siminos) (a) (b)

EQ

3.2 Constructing a Poincagé section

For almost any flow of physical interest a Poincaré sect®omat available in
analytic form. We describe now a numerical method for deteimg a Poincaré
section. remark 3.1

Consider the system (2.6) of ordinanfférential equations in the vector vari-
ablex = (xg, X2, . .., Xd)

dx
S = Vi), (3.10)

where the flow velocity is a vector function of the position in state spacand

the timet. In generaly cannot be integrated analytically, so we will have to resort
to numerical integration to determine the trajectorieshef system. Our task is
to determine the points at which the numerically integrategectory traverses

a given hypersurface. The hypersurface will be specifiediigitly through a
function U(x) that is zero whenever a poirtis on the Poincaré section, such as
the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we daseove the value
of U as we integrate; its sign will change as the trajectory @e#ise hypersurface.
The problem with this method is that we have to use a very smtefjration time
step. In order to land exactly on the Poincaré section otendhterpolates the
intersection point from the two trajectory points on eithife of the hypersurface.
However, there is a better way.

Let t, be the time just befor&) changes sign, ant} the time just after it
changes sign. The method for landing exactly on the Painsaction will be to
convert one of the space coordinates into an integratiaablarfor the part of the
trajectory betweery andt,. Using

dxcdx,  dxg

—— = = v (xt) = we(x t 3.11

e dt = 0D = w(xD (3.11)
maps - 13jun2008 ChaosBook.org version13, Dec 31 2009
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we can rewrite the equations of motion (3.10) as

dt_1 o de_w
’Xm_VJ_A

TR (3.12)
Now we usex; as the ‘time’ in the integration routine and integrate itfre, (t) to
the value ofx; on the hypersurface, determined by the hypersurface etgon
condition (3.6). This is the end point of the integrationthwno need for any
interpolation or backtracking to the surface of sectione kh-axis need not be
perpendicular to the Poincaré section; agycan be chosen as the integration
variable, provided the-axis is not parallel to the Poincaré section at the trajgct
intersection point. If the section crossing is transve8)(vi cannot vanish in
the short segment bracketed by the integration step pregéldé section, and the
point on the Poincaré section.

Example 3.6 Computation of R dssler flow Poincar é sections. (continued from
example 3.4) Poincaré sections of figure 3.5 are defined by the fixing angle U(x) =
60— 6y = 0. Convert Réssler equation (2.17) to cylindrical coordinates:

f = v =-zcosd+arsirte
6 = ug:1+§sin9+gsin2‘)
z = v;=b+2zrcosh-c). (3.13)

In principle one should use the equilibrium x, from (2.18) as the origin, and its eigen-
vectors as the coordinate frame, but here original coordinates suffice, as for parameter
values (2.17), and (Xo, Yo, Z0) sufficiently far away from the inner equilibrium, 6 increases
monotonically with time. Integrate

dr dt dz
@:Ur/wy @zl/vﬁ: @:Uz/ve (3.14)
from (rn, 6, Zn) to the next Poincaré section at 6n,1, and switch the integration back to
(XY, 2) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)
3.3 Maps

Do it again!
—Isabelle, age 3
Though we have motivated discrete time dynamics by corsiglesections

of a continuous flow, there are many settings in which dynanscinherently
discrete, and naturally described by repeated iteratibtiseosame map

f - M- M,
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Figure 3.8: A flow x(t) of figure 3.1 represented by a
Poincaré return map that maps points in the Poincaré
section® asx,.1 = f(X,). In this example the orbit of
x; is periodic and consists of the four periodic points
(X1, Xo, X3, Xa).

or sequences of consecutive applications of a finite set pbma
{fa, f,... Tz M > M, (3.15)

for example maps relating flierent sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applicagiof a map. As writing

out formulas involving repeated applications of a set of snapplicitly can be
awkward, we streamline the notation by denoting a map coitipody ‘o’

f2(--- fa(fa()))---) = fz0--- fg o fa(X), (3.16)
and thenth iterate of mapf by

(%) = fo ™ (x) = f(f"(x), f9(x) = x.

section 2.1

Thetrajectory of x is now the discrete set of points
{9, 7200, 100},

and theorbit of xis the subset of all points 0¥ that can be reached by iterations
of f. A periodic point(cycle point) x« belonging to a cycle of period is a real
solution of

(%) = F(F(.. F(%)..)) =%, k=012...,n-1. (3.17)

For example, the orbit af; in figure 3.8 is the 4-cyclexg, X2, X3, X4) .

The functional form of such Poincaré return mapas figure 3.6 can be ap-
proximated by tabulating the results of integration of ttosvffrom x to the first
Poincaré section return for manye %, and constructing a function that inter-
polates through these points. If we find a good approximatioR(x), we can
get rid of numerical integration altogether, by replacihg tontinuous time tra-
jectory f{(x) by iteration of the Poincaré return ma@gx). Constructing accurate
P(x) for a given flow can be tricky, but we can already learn mudmfrapproxi-
mate Poincaré return maps. Multinomial approximations

d d
Pk(X)=ak+Zbijj+chijx.-xj+..., XeP (3.18)
=1 =]
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CHAPTER 3. DISCRETE TIME DYNAMICS 66

the flow. This observation motivates a replacement of théimoous time flow by
iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly faaigd by a felicitous
choice of Poincaré sections, and the reduction of flows iad2gé return maps.
This observation motivates in turn the study of discreteetidynamical systems
generated by iterations of maps.

A particularly natural application of the Poincaré seatinethod is the reduc-
tion of a billiard flow to a boundary-to-boundary return maescribed in chap-
ter 8. As we shall show in chapter 6, further simplificationaoPoincaré returnchapter 8
map, or any nonlinear map, can be attained through rectjffiese maps locallychapter 6
by means of smooth conjugacies.

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integration
variable from time to one of the coordinates, although semploids the alternative of
having to interpolate the numerical solution to determimeintersection. The trick de-
scribed in sect. 3.2 is due to Hénon [3.3, 3.4, 3.5].

Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical import
in and of itself-its significance lies in the fact that it is &nimal normal form for mod-
eling flows near a saddle-node bifurcation, and that it iscaqtype of the stretching and
folding dynamics that leads to deterministic chaos. It isgg& in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and toibes of hyperbolic and non—
hyperbolic behaviors. Its construction was motivated tgytibst known early example of
‘deterministic chaos’, the Lorenz equation, see exam@aad remark 2.3.

Hénon’s and Lorenz’s original papers can be found in re¢prolections refs. [3.7,
3.8]. They are a pleasure to read, and are still the bestdattion to the physics mo-
tivating such models. The rigorous proof of the existencéléhon attractor is due to
Benedicks and Carleson [3.9]. A detailed description ofdjieamics of the Hénon map
is given by Mira and coworkers [3.10, 3.11, 3.12], as well es\many other authors.

The Lozimap [3.13] is particularly convenientin investigg the symbolic dynamics
of 2 — dimensionamappings. Both the Lorenz and Lozi systems are uniformlyatmo
systems with singularities. The existence of the attraftiothe Lozi map was proven
by M. Misiurewicz [3.14], and the existence of the SRB measuas established by L.-
S. Young [3.15]. section 16.1

Remark 3.3 Grasshoppers vs. butterflies.  The 'sensitivity to initial conditions’ was
discussed by Maxwell, then 30 years later by Poincaré. lther prediction, the Lorentz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshoppée&’ in a book review

by W. S. Franklin [3.16]. In 1963 Lorenz ascribed a ‘seagfitet’ to an unnamed mete-
orologist, and in 1972 he repackaged it as the ‘Butterfiig&’.
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Exercises

3.1. Poincaré sections of the Rssler flow.

(continuation of exercise 2.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of the
Rossler flow. As the Rossler flow state spacels the

flow maps onto a R Poincaré section. Do you see that
in your numerical results? How good an approximation
would a replacement of the return map for this section
by a 1-dimensional map be? More precisely, estimate
the thickness of the strange attractor. (continued as ex-
ercise 4.4) 3.

(R. Paskauskas)

3.2. Areturn Poincar & map for the Rossler flow.  (con-
tinuation of exercise 3.1) That Poincaré return maps of
figure 3.6 appear multimodal and non-invertible is an
artifact of projections of a 2-dimensional return map
(Rn,zn) — (Rns1,Zn+1) ONto @ 1-dimensional subspace 3.5.
Ry = Ras1.

Construct a genuing,,; = f(s,) return map by parame-
trazing points on a Poincaré section of the attractor fig-
ure 3.5 by a Euclidean lengthcomputed curvilinearly
along the attractor section.

This is best done (using methods to be developed in
what follows) by a continuation of the unstable man-
ifold of the 1-cycle embedded in the strange attractor,
figure 13.2 (b). (P. Cvitanovi¢) 3¢

3.3. Arbitrary Poincar & sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equati{w) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

d

d—’“s‘ = «fe, (3.23)

References

with dt/ds = «, and choosing to be 1 or Jf;
This allows one to switch betweérandx; as th
integration 'time.

(b) Introduce an extra dimensiofi.; into your sys
tem and set

X1 = U(X). (3.24

How can this be used to find a Poincaré secti

4. Classical collinear helium dynamics.

(continuation of exercise 2.10) Make a Poincaré su
of section by plotting(1, p1) whenever, = 0: Note thz
forr, = 0, py is already determined by (7.6). Comy
your results with figure 6.3 (b).

(Gregor Tanner, Per Rosenqv
Hénon map fixed points.  Show that the two fixe

points (o, X0), (X1, X1) of the Hénon map (3.19)
given by

-(1-b) - JA-b?+4a

2a

-(1-b)+(1-b?+4a

2a

X1

Fixed points of maps. A continuous functior i
a contraction of the unit interval if it maps the inte
inside itself.

(a) Use the continuity ofF to show that a
dimensional contractioR of the interval [Q1] ha
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slop
F is always smaller than ongs’| < 1. Is the con
position of uniform contractions a contraction
it uniform?
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“Pinball Scattering,” in G. Casati and B. Chirikov, edQuantum Chaos

(Cambridge U. Press, Cambridge 1993).
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