Chapter 11

Charting the state space

The classification of the constituents of a chaos, nothing
less is here essayed.
—Herman Melville,Moby Dick chapter 32

N THIS CHAPTER and the next we learn how fmartition state space in a topolog-
ically invariant way, ancdhametopologically distinct orbits.

We start in sect. 11.1 with a simple and intuitive example,-@isk game
of pinball. The qualitative dynamics of stretchisgrinking strips of surviving
state space regions enables us to partition the state spdcasaignsymbolic
dynamicsitineraries to trajectories. For the 3-disk game of pinlallipossible
symbol sequences enumerate all possible orbits.

In sect. 11.2 we use Rdssler and Lorenz flows to motivate timgdef higher-
dimensional flows by iteration of 1-dimensional maps. Fasthtwo flows the
1-dimensional maps capture essentially all of the higlmedsional flow dynam-
ics, both qualitatively and quantitatively. 1-dimensibrreaps stfice to explain
the two key aspects of qualitative dynamitsmporal ordering or itinerary with
which a trajectory visits state space regions (sect. 1ar8},thespatial ordering
between trajectory points (sect. 11.4), which is the keyei@anining the admis-
sibility of an orbit with a prescribed itinerary. In a geredynamical system not
every symbol sequence is realized as a dynamical trajecsrgne looks further
and further, one discovers more and more ‘pruning’ rulesciiprohibit fami-
lies of itineraries. For 1-dimensional ‘stretch & fold’ maghekneading theory
(sect. 11.5) provides the definitive answer as to which tealptineraries aread-
missibleas trajectories of the dynamical system. Finally, sec6 klmeant serve
as a guide to the basic concepts of symbolic dynamics.

Deceptively simple, this subject can get verffidult very quickly, so in this
chapter we do the first, 1-dimensional pass at a pedestnah fgostponing the
discussion of higher-dimensional, cyclist level issuestapter 12.

Even though by inclination you might only care about the@esistdt, like
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CHAPTER 11. CHARTING THE STATE SPACE 201

Figure 11.1: A coarse partition of\ into regionsMo,
Mz, and Mo, labeled by ternary alphabét = {1, 2, 3}.

Rydberg atoms or mesoscopic devices, and resent wastiegotinfiormal things,
this chapter and chapters 14 and 15 are good for you. Study.the

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanovit)

What can a flow do to points in state space? This is a veficdit question to
answer because we have assumed very little about the erfutiction f'; con-
tinuity, and diferentiability a stficient number of times. Trying to make sense of
this question is one of the basic concerns in the study ofmjcel systems. The
first answer was inspired by the motion of the planets: thgeapto repeat their
motion through the firmament, so the ancients’ attempts sxriflee dynamical
systems were to think of them as periodic.

However, periodicity is almost never quite exact. What arads to observe
is recurrence A recurrence of a poinky of a dynamical system is a return of
that point to a neighborhood of where it started. How close ghint X must
return is up to us: we can choose a volume of any size and shageall it the
neighborhoodMy, as long as it encloseg. For chaotic dynamical systems, the
evolution might bring the point back to the starting neigtitwmd infinitely often.
That is, the set

yeMo: y="fi(x). t>to (11.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods otgoirhis sug-
gests another way of describing how points move in stateespghe important
first step on the way to a theory of dynamical systems: qu&iatopological
dynamics, orsymbolic dynamicsAs the subject can get quite technical, a sum-
mary of the basic notions and definitions of symbolic dynanigcrelegated to
sect. 11.6; check that section and references cited in tefrfal whenever you
run into bdiling jargon.
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Figure 11.2: A trajectory with itinerary 021012.

<3

Figure 11.3: A 1-step memory refinement of the par-
tition of figure 11.1, with each regioM; subdivided
into Mijo, Mi;, and M;,, labeled by nine ‘words’
{00,01,02 ---,21,22}.

QIP 7

We start by dividing the state space up into regigvg, Mg, ..., Mz, as in
figure 11.1. This can be done in many ways, not all equallyecle\ny such
division of state space into distinct regions constitutpardition, and we associate
with each region (sometimes referred to ast@e a symbols from an N-letter
alphabetor state setA = {A,B,C,---,Z}. As the state evolves, ftierent regions
will be visited. The visitation sequence - forthwith refedrto as thatinerary -
can be represented by the letters of the alphabdf, as in the example sketched
in figure 11.2, the state space is divided into three regibfas My, and Mo, the
‘letters’ are the integer$0, 1, 2}, and the itinerary for the trajectory sketched in
the figureis0» 210> 12+ ---,

Example 11.1 3-disk symbolic dynamics: Consider the motion of a freeegeicite 1.1
particle in a plane with 3 elastically reflecting convex disks, figure 11.4. After a collision

with a disk a particle either continues to another disk or escapes, so a trajectory can

be labeled by the disk sequence. Sets of configuration space pinball trajectories of
figure 11.4 become quickly hard to disentangle. As we shall see in what follows, their
state space visualization in terms of Poincaré sections P = [s, p] (figure 11.5, see also
figure 3.4) is much more powerful.  (continued in example 11.2)

In general only a subset of points Mg reachesM. This observation fbers
a systematic way to refine a partition by introducimgstep memorythe region
Ms,.s15 consists of the subset of points s, whose trajectory for the nexn
time steps will besy > s — -+ > sy, See figure 11.3.

Example 11.2 3-disk state space partition: (continued from example 11.1) At
each bounce a cone of initially nearby trajectories defocuses (see figures 1.8 and 11.4),
and in order to attain a desired longer and longer itinerary of bounces the strip of initial
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23132321"

Figure 11.4: Two pinballs that start out very close
to each other exhibit the same qualitative dynamics
_2313 for the first three bounces, but due to the expo-
nentially growing separation of trajectories with time,
follow different itineraries thereafter: one escapes after
_2313, the other one escapes aft@3132321. (No-

tation 2313 is explained in sect. 11.6.)

1

Figure 11.5: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x = (arclength, parallel momenturs) (s, p),
wherep = sing. (a) Strips of initial pointsM5,

Mz which reach disks 2, 3 in one bounce, re-
spectively. (b) 1-step memory refinement of parti-
tion (see figure 11.3): strips of initial points(; 1,

Maiz1, Miszr and My,3 which reach disks 1, 2, 3

in two bounces, respectively. Disk radius : center
separation ratio a:R 1:2.5. (Y.Lan) (@)
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points Xo = (S, Po) has to be specified with exponentially finer precision, nested within
the initial state space strips drawn in figure 11.5. (continued in example 12.2)

If there is no way to reach partitioi; from partition M;, and conversely, par-
tition M; from partition M;, the state space consists of at least two disconnected
pieces, and we can analyze it piece by piece. An interestntitipn should be
dynamically connected, i.e., one should be able to go froyregion M; to any
other regionM; in a finite number of steps. A dynamical system with such a

partition is said to benetrically indecomposable

In general one also encounters transient regions - regmneghich the dy-
namics does not return to once they are exited. Hence we lbaslstinguish
between (uninteresting to us) wandering trajectoriesrieaér return to the initial
neighborhood, and the non—wandering set (2.2) ofélcarrenttrajectories.

However, knowing that a point fronM; reachesM;, - --, M} in one step
is not quite good enough. We would be happier if we knew thattiap of the
entire initial regionf (M;) overlaps nicely with the entirdA;; otherwise we have
to subpartitionM; into the subsetf(M;) and the reminder, and often we will
find ourselves partitioningd infinitum a dificult topic that we shall return to

sect. 12.4.

Such considerations motivate the notion d¥flarkov partition a partition for
which no memory of preceding steps is required to fix the items allowed
in the next step. Finite Markov partitionscan be generated bgxpanding €
dimensional iterated mappindgs: M — M, if M can be divided intdN regions
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Figure 11.6: For the 3-disk game of pinball no
itineraries are pruned as long as the inter-disk spa
ing exceedsR : a > 204821419.. (from
K.T. Hansen [12.20])

{Mo, My, ..., Mn-1} such that in one step points from an initial regid#) either
fully cover a regionMj, or miss it altogether,

either Mjnf(Mij)=0 or M;c f(M). (11.2)

Whether such partitions can be found is not clear at all - threldrs need to be
lower-dimensional sets invariant under dynamics, andetieno guarantee that
these are topologically simple objects. However, the gafi@nball (and many
other non-wandering repeller sets) is especially niceigbee of determining the
partition borders does not arise, as the survivors live snatinected pieces of the
state space, separated by a chasm of escaping trajectories.

The itinerary of a billiard trajectory is finite for a scatigy trajectory, coming
in from infinity and escaping after a finite number of collis®) infinite for a
trapped trajectory, and infinitely repeating for a periodibit. A finite length
trajectory is not uniquely specified by its finite itinerabyt an isolated unstable
cycle is: its itinerary is an infinitely repeating block ofraiols. For hyperbolic
flows the intersection of the future and past itinerarieg, birinfinite itinerary
S™.S" =..-5051%.599S%; - - specifies a unique orbit. Almost all infinite length
trajectories (orbits) are aperiodic. Still, the longer thegectory is, the closer to
it is a periodic orbit whose itinerary shadows the trajegtfar its whole length:
think of the state space as the unit interval, aperiodict®rd@s normal numbers,
and periodic ones as fractions whose denominators comesfmocycle periods,
as is literally the case for the Farey map (20.31).

Determining whether the symbolic dynamics is complete ¢athé case for
suficiently separated disks, see figure 11.6), pruned (for el@rfgr touching or
overlapping disks), or only afirst coarse-graining of thediogy (as, for example,
for smooth potentials with islands of stability) requiresase-by-case investiga-
tion, a discussion we postpone until sect. 11.5 and chaptefdr now we assume
that the disks are gliciently separated that there is no additional pruning bdyon
the prohibition of self-bounces.

Inspecting figure 11.5 we see that the relative ordering gfores with dif-
fering finite itineraries is a qualitative, topological perty of the flow. This ob-
servation motivates searches for simple, ‘canonical’ipams which exhibit in
a simple manner the spatial ordering common to entire cdagséopologically
similar nonlinear flows.
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11.2 Fromd-dimensional flows tol-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so stifigrward that one
may altogether fail to see the connection between the tgyotd hyperbolic
flows and their symbolic dynamics. This is brought out moeadly by the 1-
dimensional visualization of ‘stretch & fold’ flows to whiake turn now.

We construct here the return maps (3.4) for two iconic flolws,Rossler and
the Lorenz, in order to show how ODEs in higher dimensionslmmodeled by
low-dimensional maps. In the examples at hand the strorgjpdison happens to
render the dynamics essentially 1-dimensional, both tpigdely and quantitati-
vely. However, as we shall show in chapter 12, strong disisipas not essential
-the hyperboalicity is- so the method applies to Hamiltor(isymplectic areas pre-
serving) flows as well. The key idea is to replace the origiadiitrarily concocted
coordinates by intrinsic, dynamically invariant curviiar coordinates erected on
neighborhoods of unstable manifolds.

fast track:
W sect. 11.3, p. 208
Suppose concentrations of certain chemical reactants/wotr, or the variati-
ons in the Chicago temperature, humidity, pressure andsndfidct your mood.
Such quantities vary within some fixed range, and so do thé@srof change.
Even if we are studying an open system such as the 3-disklpgdrae, we tend
to be interested in a finite region around the disks and igtieeescapees. So a
typical dynamical system that we care abouiasinded If the price to keep going
is high - for example, we try to stir up some tar, and obseneoihe to a dead
stop the moment we cease our labors - the dynamics tendsti®is&t a simple
state. However, as the resistance to change decreasesr ihae¢ated up and we
are more vigorous in our stirring - the dynamics becomesalist

Example 11.3 Rdéssler attractor return map: Stretch & fold. (continued from
example 4.6) In the Réssler flow (2.17) of example 3.4 we sketched the attractor by
running a long chaotic trajectory, and noted that the attractor of figure 3.5 is very thin.
For Réssler flow an interval transverse to the attractor is stretched, folded and fiercely
pressed back. The attractor is ‘fractal,’ but for all practical purposes the return map
is 1-dimensional; your printer will need a resolution better than 10'2 dots per inch to
Start resolving its structure. We had attempted to describe this ‘stretch & fold’ flow by a
1-dimensional return map, but the maps that we plotted in figure 3.6 were disquieting;
they did not appear to be a 1-to-1 maps. This apparent non-invertibility is an artifact of
projection of a 2—dimensionateturn map (Rn, z,) — (Ra+1, Zn+1) onto the 1-dimensional
subspace R, — Rn.1. Now that we understand equilibria and their linear stability, let's

do this right.

The key idea is to measure arclength distances along the unstable manifold of
the x_ equilibrium point, as in figure 11.7 (a). Luck is with us; figure 11.7 (b) return map
Si+1 = P(sn) looks much like a parabola of example 3.9, so we shall take the unimodal
map symbolic dynamics, sect. 11.3, as our guess for the covering symbolic dynamics.

(continued in example 11.11)
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Figure 11.7: (a) x = 0,y > 0 Poincaré section of 5
the x_ unstable manifold, Rossler flow figure 2.6.
(p1, p2) are measured with the origin placedxat ~
(b) s — P(s) return map, whersis the arc-length -0.0 0 5 10 00 2
distance measured along the unstable manifold of P
1 (b)

equilibrium pointx_. (A. Basu and J. Newman) (a)

You get the idea - Rossler flow winds around the stable mihdbthe ‘cen-
tral’ equilibrium, stretches and folds, and the dynamicsttom Poincaré section
of the flow can be reduced to a 1-dimensional map. The next pbeais simi-
lar, but the folding mechanism is veryfi#irent: the unstable manifold of one of
the equilibria collides with the stable manifold of the atlo@e, forcing a robust
heteroclinic connectiobetween the two.

fast track:
W sect. 11.3, p. 208
11.2.1 Heteroclinic connections

In general, two manifolds can intersect in a stable way if hen of their di-

mensions is greater than or equal to the dimension of the sfce, hence an
unstable manifold of dimensiok is likely to intersect a stable manifold whose
codimension in state space is less than or equkli@., robustly with respect to

small changes of system parameters). Trajectories that ledixed point along

its unstable manifold and reach another fixed point alongtéble manifold are

called heteroclinicif the two fixed points are distinct dromoclinicif the initial

and the final point are the same point. Whether the two matsfattually in- remark 11.3
tersect is a subtle question that is central to the issuetaictiral stability” of

ergodic dynamical systems.

Example 11.4 Lorenz flow: Stretch & crease. We now deploy the symmetry of
Lorenz flow to streamline and complete analysis of the Lorenz strange attractor com-
menced in example 9.10. There we showed that the dihedral D; = {e, R} symmetry
identifies the two equilibria EQy and EQ,, and the traditional ‘two-eared’ Lorenz flow
figure 2.5 is replaced by the ‘single-eared’ flow of figure 9.4 (a). Furthermore, symme-
try identifies two sides of any plane through the z axis, replacing a full-space Poincaré
section plane by a half-plane, and the two directions of a full-space eigenvector of EQ
by a one-sided eigenvector, see figure 9.4 (a).

Example 4.8 explained the genesis of the Xeq, equilibrium unstable manifold,
its orientation and thickness, its collision with the z-axis, and its heteroclinic connec-
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Figure 11.8:(a) A Poincaré section of the Lol
flow in the doubled-polar angle representatior
ure 9.4, given by they, Z] plane that contains
z-axis and the equilibriunEQ,. X' axis points 1
ward the viewer. (b) The Poincaré section ¢
Lorenz flow by the section Crossing#o the se
tion are marked red (solid) and crossingst
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the section are marked blue (dashed). Oute
points of both in- and out-sections are give
the EQy unstable manifol®V"(E Q) intersectior
(E. Siminos)

WY(EQ,)
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W”(EQq).
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Figure 11.9: The Poincaré return mam,: =
P(s,) parameterized by Euclidean arclengthmea- 15
sured along th&Q, unstable manifold, fronxgg, to U;ﬁ
WHY(EQ) section point, uppermost right point of the 10
blue (dashed) segment in figure 11.8 (b). The critici
point (the ‘crease’) of the map is given by the sectio 5
of the heteroclinic orbitws(E Q) that descends all the
way toEQy, in infinite time and with infinite slope. (E. 0
Siminos) S

tion to the xeq, = (0, 0, 0) equilibrium. All that remains is to describe how the EQ
neighborhood connects back to the EQy unstable manifold.

Figure 9.4 and figure 11.8 (a) show clearly how the Lorenz dynamics is pieced
together from the 2 equilibria and their unstable manifolds: Having completed the de-
scent to EQy, the infinitesimal neighborhood of the heteroclinic EQ, — EQ trajectory
is gjected along the unstable manifold of EQy and is re-injected into the unstable man-
ifold of EQy. Both sides of the narrow strip enclosing the EQy unstable manifold lie
above it, and they get folded onto each other with a knife-edge crease (contracted
exponentially for infinite time to the EQy heteroclinic point), with the heteroclinic out-
trajectory defining the outer edge of the strange attractor. This leads to the folding of
the outer branch of the Lorenz strange attractor, illustrated in figure 11.8 (b), with the
outermost edge following the unstable manifold of E Q.

Now the stage is set for construction of Poincaré sections and associated
Poincaré return maps. There are two natural choices; the section at EQy, lower part
of figure 11.8(b), and the section (blue) above EQ,. The first section, together with
the blowup of the EQy neighborhood, figure 4.7 (b), illustrates clearly the scarcity of
trajectories (vanishing natural measure) in the neighborhood of EQy. The flat section
above EQ, (which is, believe it or not, a smooth conjugacy by the flow of the knife-sharp
section at EQy) is more convenient for our purposes. Its return map (3.4) is given by
figure 11.9.

The rest is straight sailing: to accuracy 10~* the return map is unimodal, its crit-
ical point’s forward trajectory yields the kneading sequence (11.13), and the admissible
binary sequences, so any number of periodic points can be accurately determined from
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Figure 11.10: (a) The Rossler flow, figure 3.5, is

an example of a recurrent flow that stretches and
folds. (b) The Rossler ‘stretch & fold’ return map,
figure 11.7 (b). (R. PaSkauskas and A. Basu) (@)

(b)

this 1-dimensional return map, and the 3-dimensional cycles then verified by integrating
the Lorenz differential equations (2.12). As already observed by Lorenz, such a map is
everywhere expanding on the strange attractor, so it is no wonder mathematicians can
here make the ergodicity rigorous. section 20.5

(E. Siminos and J. Halcrow)

What have we learned from the above two exemplary 3-dimeasitiows?
If a flow is locally unstable but globally bounded, any opefi bainitial points
will be stretched out and then folded back. If the equilitai@ hyperbolic, the
trajectories will be attracted along some eigen-directiand ejected along others.
The unstable manifold of one equilibrium can avoid stablenifiodds of other
equilibria, as is the case for Rossler, or slice them headasris the case for
Lorenz. A typical trajectory wanders through state spatterratively attracted
into equilibria neighborhoods, and then ejected again. Méanportant is the
motion along the unstable manifolds — that is wheteriaps come from.

At this juncture we proceed to show how this works on the saspexam-
ple: unimodal mappings of the interval. The erudite readay rekim through
this chapter and then take a more demanding path, via theeSmateshoes of
chapter 12. Unimodal maps are easier, but physically lesgpeting. The Smale
horseshoesfter the high road, more complicated, but the right tool to gelnee
what we learned from the 3-disk dynamics, and begin anabfsieneral dynam-
ical systems. Itis up to you - unimodal mapsise to get quickly to the heart of
this treatise.

11.3 Temporal ordering: itineraries

In this section we learn how tonametopologically distinct trajectories for the
simple, but instructive case; 1-dimensional maps of amvate

The simplest mapping of this typeusimodal;interval is stretched and folded
only once, with at most two points mapping into a point in teélded inter-
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Yn+1
fo
Figure 11.11: The full tent map (11.4) partition /0// : Ye  Yn
{ Moo, Mo1, Ma1, Mio} together with the fixed points © : -
Xo, X1. 00 01 11 10

val, as in the Rossler return map figure 11.10 (b). A unimadap f(x) is a 1-
dimensional functiolR — R defined on an intervaM € R with a monotonically
increasing (or decreasing) branchgréical point (or interval) x; for which f(xc)
attains the maximum (minimum) value, followed by a monataity decreasing
(increasing) branchUni-modal means that the map is a 1-humped map with one
critical point within interval M. Multi-modal maps, with several critical points
within interval M, can be described with a straight-forward generalizatibthe
methods we describe next.

Example 11.5 Unimodal maps:  (continued from example 3.9) The simplest exam-
ples of unimodal maps are the quadratic map

f(x) = Ax(1-X), xe M=[0,1] (11.3)

and numerically computed return maps such as figure 11.10(b). Such dynamical
systems are irreversible (the inverse of f is double-valued), but, as we shall show
in sect. 12.2, they may nevertheless serve as effective descriptions of invertible 2-
dimensional hyperbolic flows. For the unimodal map such as figure 11.12 a Markov
partition of the unit interval M is given by the two intervals {Moy, M1}.  (continued in
example 11.6)

Example 11.6 Full tent map, Ulam map: (continued from example 11.5) The
simplest examples of unimodal maps with complete binary symbolic dynamics are the
full tent map, figure 11.11,

fy)=1-2y-1/2, yeM=][0,1], (11.4)
the Ulam map (quadratic map (11.3) with A = 4) exercise 6.4
f(x) =4x(1-x), xe M=10,1], (11.5)

and the repelling unimodal maps such as figure 11.12. For unimodal maps the Markov
partition of the unit interval M is given by intervals { Mo, M1}. We refer to (11.4) as the
complete tent map because its symbolic dynamics is complete binary: as both f (My)
and f (M) fully cover M = { Mo, M1}, all binary sequences are realized as admissible
itineraries.
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Figure 11.12: A unimodal repeller with the survivor
intervals after 1 and 2 iterations. Intervals marked
SIS - -+ & consist of points that do not escapeniiter-
ations, and follow the itinerar™ = s;s,--- s,. Note

10
101}

that the spatial ordering does not respect the binary c¥=
dering; for examplexp < Xo1 < X112 < Xo- Als0 in-

dicated: the fixed point6, 1, the 2-cycle01, and the 0 . 1

3-cycle011. 01 11 10

For 1d maps thecritical value denotes either the maximum or the minimum
value of f(x) on the defining interval, we assume here that it is a maximum,
f(x) = f(X) for all x € M. The critical pointx. that yields the critical value
f(xc) belongs neither to the left nor to the right partitidr, and is denoted by its
own symbols = C. As we shall see, its images and preimages serve as partition
boundary points.

The trajectoryxy, X, X3, ... Of the initial point Xo is given by the iteration
xns1 = F(X) . Iterating f and checking whether the point lands to the left or to the
right of x. generates temporallyordered topological itinerary (11.17) for a given
trajectory,

1 ifxy> X
S$i=3 C ifxp=% . (11.6)
0 ifxp <X

We refer toS*(xg) = .s19S3 - - - as thefuture itinerary. Our next task is to answer
the reverse problem: given an itinerary, what is $patial ordering of points that
belong to the corresponding state space trajectory?

11.4 Spatial ordering

Tired of being harassed by your professors? Finish, get a
job, do combinatorics your own way, while you still know
everything.

—Professor Gatto Nero

Suppose you have succeeded in constructing a covering $igndlgoamics, such
as the one we constructed for a well-separated 3-disk sydtw start moving
the disks toward each other. At some critical separatioa {ggire 11.6) a disk
will start blocking families of trajectories traversingettother two disks. The
order in which trajectories disappear is determined byrtredative ordering in
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Figure 11.13: Then = 2, 4-intervals state space par
tition for the Bernoulli shift map (11.7), together with
the fixed point€, 1 and the 2-cycl@®1. 00

space; the ones closest to the intervening disk will be mtdimst. Determining
inadmissible itineraries requires that we relate the apatidering of trajectories
to their time ordered itineraries. exercise 12.7

The easiest point of departure is to start out by working hig telation
for the symbolic dynamics of 1-dimensional mappings. Asppears impossi-
ble to present this material without getting bogged down gea of O’s, 1's and
subscripted subscripts, we announce the main result befoterking upon its
derivation: section 11.5

The admissibility criterion (sect. 11.5) eliminata# itineraries that cannot
occur for a given unimodal map.

Example 11.7 Bernoulli shift map state space partition. First, an easy example:
the Bernoulli shift map, figure 11.13,

b =2y, Mo=10,1/2
b(”:{ AR i 17 I (11.7)

models the 50-50% probability of a coin toss. It maps the unit interval onto itself, with
fixed points yg = 0, y1 = 1. The closely related doubling map acts on the circle

X 2x (mod 1), x€[0,1] (11.8)

and consequently has only one fixed point, xo = 0 = 1 (mod 1). The Bernoulli map
is called a ‘shift’ map, as a multiplication by 2 acts on the binary representation of
v = .81%S3... by shifting its digits, b(y) = .$S3.... The nth preimages b™"(y) of the
critical point y. = 1/2 partition the state space into 2" subintervals, each labeled by the
first n binary digits of pointsy = .$19S; . . . within the subinterval: figure 11.13 illustrates
such 4-intervals state space partition { Moo, Mo1, M11, Mio} forn = 2.

Consider a map f(X) topologically conjugate (two monotonically increasing
branches) to the Bernoulli shift, with the forward orbit of X generating the itinerary
S19Ss3. ... Convert this itinerary into Bernoulli map pointy = .$$S;.... These values
can now be used to spatially order points with different temporal itineraries: if y < y’,
then x < X'.

Suppose we have already computed all (n — 1)-cycles of f(X), and would now
like to compute the cycle p = $19S3. .. S, of period n. Mark y values on the unit interval
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Figure 11.14: Alternating binary tree relates the
itinerary labeling of the unimodal map intervals, fig- 0 N 1
ure 11.12, to their spatial ordering. Dotted line stands
for O, full line for 1; the binary sub-tree whose root is a
full line (symbol 1) reverses the orientation, due to the

001 01 010 110 111 10: 100

orientation reversing fold in figures 11.10 and 11. 1
See also figure 14.4. ::

for all known periodic points of the Bernoulli shift map, and then insert in between them
Yokps K= 0,1,---,np — 1 corresponding to periodic points of cycle p. In the dynamical
state space they will be bracketed by corresponding cycle points x; from cycles al-
ready computed, and thus the knowledge of the topological ordering of all cycle points
provides us with robust initial guesses for periodic-orbit searches for any map with 2
monotonically increasing branches. (continued in example 23.5)

10

=]

For the Bernoulli shift converting itineraries into a topglcal ordering is
easy; the binary expansion of coordinatis also its temporary itinerary. The tent
map (11.4), figure 11.11 is a bit harder. It consists of twaigtrit segments joined
atx = 1/2. The symbok, defined in (11.6) equals 0 if the function increases, and
1 if the function decreases. Iteration forward in time geates the time itinerary.
More importantly, the piecewise linearity of the map makesdonverse possible:
determine analytically an initial point given its itineyama property that we now
use to define a topological coordinatization common to alnadal maps.

Here we have to face the fundamental problem of pedagogybit@torics
cannot be taught. The best one can do is to state the answl@hemhope that
you will figure it out by yourself.

The tent map poiny(S*) with future itineraryS* is given by converting the
sequence of,’s into a binary number by the following algorithm:

Wh if $,1=0 _
Wn+1 { 1_Wn if Sn+1=1 P W1 =%
YSY) = Owawows...= > wy/2". (11.9)

This follows by inspection from the binary tree of figure 14..10nce you figure exercise 11.4
this out, feel free to complain that the way the rule is stdtteck is incomprehen-
sible, and show us how you did it better.

Example 11.8 Converting y to S*: vy whose itinerary is S* = 0110000 - - is given
by the binary numbery = .010000 --. Conversely, the itinerary of y = .0lis s = 0,
f()) =1 s =1, f2(y) = (1) =1 - s3 = 1, etc.. Orbit that starts out as a finite
block followed by infinite repeats of another block p = Sp = ($19S3. .. $,) is said to be
heteroclinic to the cycle p. An orbit that starts out as p'nfty followed by a finite block
followed
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We refer toy(S*) as the(future) topological coordinatew;'s are the digits
in the binary expansion of the starting pointfor the full tent map (11.4). In
the left half-interval the mag (x) acts by multiplication by 2, while in the right
half-interval the map acts as a flip as well as multiplicatipn2, reversing the
ordering, and generating in the process the sequensgsdfom the binary digits
Wh.

The mappingXy — S*™(xg) — vo = y(S™) is atopological conjugacyvhich
maps the trajectory of an initial point under iteration of a given unimodal map
to that initial pointy for which the trajectory of the ‘canonical’ unimodal mapeth
full tent map (11.4), has the same itinerary. The virtue @ ttonjugacy is that
v(S™) preserves the orderinfpr any unimodal map in the sense thaxif x, then

Y >y

Example 11.9 Periodic orbits of unimodal maps. Let
] o) if X< X
f(x) = { (X if X> X (11.10)

and assume that all periodic orbits are unstable, i.e., the stability A, = fa'f’ (see (4.51))
satisfies |Ap| > 1. Then the periodic point Xs s,s,...s, iS the only fixed point of the unique
composition (3.17) of n maps

fs, 0+ 0 fg, 0 fs (Xgy55..5,) = Xsy5,85..5, (11.11)

(note that successive maps, applied from the left, correspond to later times, i.e., later
symbols in the itinerary).

The nth iterate of a unimodal map has at most 2" monotone segments, and
therefore there will be 2" or fewer periodic points of length n.  For the full tent map
(11.4) it has exactly 2" periodic points. A periodic orbit p of length n correspondssteion 12.2
infinite repetition of a length n = n, symbol string block, customarily indicated by a line
over the string: p = Sp = (S19%3... )™ = S1S-.. 5 . As all itineraries are infinite,
we shall adopt convention that a finite string itinerary p = $1$Ss3 . . . S, Stands for infinite
repetition of a finite block, and routinely omit the overline. A cycle p is called prime if its
itinerary S cannot be written as a repetition of a shorter block S’. If the itinerary of Xg is
pP=S1%%... S, its cyclic permutation o-kp = 5%S1---S1. .. 1 corresponds to the
point Xx_1 in the same cycle.

Example 11.10 Periodic points of the full tent map. Each cycle p is a set of np
rational-valued full tent map periodic points y. It follows from (11.9) that if the repeating
string 1 ... S contains an odd number of ‘1’s, the string of well ordered symbols
W1W, . .. Wy has to be of the double length before it repeats itself. The cycle-pointy is
a geometrical sum which we can rewrite as the odd-denominator fraction

22n 2n
Yo% 8) = g O, /2 (11.12)
t=1

Using this we can calculate the y, = ¥(Sp) for all short cycles. For orbits up to length 5
this is done in table 11.1.
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S | _ ¥(S) S ¥(S)

0.0 = 0 10111 .11010 = 26/31

11.10 = 2/3 | 10110| .1101100100 = 28/33
10| .1100 = 4/5 || 10010 .11100 = 28/31
101 | .110 = 6/7 | 10011|.1110100010 = 10/11
100 | .111000 = 8/9 | 10001|.11110 = 30/31
1011| .11010010 = 14/17| 10000|.1111100000 = 32/33
1001| .1110 = 14/15
1000| .11110000 = 16/17

Table 11.1: The maximal values of unimodal map cycles up to length 5.  (Kansen)

Critical points are special - they define the boundary betwiatervals, i.e.,
interval is split into O [left part]x. [critical point] and 1 [right part]. For the dike
map and the repeller figure 11.XR is the whole interval of points along the flat
top of the map, but usually it is a point. As illustrated by figg111.11 and 11.13,
for a unimodal map the preimagés"(x.) of the critical pointx; serve as partition
boundary points. But not all preimages—one has to ensutéttyaare within the
set of all admissible orbits by checking them against thexllitey sequence of the
map.

11.5 Kneading theory

(K.T. Hansen and P. Cvitanovi€)

The main motivation for being mindful of spatial orderingtemporal itineraries
is that this spatial ordering provides us with criteria tsaparate inadmissible
orbits from those realizable by the dynamics. For 1-dimamasi mappings the
kneading theoryprovides a precise and definitive criterion of admissiilit

If the parameter in the quadratic map (11.3Ais> 4, then the iterates of the
critical point x. diverge forn — o, and any sequenc&* composed of letters =
{0, 1} is admissible, and any value of<0y < 1 corresponds to an admissible orbit
in the non—wandering set of the map. The corresponding lezgsla complete
binary labeled Cantor set, the — oo limit of the nth level covering intervals
sketched in figure 11.12.

For A < 4 only a subset of the points in the intergale [0, 1] corresponds
to admissible orbits. The forbidden symbolic values aremeined by observing
that the largesk, value in an orbitx; — x> — X3 — ... has to be smaller than or
equal to the image of the critical poirthe critical value 1x;). LetK = S*(Xc)
be the itinerary of the critical point;, denoted th&neading sequenas the map.
The corresponding topological coordinate is calledkheading value

k= y(K) = ¥(S" (%)) (11.13)

knead - 30mar2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 11. CHARTING THE STATE SPACE 215

fo ;k

Figure 11.15: The ‘dike’ map obtained by slicing of
the top portion of the tent map in figure 11.11. Any or
bit that visits the primary pruning intervat,(1] is inad-

missible. The admissible orbits form the Cantor set ol
tained by removing from the unit interval the primary
pruning interval and all its iterates. Any admissible or+ /,
bit has the same topological coordinate and itinerary o
the corresponding tent map figure 11.11 orbit. pruned

The ‘canonical’ map that has the same kneading sequi€n(dd.13) asf (x)
is the dike map, figure 11.15,

{ fo(y) = 2y y € Mo =[0,«/2)
f(y) =1 fe(y) =« veMc.=1[k/2,1-«/2] , (11.14)
fiy) =2(1-vy) yeMi=(1-«/21]

obtained by slicing i all ¥y (S*(xg)) > x. The dike map is the full tent map

figure 11.11 with the top slicedfio It is convenient for coding the symbolic dy-

namics, as those values that survive the pruning are the same as for the full te
map figure 11.11, and are easily converted into admissiileréries by (11.9).

If ¥(S*) > y(K), the pointx whose itinerary isS* would exceed the critical
value,x > f(x;), and hence cannot be an admissible orbit. Let

¥(S) = SHDV(rTm(SW) (11.15)

be themaximal value the highest topological coordinate reached by the orbit
X1 = X2 — X3 — ..., Whereo is the shift (11.20)p(---S2519.919S3--*) =

-+ 828 1599.983 - - . We shall call the interval« 1] the primary pruned inter-
val. The orbitS* is inadmissible ify of any shifted sequence &f* falls into this
interval.

Criterion of admissibility: Let« be the kneading value of the critical point,
and¥(S*) be the maximal value of the orbit"'S Then the orbit $ is admissible
if and only ify(S*) < «.

While a unimodal map may depend on many arbitrarily chosearpaters, its
dynamics determines the unique kneading valué/e shall callk thetopological
parameterof the map. Unlike the parameters of the original dynamigatesm,
the topological parameter has no reason to be either smoatbndinuous. The
jumps ink as a function of the map parameter suchAaa (11.3) correspond to
inadmissible values of the topological parameter. Eaclpjimx corresponds to
a stability window associated with a stable cycle of a smawiimodal map. For
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1 -
10 i /
’ 0.8
8 7/
7 /|
< 6 _ 086 A\
t p /
)] ’ Sy ’
4 , 0.4 7
Figure 11.16: (a) Web diagram generated by 5 s 0.2 .
the trajectory of the critical point the unimodal ’ / /
Rossler return map of figure 11.7 (b). (b) The web ' /-/
diagram for the corresponding ‘canonical’ dike 00 2 4 6 8 10 00 02 04 06 08 1
map (11.14) with the same kneading sequence. S Y
(A. Basu and J. Newman) @) n (b) n
the quadratic map (11.3)increases monotonically with the paramefgibut for
a general unimodal map such monotonicity need not hold.
Example 11.11 Rdssler return map web diagram: (continuation of example 11.2) The

arclength distance along the unstable manifold of the x_ equilibrium point return map,
figure 11.7 (b), generates the kneading sequence (11.13) as the itinerary of the critical
point plotted in figure 11.16 (a).

For further details of unimodal dynamics, the reader isrrefitto appendix D.1.
As we shall see in sect. 12.4, for higher dimensional mapsflang there is no
single parameter that orders dynamics monotonically; astiemof fact, there
is an infinity of parameters that need adjustment for a giyenb®lic dynamics.
This difficult subject is beyond our current ambition horizon.

fast track:
W chapter 12, p. 225
11.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the
natural language and its functioning as a special case of
speech.

— Yuri l. Manin [11.1]
In this section we collect the basic notions and definitiohsymbolic dynamics. (ﬁb
The reader might prefer to skim through this material on fiestding, return to it
later as the need arises.

Shifts. We associate with every initial poing € M the future itinerary, a se-
quence of symbol§*(xg) = $19S3--- which indicates the order in which the
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regions are visited. If the trajectomy, xo, Xs, . .. of the initial pointxg is gener-
ated by

X1 = F(Xn), (11.16)

then the itinerary is given by the symbol sequence
S =S if Xn € Ms. (11.17)

Similarly, thepast itinerary S(Xp) = -+ - S.2S_1S describes the history of, the
order in which the regions were visited before arriving te fiointXy,. To each
point X in the dynamical space we thus associate a bi-infinite airyer

S(X0) = (Sdkez = S™.S" = - S25.150.919% - - (11.18)

The itinerary will be finite for a scattering trajectory, ering and then escaping
M after a finite time, infinite for a trapped trajectory, and mitily repeating for
a periodic trajectory.

The set of all bi-infinite itineraries that can be formed frame letters of the
alphabetA is called thefull shift (or topological Markov chaih

A" = {((S)kez : k€ Aforallk € 7). (11.19)

The jargon is not thrilling, but this is how professional dymicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries asdbeeringsymbolic dy-
namics. The namshiftis descriptive of the way the dynamics acts on these se-
quences. Asis clear from the definition (11.17), a forwaedationx — X' = f(X)
shifts the entire itinerary to the left through the ‘decinpalint.” This operation,
denoted by the shift operator,

(S 251%.519% ") =S 251951.9%3" - , (11.20)

demoting the current partition labsl from the futureS™* to the ‘has been’ itinerary
S. The inverse shift—! shifts the entire itinerary one step to the right.

A finite sequencd = S¢Sc1 - - - Sn,—1 Of Symbols fromA is called ablock
of lengthny,. If the symbols outside of the block remain unspecified, weotieto
the totality of orbits that share this block bgSc1 - - - Sc+n,-1--

A state space orbit igeriodicif it returns to its initial point after a finite time;
in the shift space the orbit is periodic if its itinerary isiafinitely repeating block
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p>. We shall refer to the set of periodic poimid, that belong to a given periodic
orbit as acycle

p = Sl& e S]p = {XSlSZ"'SWp’ X3231p51’ teey, XSWpsl"'S]pfl} . (1121)

By its definition, a cycle is invariant under cyclic perminas of the symbols
in the repeating block. A bar over a finite block of symbols ales a periodic
itinerary with infinitely repeating basic block; we shall d@rthe bar whenever it
is clear from the context that the orbit is periodic. Egariodic pointis labeled
by the firstn,, steps of its future itinerary. For example, the 2nd periqubmnt is

labeled by

Xsp-snpst = X585 Sp 1 -

This - a bit strained - notation is meant to indicate that t§yral®l block repeats
both in the past and in the future. It is helpful for determmipatial ordering of
cycles of D-hyperbolic maps, to be undertaken in sect. 12.3.1.

A prime cycle p of lengthn is a single traversal of the orbit; its label is
a block ofny symbols that cannot be written as a repeat of a shorter bliock (
literature such cycle is sometimes calledmitive; we shall refer to it as ‘prime’
throughout this text).

Partitions. A partition is calledgeneratingif every infinite symbol sequence
corresponds to a distinct point in the state space. Finitekbapartition (11.2)
is an example. Constructing a generating partition for aigisystem is a flicult
problem. In examples to follow we shall concentrate on cagash allow finite
partitions, but in practice almost any generating partitid interest is infinite.

A partition too coarse, coarser than, for example, a Markantiion, would
assign the same symbol sequence to distinct dynamicattoajes. To avoid that,
we often find it convenient to work with partitions finer thamictly necessary.
Ideally the dynamics in the refined partition assigns a umigpfinite itinerary
-+ 825 1%.919S3 - - to each distinct orbit, but there might exist full shift syahb
sequences (11.19) which are not realized as orbitss; suplesees are called
inadmissible and we say that the symbolic dynamicspisined  The word
is suggested by ‘pruning’ of branches corresponding toiflaldn sequences for
symbolic dynamics organized hierarchically into a treeictire, as explained in
chapter 14.

A mappingf : M — M together with a partitionA inducestopological
dynamics(Z, o), where thesubshift

2 = {(Skez} » (11.22)

is the set of alladmissible(i.e., ‘pruned’) infinite itineraries, and- : £ — X
is the shift operator (11.20). The designation ‘subshifimes form the fact that
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T c A% is the subset of the full shift (11.19). One of our principasks in
developing symbolic dynamics of dynamical systems thatiogtnature will be
to determineZ, the set of all bi-infinite itinerarie$ that are actually realized by
the given dynamical system.

Pruning. If the dynamics is pruned, the alphabet must be supplemdnted

a grammar a set of pruning rules. After the inadmissible sequences baen
pruned, it is often convenient to parse the symbolic stringswords of variable
length - this is calledtoding Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finitegdn

Q = {bl5 b25 e bk} 5 (1123)

where apruning block bis a sequence of symbols = 1%+ sy, S € A, of
finite lengthn,. In this case we can always construct a finite Markov partitio
(11.2) by replacing finite length words of the original ptotn by letters of a new
alphabet. In particular, if the longest forbidden block idemgth M + 1, we say
that the symbolic dynamics is a shift of finite type with-step memory. In that
case we carecodethe symbolic dynamics in terms of a new alphabet, with each
new letter given by an admissible block of at most lenigth

A topological dynamical systenk(o) for which all admissible itineraries are
generated by a finite transition matrix (14.1)

S = {(S)kez  Tas, =1 forallk) (11.24)

is called a subshift dfinite type

F in depth:
3 chapter 12, p. 225
Résumé

From our initial chapters 2 to 4 fixation on things local: aresentative point, a
short-time trajectory, a neighborhood, in this chapter weehmade a courageous
leap and gone global.

The main lesson is that - if one intends to go thoughtfullywlgobalization -
one should trust the dynamics itself, and let it partitiom state space, by means of
its (topologically invariant) unstable manifolds. This ks if every equilibrium
and periodic orbit is unstable, so one exits it local neighbod via its unstable
manifold. We delineate the segment of the unstable manifetd/een the fixed
point and the point where the nonlinearity of the dynamiddsdack on itself
as the primary segment, and measure location of nearby spaige points by
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arclengths measured along this (curvilinear) segment. 1IFdimensional maps
the folding point is the critical point, and easy to detereiin higher dimensions,
the situation is not so clear - we shall discuss that in chidi&e

Trajectories exit a neighborhood of an equilibrium or pditopoint along un-
stable directions, and fall along stable manifolds towantther fixed points, until
they again are repelled along their unstable manifolds.hS&ecjuences of visi-
tations can be described Bymbolic dynamicsAs we shall show in chapter 14,
they are encoded by transition matrigggansition graphs, and approximated dy-
namically by sequences of unstable manifeldunstable manifold maps, or, in
case of a return to the initial neighborhood, by return maps f(s).

As ‘kneading theory’ of sect. 11.5 illustrates, not all ceivable symbol seg-
uences are actually realizealdmissiblg. The identification of all inadmissible or
prunedsequences is in general not possible. However, the thedrg tieveloped
here relies on exhaustive enumeration of all admissibheiiéiries up to a given
topological length; chapters 12 and 15 describe sevektksgfies for accomplish-
ing this for physically realistic goals.

Commentary

Remark 11.1 Symbolic dynamics. For a brief history of symbolic dynamics, from
J. Hadamard in 1898 onward, see notes to chapter 1 of Kitcmemograph [11.2], a
very clear and enjoyable mathematical introduction todsmliscussed here. Diacu and
Holmes [11.3] provide an excellent survey of symbolic dymeapplied to celestial me-
chanics. For a compact survey of symbolic dynamics teclasgeonsult sects. 3.2 and 8.3
of Robinson [11.4]. The binary labeling of the once-foldingp periodic points was in-
troduced by Myrberg [11.5] for 1-dimensional maps, andiiiétyto 2-dimensional maps
has been emphasized in refs. [11.6, 11.7]. For 1-dimenkioags it is now customary
to use theR-L notation of Metropolis, Stein and Stein [11.8, 11.9], irading that the
point x, lies either to the left or to the right of the critical pointfigure 11.12. The sym-
bolic dynamics of such mappings has been extensively stuafemeans of the Smale
horseshoes, see for example ref. [11.10]. Using lettengrdhan numerals in symbol dy-
namics alphabets probably reflects good taste. We prefeeralafor their computational
convenience, as they speed up conversions of itinerarieshe topological coordinates
(6,7) introduced in sect. 12.3.1. The alternating binary omigof figure 11.14 is related
to the Gray codes of computer science [11.11].

Remark 11.2 Kneading theory. The admissible itineraries are studied, for example, in
refs. [11.12,11.8,11.10, 11.13]. We follow here the Mikidrurston exposition [11.14].
They study the topological zeta function for piecewise ntone maps of the interval,
and show that for the finite subshift case it can be expresséstins of a finite dimen-
sionalkneading determinantAs the kneading determinant is essentially the topologi-
cal zeta function introduced in sect. 15.4, we do not disdulssre. Baladi and Ruelle
have reworked this theory in a series of papers [11.15, 111147, 11.18]. See also P.
Dahlqvist’s appendix D.1.
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Remark 11.3 Heteroclinic connections. For sketches of heteroclinic connections in
the nonlinear setting, see Abraham and Shaw illustratessicdd11.19]. Section 5 of
ref. [11.20] makes elegant use of stable manifold co-dine@nsounts and of invariant
subspaces implied by discrete symmetries of the under®Dg to deduce the existence
of a heteroclinic connection.
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Exercises

11.1. Binary symbolic dynamics.  Verify that the short-
est prime binary cycles of the unimodal repeller of fig-

ble 15.1. Try to sketch them in the graph of the unimodal
function f(x); compare ordering of the periodic points
with figure 11.14. The point is that while overlayed on
each other the longer cycles look like a hopeless jumble,
the periodic points are clearly and logically ordered by
the alternating binary tree.

11.2. Generating prime cycles. Write a program that gen-
erates all binary prime cycles up to given finite length.

11.3. A contracting baker's map.  Consider a contracting
(or “dissipative”) baker’s defined in exercise 4.6.

The symbolic dynamics encoding of trajectories is rea?‘-l'6'

ized via symbols 0y(< 1/2)and 1 ¢ > 1/2). Consider
the observabla(x,y) = x. Verify that for any periodic
orbitp (e ... €n,), & €{0,1}

3

11.4. Unimodal map symbolic dynamics. Show that the
tent map pointy(S*) with future itineraryS* is given
by converting the sequence §fs into a binary number
by the algorithm (11.9). This follows by inspection from
the binary tree of figure 11.14.

11.5. Unimodal map kneading value.  Consider the 1-

dimensionabuadratic map

f(x)=Ax(1-X),

A=38. (11.25)

(a) (easy) Plot (11.25), and the first 4-8 (whatever
looks better) iterates of the critical poir = 1/2.

(b) (hard) Draw corresponding intervals of the parti-
tion of the unitinterval as levels of a Cantor set, as
in the symbolic dynamics partition of figure 11.12.
Note, however, that some of the intervals of fig-
ure 11.12 do not appear in this case - they are
pruned

(c) (easy)Check numerically thit= S*(x.), knead-
ing sequence (the itinerary of the critical point
(11.13))is

K =1011011110110111101011110111110

As the orbits of a chaotic map are exponentially
unstable, so many digits seem too good to be true
- recheck this sequence using arbitrary precision
arithmetics.

exerKnead - 4jun2003

(d) (medium) The tent map poin(S*) with future
itinerarySt is given by converting the sequence of
sy's into a binary number by the algorithm (11.9).
List the corresponding kneading value (11.13) se-
guencex = y(K) to the same number of digits as
K.

(e) (hard) Plot the dike map, figure 11.15, with the
same kneading sequeni€easf (x). The dike map
is obtained by slicing @ all y (S*(xo)) > «, from
the full tent map figure 11.11, see (11.14).

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to sect. 15.5.

“Golden mean” pruned map.  Consider a symmet-

rical tent map on the unit interval such that its highest
point belongs to a 3-cycle:

1

0.8

0.6

0.4

0.2

0 02 04 06 038 1

(a) Find the valueA| for the slope (the two dierent
slopes+A just differ by a sign) where the maxi-
mum at 12 is part of a 3-cycle, as in the figure.

(b) Show that no orbit of this map can visit the region
x > (1+ V5)/4 more than once. Verify that once
an orbit exceeds > (V5-1)/4, it does not reenter
the regionx < (V5 - 1)/4.

(c) Ifan orbitis in the interval §/5—1)/4 < x < 1/2,
where will it be on the next iteration?

(d) If the symbolic dynamics is such that fer< 1/2
we use the symbol 0 and for> 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring 00_ in it.

(e) On the second thought, is there a periodic orbit
that violates the abov®0_ pruning rule?

For continuation, see exercise 15.7 and exercise 19.2.
See also exercise 15.6 and exercise 15.8.
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11.7. Binary 3-step transition matrix. Construct [&8] tween spatial and temporal ordering of trajectory points.
binary 3-step transition matrix analogous to the 2-step )
transition matrix (14.10). Convince yourself that the (@) derive (11.12)
number of terms of contributing to T" is independent (b) compute the five periodic points of cydd®011

of the memory length, and that this"22™] trace is well (c) compute the five periodic points of cycl®000

defined in the infinite memory limin — co. )
(d) (optional) plot the above two cycles on the graph

- . . o of the full tent map.
11.8. Full tent map periodic points.  This exercise is easy:

just making sure you know how to go back and forth be- (continued in exercise 13.15)
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