Chapter 5

Cycle stabllity

and the ways in which the orbits intertwine— are invariantlema general

continuous change of coordinates. Surprisingly, there algst quantities
that depend on the notion of metric distance between pdintspevertheless do
not change value under a smooth change of coordinates. oeattities such
as the eigenvalues of equilibria and periodic orbits, arabal quantities such
as Lyapunov exponents, metric entropy, and fractal dinomissare examples of
properties of dynamical systems independent of coordicladece.

TOPOLOGICAL FEATURES Of a dynamical system —singularities, periodic orbits,

We now turn to the first, local class of such invariants, ling@ability of pe-
riodic orbits of flows and maps. This will give us metric infieation about local
dynamics. If you already know that the eigenvalues of péciodbits are invari-
ants of a flow, skip this chapter.

W fast track:
chapter 7, p. 121

5.1 Stability of periodic orbits

R

As noted on page 40, a trajectory can be stationary, periodeperiodic. For
chaotic systems almost all trajectories are aperiodicertiegless, equilibria and
periodic orbits turn out to be the key to unraveling chaotjoamics. Here we
note a few of the properties that make them so precious tocaishe

An obvious virtue of periodic orbits is that they a@pologicalinvariants: a
fixed point remains a fixed point for any choice of coordinatesd similarly a
periodic orbit remains periodic in any representation & tlynamics. Any re-
parametrization of a dynamical system that preservespldgy has to preserve
topological relations between periodic orbits, such as tiedative inter-windings
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CHAPTER 5. CYCLE STABILITY 95

and knots. So the mere existence of periodic orbificas to partially organize
the spatial layout of a non—wandering set. No less impar@astwe shall now
show, is the fact that cycle eigenvalues aretricinvariants: they determine the
relative sizes of neighborhoods in a non—-wandering set.

We start by noting that due to the multiplicative structu4etd) of Jacobian
matrices, the Jacobian matrix for thih repeat of a prime cyclp of periodT, is

ITe(x) = ITe(FDTo(x)) - ITe(Te(x))ITP(X) = Jp(X)", (5.1)

where Jp(X) = JTr(x) is the Jacobian matrix for a single traversal of the prime
cycle p, x € My is any point on the cycle, antiTr(x) = x as f!(x) returns tox
every multiple of the period ,. Hence, it sfices to restrict our considerations to
the stability of prime cycles.

fast track:
W sect. 5.2, p. 99
5.1.1 Floquet vectors

When dealing with periodic orbits, some of the quantitieeady introduced in-
herit names from the Floquet theory offféirential equations with time-periodic
codficients. Consider the equation of variations (4.2) evatliatea periodic orbit

P,
5x = A(t) 5X, At) = A(X(t)) = At + Tp) . (5.2)

TheT, periodicity of the stability matrix implies that ix(t) is a solution of (5.2)
then alsoox(t + Tp) satisfies the same equation: moreover the two solutions are
related by (4.6)

SX(t + Tp) = Jp(X) (1) (5.3)

Even though the Jacobian matrilg(x) depends uporx (the ‘starting’ point of
the periodic orbit), we shall show in sect. 5.2 that its eigdumes do not, so we
may write for its eigenvectore) (sometimes referred to as ‘covariant Lyapunov
vectors,’ or, for periodic orbits, as ‘Floquet vectors’)

(NN = Ap€D(x),  Apj=oPed T (5.4)

Where/l(pj) = ,u(pj) + iw(pj) ando-(pj) are independent of. WhenA, is real, we do

care aboub-(p‘) = Apj/IApjl € {+1,-1}, the sign of thejth Floquet multiplier.
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Figure 5.1: For a prime cyclep, Floguet matrix
Jp returns an infinitesimal spherical neighborhood of
Xo € M, stretched into an ellipsoid, with overlap ratio
along the eigdirectiore” of J,(x) given by the Flo-
quet multiplier|Apjl. These ratios are invariant under
smooth nonlinear reparametrizations of state space
ordinates, and are intrinsic property of cyge

If a'(pj) =-1 andﬂg) # 0, the corresponding eigen-direction is said tarbeerse section 7.2
hyperbolic Keeping track of this by case-by-case enumeration is aregssary
nuisance, so most of our formulas will be stated in terms@Rloquet multipliers

Aj rather than in the terms of the multiplier sigm§’, exponentg) and phases
(i
w’.

Expandéx in the (5.4) eigenbasisix(t) = 3 oxj(t) e, e = el)(x(0)).
Taking into account (5.3), we get tha;(t) is multiplied byA, ; per each period

SX(t+Tp) = > oxj(t+Tp) el = > Apjox;(t) el
j j

We can absorb this exponential growtbontraction by rewriting the cdigcients
ox;(t) as

sxi() = e®tui®),  uj(0) = 6%;(0),

with u;(t) periodicwith periodTp. Thus each solution of the equation of variations
(4.2) may be expressed in the Floquet form

ox) =y eV iumed,  ujt+Tp) = ui(). (5.5)
j

The continuous timé appearing in (5.5) does not imply that eigenvalues of the
Jacobian matrix enjoy any multiplicative property tog rT: /l(p‘) = ,u(p’) + iw(p‘)
refer to a full traversal of the periodic orbit. Indeed, venilj(t) describes the
variation ofgx(t) with respect to the stationary eigen-frame fixed by eigetors
at the pointx(0), the object of real interest is the co-moving eigen-featefined

below in (5.13).

5.1.2 Floquet matrix eigenvalues and exponents

The time-dependeni-periodic vector fields, such as the flow linearized around
the periodic orbit, are described by Floquet theory. Hemomfnow on we shall
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CHAPTER 5. CYCLE STABILITY 97

Figure 5.2: An unstable periodic orbit repels every <
neighboring trajectory (t), except those on its center X (T)
and unstable manifolds.

refer to a Jacobian matrix evaluated on a periodic orbit al®quét matrix, to its
eigenvalues\; as Floquet multipliers (5.4), and nﬁ)” = ,u(p’) + iw(p’) as Floquet
or characteristic exponents. We sort flequet multipliers{Ap 1, Ap2, ..., Apd}
of the [dxd] Floquet matrixJ, evaluated on th@-cycle into setge, m, c}

expanding:  {Ale = {Apj:|Apj|>1}
marginal:  {Alm = {Apj: |Apj| =1} (5.6)
contracting:  {A}e = {Apj:|Apj| <1}

and denote by\, (no jth eigenvalue index) the product ekpandingFloquet
multipliers

Ap= l—[Ap,e- (5.7)
e

As J, is a real matrix, complex eigenvalues always come in comptejugate

pairs,Apjs1 = A’E)’i, so the product (5.7) is always real.

The stretchingcontraction rates per unit time are given by the real parts of
Floguet exponents

|
ul) = o In[Api| - (5.8)

The factor ¥T, in the definition of the Floguet exponents is motivated by its

form for the linear dynamical systems, for example (4.16)well as the fact that
exponents so defined can be interpreted as Lyapunov expofign83) evaluated

on the prime cyclg. As in the three cases of (5.6), we sort the Floquet exponents

A = u + iw into three sets section 17.3

expanding: {1}e = {/l(,i) : /1(,;) > 0}
marginal: {UVm = {/lg) : yg) =0}
contracting: A = {/lg) : /1(,;) <0}. (5.9)

invariants - 2dec2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 5. CYCLE STABILITY 98

A periodic orbit p of a d-dimensional flow or a map istableif real parts
of all of its Floquet exponents (other than the vanishinggltudinal exponent,
explained in sect. 5.2.1) are strictly negati)ué), < 0. The region of system pa-
rameter values for which a periodic orlptis stable is called thstability window
of p. The setM, of initial points that are asymptotically attractedd@st — +oco
(for a fixed set of system parameter values) is calledtwn of attractiorof p. If
all Floquet exponents (other than the vanishing longitudirpbaent) are strictly
positive,u® > umin > 0, the cycle igepelling and unstable to any perturbation.
If some are strictly positive, and rest strictly negative® > ymin > 0, the cycle
is said to benyperbolicor asaddle and unstable to perturbations outside its stable
manifold. Repelling and hyperbolic cycles are unstableeioggic perturbations,
and thus said to benstable see figure 5.2. If all) = 0, the orbit is said to be
elliptic, and ifu) = 0 for a subset of exponents (other than the longitudinal ,one)
the orbit is said to beartially hyperbolic Such orbits proliferate in Hamiltonian
flows. section 7.3

If all Floquet exponents (other than the vanishing longitudixaloaeent) of
all periodic orbits of a flow are strictly bounded away from zdhe flow is said
to behyperbolic Otherwise the flow is said to benhyperbolic

Example 5.1 Stability of cycles of 1-dimensional maps: The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.51) for stability of the npth
iterate of the map

np—1

Apzﬁfnp(xo): F(Xm)s X = F(X0) . (5.10)
m=0

Ap is a property of the cycle, not the initial periodic point, as taking any periodic point
in the p cycle as the initial one yields the same Ay.

A critical point X. is a value of x for which the mapping f(X) has vanishing
derivative, f’(x;) = 0. A periodic orbit of a 1-dimensional map is stable if

|Ap| =

F () £/ (npo1) -+ 70D/ (x0)| < 1,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope Ay of the nth iterate f"(X) evaluated
on a periodic point X (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1,
p-cycle is unstable.

Example 5.2 Stability of cycles for maps: No matter what method we use to
determine the unstable cycles, the theory to be developed here requires that their Flo-
quet multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated
by picking any periodic point as a starting point, running once around a prime cycle,
and multiplying the individual periodic point Jacobian matrices according to (4.52). For
example, the Floquet matrix My, for a Hénon map (3.19) prime cycle p of length n, is
given by (4.53),

1
-2a b
Mp(XO):]_[( 1Xk 0)’ XKEMp,

k=n,
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CHAPTER 5. CYCLE STABILITY 99

and the Floquet matrix My, for a 2-dimensional billiard prime cycle p of length ny

Mp=(—1)“prl[(é a7

k=n,

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(x1) = M(X,,)--- M(x1). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see
exercise 13.13.

5.2 Floquet multipliers are invariant

R

The 1-dimensional map Floquet multiplier (5.10) is a prdcdfaderivatives over
all points around the cycle, and is therefore independemthi¢h periodic point
is chosen as the initial one. In higher dimensions the forrthefFloquet ma-
trix Jp(Xo) in (5.1) does depend on the choice of coordinates and thalipoint
Xo € Mp. Nevertheless, as we shall now show, the cyélequet multipliers
are intrinsic property of a cycle in any dimension. Consitterith eigenvalue,
eigenvector pairkp;, €") computed fromJ, evaluated at a periodic poim

() eV(X) = Api €)(¥), xeM,. (5.11)

Consider another point on the cycle at timéater, X' = f!(X) whose Floquet
matrix is Jp(X'). By the group property (4.44)]"e*t = J%*Tr, and the Jacobian
matrix atx’ can be written either as

I (x) = ITe(x) 33 = Ip(x) I'(X)

or J'(x) Jp(x). Multiplying (5.11) byJ'(x), we find that the Floquet matrix evalu-
ated atx’ has the same Floquet multiplier,

Jp(¥)eV(x) = Api €V(x), eD(x)=J(xeV(x), (5.12)

but with the eigenvectoe®) transported along the flow — x to e)(x) =
Ji(x) &) (x). Hence, in the spirit of the Floquet theory (5.5) one canngefime-
periodic unit eigenvectors (in a co-moving ‘Lagrangiantieg)

ety = e W I (ed0), ) =edx®), xt)eMp.  (5.13)

Jp evaluated anywhere along the cycle has the same set of Elogulgpliers
{Ap1,Ap2, ---,1,--- ,Apd-1}. As quantities such as Jp(x), detdy(x) depend
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CHAPTER 5. CYCLE STABILITY 100

only on the eigenvalues afy(x) and not on the starting poing, in expressions
such as de(il - J[)(x)) we may omit reference tg,

det(1 - Jp) = det(1- Jy(x)) foranyxe M. (5.14)

We postpone the proof that the cycle Floquet multipliers sm®oth conjugacy
invariants of the flow to sect. 6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either amanis symmetry of the

flow (which one should immediately exploit to simplify theoptem), or a non-

hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical

of parameter values for which bifurcations occur) one hagddeyond linear

stability, deal with Jordan type subspaces (see exampjeahd sub-exponential

growth rates, such as. chapter 24

exercise 5.1

For flow-invariant solutions such as periodic orbits, tlmegievolution is itself

a continuous symmetry, hence a periodic orbit of a flow alwags amarginal
Floguet multiplier

As JY(x) transports the velocity field(x) by (4.7), after a complete period
Jp(X)V(X) = V(X), (5.15)

so for a periodic orbit of #owthe local velocity field is always has an eigenvector
eld(x) = v(x) with the unit Floquet multiplier,

Api=1, AV =o. (5.16)

exercise 6.3

The continuous invariance that gives rise to this margitadjiet multiplier is the
invariance of a cycle (the satlp) under a translation of its points along the cycle:
two points on the cycle (see figure 4.3) initially distadoeapart,x’ (0) — x(0) =
0x(0), are separated by the exactly sasweafter a full periodT,. As we shall see
in sect. 5.3, this marginal stability direction can be eliated by cutting the cycle
by a Poincaré section and eliminating the continuous flavg&¢t matrix in favor
of the Floquet matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltoniae, énergy is con-
served, and that leads to an additional marginal Floquetiptial (we shall show
in sect. 7.3 that due to the symplectic invariance (7.19)e&genvalues come in
pairs). Further marginal eigenvalues arise in presencemirtuous symmetries,
as discussed in chapter 10 below.
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5.3 Stability of Poincaré map cycles

o3

(R. PaSkauskas and P. Cvitanovit)

If a continuous flow periodic orbip pierces the Poincaré sectighonce, the
section point is a fixed point of the Poincaré return rRapith stability (4.57)

i :(6ik—%)ka, (5.17)

with all primes dropped, as the initial and the final pointciwle, X' = fTr(x) =
X. If the periodic orbitp pierces the Poincaré sectintimes, the same observation
applies to thenth iterate ofP.

We have already established in (4.58) that the velog(ky) is a zero eigen-
vector of the Poincaré section Floquet matdx; = 0. Consider nextAp.q, el@),
the full state spaceth (eigenvalue, eigenvector) pair (5.11), evaluated atra pe
odic point on a Poincaré section,

JX) (X)) = A, €(x), xeP. (5.18)

Multiplying (5.17) by e and inserting (5.18), we finpl that the full state space
Floguet matrix and the Poincaré section Floquet mathave the same Floquet
multiplier

JEI(X) = Ay 8D (x), xeP, (5.19)

where & is a projection of the full state space eigenvector onto thimdarée
section:

Vi Uy
(v-U)

@) = (aik - )(e“”)k. (5.20)

Hence,jp evaluated on any Poincaré section point along the gytlas the same
set of Floquet multipliergAp 1, Ap2, - - Apgd} as the full state space Floquet ma-
trix Jp, except for the marginal unit Floquet multiplier (5.16).

As established in (4.58), due to the continuous symmeim}e(thvariance)jp
is a rankd—1 matrix. We shall refer to any such ranldf{1—N)x (d—1-N)]
submatrix withN — 1 continuous symmetries quotiented out as rinenodromy
matrix Mp (from Greekmono-= alone, single, andiromo = run, racecourse,
meaning a single run around the stadium). Quotienting naotis symmetries is
discussed in chapter 10 below.
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5.4 There goes the neighborhood o o

7

In what follows, our task will be to determine the size afieighborhoodof x(t),

and that is why we care about the Floquet multipliers, ané&afly the unstable
(expanding) ones. Nearby points aligned along the stablar@cting) directions
remain in the neighborhood of the trajectoxft) = f!(xo); the ones to keep an
eye on are the points which leave the neighborhood alongrtkiable directions.
The sub-volumeM;| = []7Ax of the set of points which get no further away
from f'(xo) thanl, the typical size of the system, is fixed by the condition that
AX;A; = O(L) in each expanding directian Hence the neighborhood size scales
ase 1/|Ap| whereAp is the product of expanding Floquet multipliers (5.7) only;
contracting ones play a secondary role.

So the dynamically important information is carried by theanding sub-
volume, not the total volume computed so easily in (4.47atThalso the reason
why the dissipative and the Hamiltonian chaotic flows are mmore alike than
one would have naively expected for ‘compressibig! ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding drext Whether the
contracting eigenvalues are inverses of the expanding anest is of secondary
importance. As long as the number of unstable directiongiigfithe same theory
applies both to the finite-dimensional ODEs and infinite-etisional PDEs.

Résum é

Periodic orbits play a central role in any invariant chagaization of the dynam-

ics, because (a) their existence and inter-relations aopaogical coordinate-
independent property of the dynamics, and (b) their Flogueltipliers form an

infinite set ofmetric invariants The Floquet multipliers of a periodic orbit remairection 6.6
invariant under any smooth nonlinear change of coordinatesho f o h™ . Let

us summarize the linearized flow notation used throughauCthaosBook.

Differential formulation, flows:
X=V, 56X = ASX

governs the dynamics in the tangent bundigsk) € T M obtained by adjoining
the d-dimensional tangent spaé& € T My to every pointx € M in the d-dim-
ensional state spacé! c RY. The stability matrix A = dv/dx describes the
instantaneous rate of shearing of the infinitesimal neidginbad of x(t) by the
flow.

Finite time formulation, maps: A discrete sets of trajectory poin{g, X1, - - -,
Xn, -} € M can be generated by composing finite-time maps, either gigen
*n+1 = T(Xy), or obtained by integrating the dynamical equations

el

X1 = FO0) = X + drv(x(7)), (5.21)

tn
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for a discrete sequence of timgg ty, - - -, tn, - - -}, specified by some criterion such
as strobing or Poincaré sections. In the discrete time ditation the dynamics in
the tangent bundlex(6x) € T M is governed by

Xor1 = F(%), %1 = J(%) %0, J(Xn) = I 27(x),

whereJ(X,) = 0%n1/0%, = [ dr exp (A7) is the Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibrium(xgQ) =
0 is described by the eigenvalues and eigenve¢mdts ell)} of the stability matrix
A evaluated at the equilibrium point, and the linear stabitit a periodic orbit
fT(X) = X, X € Mp,

3NN = Ap;€0(x),  Apj=oPeldTo,

by its Floquet multipliers, vectors and exponetus;, &1}, where Al = () +
iw(p” For every continuous symmetry there is a marginal eigeeetion, with
Apj=1, /l(p‘) = 0. With all 1+ N continuous symmetries quotiented out (Poincaré
sections for time, slices for continuous symmetries of dyita, see sect. 10.4)
linear stability of a periodic orbit (and, more generally,eopartially hyperbolic
torus) is described by thed{1-N) x (d-1-N)] monodromy matrix, all of whose
Floquet multipliergA, j| # 1 are generically strictly hyperbolic,

Mp(X) eP(X) = ApjeD(x),  xe Mp/G.

We shall show in chapter 11 that extending the linearizekilgtahyperbolic
eigen-directions into stable and unstable manifolds gi@tportant global infor-
mation about the topological organization of state spacbatwhatters most are
the expanding directions. The physically important infation is carried by the
unstable manifold, and the expanding sub-volume chaiaeteby the product of
expanding Floquet multipliers ak,. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily thidimension.

F in depth: W fast track:
3 appendix B, p. 752 chapter 9, p. 143
Commentary

Remark 5.1 Floquet theory. Study of time-dependent afidperiodic vector fields is

a classical subject in the theory offiirential equations [5.1, 5.2]. In physics literature
Floquet exponents often assuméelient names according to the context where the the-
ory is applied: they are called Bloch phases in the discassidSchrodinger equation
with a periodic potential [5.3], or quasi-momenta in the wfuan theory of time-periodic
Hamiltonians.
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Exercises

5.1. A limit cycle with analytic Floquet exponent. Ermentrout
There are only two examples of nonlinear flows for o _ _
which the Floguet multipliers can be evaluated ana5.2. The other example of a limit cycle with analytic Flo-

lytically. Both are cheats. One example is the-2 quet exponent. What is the other example of a
dimensionaflow nonlinear flow for which the Floquet multipliers can be
evaluated analytically? Hint: email G.B. Ermentrout.
g = p+al-o’-p)
p = —q+pl--p?). 5.3. Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
Determine all periodic solutions of this flow, and deter- by solving a third example (or more) of a nonlinear flow
mine analytically their Floquet exponents. Hint: go to for which the Floquet multipliers can be evaluated ana-
polar coordinatesy, p) = (r cosd, r sinég). G. Bard lytically.
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