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Geometry of chaos



E START ouT With a recapitulation of the basic notions of dynamics. Oiun &
narrow; we keep the exposition focused on prerequisitebeacapplications to

be developed in this text. We assume that the reader is tamiith dynamics
on the level of the introductory texts mentioned in remark, and concentrate here on
developing intuition about what a dynamical system can dowill be a coarse brush
sketch—a full description of all possible behaviors of dyital systems is beyond human
ken. While for a novice there is no shortcut through this teggletour, a sophisticated
traveler might bravely skip this well-trodden territory caiembark upon the journey at
chapter 15.

The fate has handed you a flow. What are you to do about it?

1. Define yourdynamical systergM, f): the space of its possible statd$, and the
law ! of their evolution in time.

2. Pinit down locally—is there anything about it that is istia&ary? Try to determine its
equilibria/fixed point§Chapter 2).

3. Slice it, represent as a map from a section to a sectionp{€ha).

4. Explore the neighborhood binearizing the flow—check thdinear stability of its
equilibria/ fixed points, their stability eigen-directions (Chapter 4)

5. Go global: partition the state spacef 1-dimensional maps. Label the regions by
symbolic dynamicéChapter 11).

6. Now venture global distances across the system by congreigenvectors into
stable/ unstable manifolds Their intersectiongartition the state space a dy-
namically invariant way (Chapter 12).

7. Guided by this topological partition, compute a sepefiodic orbitsup to a given
topological length (Chapter 13).

Along the way you might want to learn about dynamical invatsa(chapter 5), nonlinear
transformations (chapter 6), classical mechanics (chaftebilliards (chapter 8), and
discrete (chapter 9) and continuous (chapter 10) symrsetfidynamics.
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Chapter 1

Overture

If | have seen less far than other men it is because | have
stood behind giants.
—Edoardo Specchio

holes large enough to steam a Eurostar train through theme e learn

about harmonic oscillators and Keplerian ellipses - butreh®the chap-
ter on chaotic oscillators, the tumbling Hyperion? We haist guantized hydro-
gen, where is the chapter on the classical 3-body problenitairdplications for
quantization of helium? We have learned that an instant@nsislution of field-
theoretic equations of motion, but shouldn’t a stronglylimear field theory have
turbulent solutions? How are we to think about systems wttergs fall apart;
the center cannot hold; every trajectory is unstable?

REREADING classic theoretical physics textbooks leaves a sensehbi are

This chapter fiers a quick survey of the main topics covered in the book.
Throughout the book

S‘\'\ indicates that the section is on a pedestrian level - you mpeated to
Q know/learn this material

@ indicates that the section is on a somewhat advanced, tchesied

,
& indicates that the section requires a hearty stomach antbizmbply best
skipped on first reading

W fast track points you where to skip to

3 tells you where to go for more depth on a particular topic

[exercise 1.2] on margin links to an exercise that might clarify a point ie thxt



CHAPTER 1. OVERTURE 4

% indicates that a figure is still missing—you are urged toHfdtc

We start out by making promises—we will right wrongs, no lenghall you stfer
the slings and arrows of outrageous Science of Perplexigrralégate a historical
overview of the development of chaotic dynamics to appeAdand head straight
to the starting line: A pinball game is used to motivate ahdirate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you shewdle to follow
the thread of the argument without constant excursionsuoces. Hence there are
no literature references in the text proper, all learnedandes and bibliographical
pointers are relegated to the “Commentary” section at tlitoéeach chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with sci-
ence, we acquire a firmer hold over the vicissitudes of life

and meet them with greater calm, but in reality we have

done no more than to find a way to escape from our sor-
rows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton'’s first frustraargl unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is nichyistems governed
by simple deterministic laws whose asymptotic dynamicscamplex beyond
belief, systems which are locally unstable (almost) evésng but globally recur-
rent. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a detarmiteke a
logarithm. It would hardly merit a learned treatise, weneat for the fact that this
determinant that we are to compute is fashioned out of iefininany infinitely
small pieces. The feel is of statistical mechanics, andithhbw the problem
was solved; in the 1960’s the pieces were counted, and inQf@'d they were
weighted and assembled in a fashion that in beauty and im dapks along with
thermodynamics, partition functions and path integraleagst the crown jewels
of theoretical physics.

This book isnota book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, shortet dynamically invariant
compact sets (equilibria, periodic orbits, partially hgimalic invariant tori) and
the global long-time evolution of densities of trajectsrieChaotic dynamics is
generated by the interplay of locally unstable motions, @iredinterweaving of
their global stable and unstable manifolds. These feammesobust and acces-
sible in systems as noisy as slices of rat brains. Pointiae&first to understand
deterministic chaos, already said as much (modulo rat §rafdnce this topology
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CHAPTER 1. OVERTURE 5

is understood, a powerful theory yields the observable egusnces of chaotic
dynamics, such as atomic spectra, transporfiaents, gas pressures.

That is what we will focus on in ChaosBook. The book is a selitained
graduate textbook on classical and quantum chaos. Youegsof does not know
this material, so you are on your own. We will teach you howvaleate a deter-
minant, take a logarithm—gfulike that. Ideally, this should take 100 pages or so.
Well, we fail-so far we have not found a way to traverse thisamal in less than
a semester, or 200-300 page subset of this text. Nothing timbe.

1.2 Chaosahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did statt with the
widespread use of the personal computer. Chaotic systeweshieeen studied for
over 200 years. During this time many have contributed, heditld followed no
single line of development; rather one sees many interwstramds of progress.

In retrospect many triumphs of both classical and quantuysiph were a
stroke of luck: a few integrable problems, such as the haitnoscillator and
the Kepler problem, though ‘non-generic,” have gotten uy var. The success
has lulled us into a habit of expecting simple solutions toé equations—an
expectation tempered by our recently acquired ability tmarically scan the state
space of non-integrable dynamical systems. The initiak@sgion might be that
all of our analytic tools have failed us, and that the chasygtems are amenable
only to numerical and statistical investigations. Nevelels, a beautiful theory
of deterministic chaos, of predictive quality comparalidhat of the traditional
perturbation expansions for nearly integrable systemesady/ exists.

In the traditional approach the integrable motions are asezkroth-order ap-
proximations to physical systems, and weak nonlinearédresthen accounted for
perturbatively. For strongly nonlinear, non-integrablestems such expansions
fail completely; at asymptotic times the dynamics exhibisazingly rich struc-
ture which is not at all apparent in the integrable approxioms. However, hidden
in this apparent chaos is a rigid skeleton, a self-simikee wfcycles(periodic or-
bits) of increasing lengths. The insight of the modern dyicahsystems theory
is that the zeroth-order approximations to the harshly ttbalynamics should be
very different from those for the nearly integrable systems: a goadirs ap-
proximation here is the stretching and folding of baker'sigly, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get satiregéor how
and why unstable cycles come about, we start by playing a gdupiaball. The
reminder of the chapter is a quick tour through the matenaeeed in ChaosBook.
Do not worry if you do not understand every detail at the fiestding—the intention
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CHAPTER 1. OVERTURE 6
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MEAN ESCAPE

Figure 1.1: A physicist's bare bones game of pinball

is to give you a feeling for the main themes of the book. Dstaill be filled out
later. If you want to get a particular point clarified rightngsection 1.4] on the section 1.4
margin points at the appropriate section.

1.3 Thefutureasin amirror

All you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand
the introduction you will first have to read the rest of the
book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surpriseyone who has tried
pool, billiards or snooker—the game is about beating chemsve start our story
about what chaos is, and what to do about it, with a gam@rdfall. This might
seem a trifle, but the game of pinball is to chaotic dynamicatvehpendulum is
to integrable systems: thinking clearly about what ‘chaosa game of pinball
is will help us tackle more diicult problems, such as computing thefdsion
constant of a deterministic gas, the dragfiogent of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bmegramong the
pinball machine’s disks, and only high-school level Eugtid geometry is needed
to describe its trajectory. A physicist’'s pinball game is tlame of pinball strip-
ped to its bare essentials: three equidistantly placedctifte disks in a plane,
figure 1.1. A physicist’s pinball is free, frictionless, poiike, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot adiles from random starting
positions and angles; they spend some time bouncing bettieatisks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelraibniz was
confident that given the initial conditions one knew evengha deterministic
system would do far into the future. He wrote [1.2], antitipg by a century and
a half the oft-quoted Laplace’s “Given for one instant arliigence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an establishedidgss just
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CHAPTER 1. OVERTURE 7

23132321"

Figure 1.2: Sensitivity to initial conditions: two pin-
balls that start out very close to each other separate ex-
ponentially with time. 2313

as certain as that three times three is nine. [...] If, fomepke, one sphere
meets another sphere in free space and if their sizes andpikis and
directions before collision are known, we can then foregeltl calculate
how they will rebound and what course they will take afterithpact. Very
simple laws are followed which also apply, no matter how mapleres
are taken or whether objects are taken other than spheresn fhis one
sees then that everything proceeds mathematically—thiafadlibly—in the
whole wide world, so that if someone could have &isient insight into
the inner parts of things, and in addition had remembrandéraelligence
enough to consider all the circumstances and to take theractount, he
would be a prophet and would see the future in the presentasiinror.

Leibniz chose to illustrate his faith in determinism pretyswith the type of phys-

ical system that we shall use here as a paradigm of ‘chaos ¢ldlim is wrong in a

deep and subtle way: a state of a physical systemrmesarbe specified to infinite

precision, and by this we do not mean that eventually theédthisrg uncertainty
principle kicks in. In the classical, deterministic dynamthere is no way to take
all the circumstances into account, and a single trajeatannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 What is‘chaos ?

| accept chaos. | am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present statepisnciple fully deter-
mined by its initial conditions, in contrast to a stochastjstem.

For a stochastic system the initial conditions determireefthiure only par-
tially, due to noise, or other external circumstances bdyaur control: the present
state reflects the past initial conditions plus the pargicatalization of the noise
encountered along the way.

A deterministic system with dhiciently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling therdehistic from the
stochastic is the main challenge in many real-life settirigem stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?
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CHAPTER 1. OVERTURE 8

3x(t)

ox(0
Figure 1.3: Unstable trajectories separate with time. x(0) X(0)

In a game of pinball, any two trajectories that start out \@oge to each other
separate exponentially with time, and in a finite (and in fica¢c a very small)
number of bounces their separatiéx(t) attains the magnitude df, the charac-
teristic linear extent of the whole system, figure 1.2. Thisperty of sensitivity
to initial conditionscan be quantified as

X (t)| ~ €"16x(0)|

where 4, the mean rate of separation of trajectories of the systermalled the
Lyapunov exponentFor any finite accuracygx = |6x(0)| of the initial data, the section 17.3
dynamics is predictable only up to a finitgapunov time

1
Tiyap ~ =7 InI6x/LI. (1.1)

despite the deterministic and, for Baron Leibniz, infadilsimple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to ch&se could try
to play 1- or 2-disk pinball game, but it would not be much ofearg; trajecto-
ries would only separate, never to meet again. What is aledetkismixing, the
coming together again and again of trajectories. Whilellpdhe nearby trajec-
tories separate, the interesting dynamics is confined tolzatjy finite region of
the state space and thus the separated trajectories assaslgefolded back and
can re-approach each other arbitrarily closely, infinit@lgny times. For the case
at hand there ard'2opologically distinctn bounce trajectories that originate from
a given disk. More generally, the number of distinct trapeiets withn bounces
can be quantified as section 15.1

N(n) ~ €™

whereh, the growth rate of the number of topologically distinctjéicories, is
called the'topological entropy” (h = In 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in det@stic dynam-
ics there is no chaos in the everyday sense of the word; éwegyproceeds
mathematically—that is, as Baron Leibniz would have itilitly. When a physi-
cist says that a certain system exhibits ‘chaos, he meatstite system obeys
deterministic laws of evolution, but that the outcome ishihygsensitive to small
uncertainties in the specification of the initial state. TWerd ‘chaos’ has in this
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CHAPTER 1. OVERTURE 9

Figure 1.4: Dynamics of ahaoticdynamical sys-

tem is (a) everywhere locally unstable (positive

Lyapunov exponent) and (b) globally mixing (pos-
(a)

itive entropy). (A. Johansen)

b

context taken on a narrow technical meaning. If a detertiéngystem is locally
unstable (positive Lyapunov exponent) and globally mix{pgsitive entropy)—
figure 1.4—it is said to behaotic

While mathematically correct, the definition of chaos assipee Lyapunov
+ positive entropy’ is useless in practice, as a measurenfeéhese quantities is
intrinsically asymptotic and beyond reach for systems olegkin nature. More
powerful is Poincaré’s vision of chaos as the interplayaafal instability (unsta-
ble periodic orbits) and global mixing (intertwining of ihetable and unstable
manifolds). In a chaotic system any open ball of initial dtiods, no matter how
small, will in finite time overlap with any other finite regicend in this sense
spread over the extent of the entire asymptotically acbkssitate space. Once
this is grasped, the focus of theory shifts from attemptiogprtedict individual
trajectories (which is impossible) to a description of tlemigetry of the space
of possible outcomes, and evaluation of averages over [faises How this is
accomplished is what ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Intgly, the word
refers to irregular behavior of an infinite-dimensional dgrical system described
by deterministic equations of motion—say, a bucket of staswater described by
the Navier-Stokes equations. But in practice the word Wilehce’ tends to refer
to messy dynamics which we understand poorly. As soon as ropienon is
understood better, itis reclaimed and renamed: ‘a routbaog’, ‘spatiotemporal
chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamickofe dimens-
ional attractors visualized as a succession of nearly giertlout unstable motions.
In the same spirit, we shall think of turbulence in spati@ktended systems in
terms of recurrent spatiotemporal patterns. Pictorialighamics drives a given
spatially extended system (clouds, say) through a repertgfiunstable patterns;
as we watch a turbulent system evolve, every so often we @tglimpse of a
familiar pattern:

Do

For any finite spatial resolution, a deterministic flow felt® approximately for a
finite time an unstable pattern belonging to a finite alphabatmissible patterns,

= other swirls =
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CHAPTER 1. OVERTURE 10

and the long term dynamics can be thought of as a walk thrcagkpace of such
patterns. In ChaosBook we recast this image into mathesmatic

1.3.2 When does‘chaos matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical{frac
tals.

— Richard P. Taylor [1.4, 1.5]

When should we be mindful of chaos? The solar system is ‘atiagét we
have no trouble keeping track of the annual motions of pariEte rule of thumb
is this; if the Lyapunov time (1.1)-the time by which a stgtace region initially
comparable in size to the observational accuracy extendssathe entire acces-
sible state space—is significantly shorter than the obgena time, you need to
master the theory that will be developed here. That is whyrh@n successes of
the theory are in statistical mechanics, qguantum mechaaicsquestions of long
term stability in celestial mechanics.

In science popularizations too much has been made of thecingbachaos
theory, so a number of caveats are already needed at this. poi

At present the theory that will be developed here is in pcactipplicable only
to systems of a low intrinsidimension- the minimum number of coordinates nec-
essary to capture its essential dynamics. If the systenryswdbulent (a descrip-
tion of its long time dynamics requires a space of high isidrdimension) we are
out of luck. Hence insights that the theorffars in elucidating problems of fully
developed turbulence, quantum field theory of strong icteyas and early cos-
mology have been modest at best. Even that is a caveat wilificateons. There
are applications—such as spatially extended (non-equitit) systems, plumber’s
turbulent pipes, etc.,—where the few important degreeseeidom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success whpliegjto the very
noisy systems so important in the life sciences and in ecasonkven though
we are often interested in phenomena taking place on timesscauch longer
than the intrinsic time scale (neuronal inter-burst inddsy cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmentaisechas been very hard.

In 1980’s something happened that might be without parahes is an area
of science where the advent of cheap computation had actsstitracted from
our collective understanding. The computer pictures anmderical plots of frac-
tal science of the 1980’s have overshadowed the deep issijlihe 1970's, and
these pictures have since migrated into textbooks. By eetidple oversight,
ChaosBook has none, so ‘Untitled 5’ of figure 1.5 will have toas the illustra-
tion of the power of fractal analysis. Fractal science posiait certain quantitieSremark 1.6
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CHAPTER 1. OVERTURE 11

Figure 1.5 Katherine Jones-Smith, ‘Untitled 5, the
drawing used by K. Jones-Smith and R.P. Taylor to te=—]
the fractal analysis of Pollock’s drip paintings [1.6].

(Lyapunov exponents, generalized dimensions, ...) carsti@a&ed on a com-
puter. While some of the numbers so obtained are indeed matiwlly sensible

characterizations of fractals, they are in no sense oblenand measurable on
the length-scales and time-scales dominated by chaoti@nigs.

Even though the experimental evidence for the fractal géxgnoé nature is
circumstantial [1.7], in studies of probabilistically assbled fractal aggregates
we know of nothing better than contemplating such quastitien deterministic
systems we can dmuchbetter.

1.4 A gameof pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fagienseat belts
and turn df all electronic devices. But first, a disclaimer: If you urgtand the
rest of this chapter on the first reading, you either do notirtkis book, or you are
delusional. If you do not understand it, it is not becausepi@ple who figured
all this out first are smarter than you: the most you can hopatfthis stage is to
get a flavor of what lies ahead. If a statement in this chaptetifregintrigues,
fast forward to a section indicated by [section ...] on thegim read only the
parts that you feel you need. Of course, we think that you neézhrn ALL of it,
or otherwise we would not have included it in ChaosBook infife place.

Confronted with a potentially chaotic dynamical systemy analysis pro-
ceeds in three stages; |. diagnose, Il. count, lll. measkiest, we determine
the intrinsicdimensionof the system—the minimum number of coordinates nec-
essary to capture its essential dynamics. If the systemristuebulent we are,
at present, out of luck. We know only how to deal with the titoisal regime
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CHAPTER 1. OVERTURE 12

Figure 1.6: Binary labeling of the 3-disk pinball tra- .
jectories; a bounce in which the trajectory returns to 0

the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

between regular motions and chaotic dynamics in a few dimoeas That is still
something; even an infinite-dimensional system such asrarfguflame front can

turn out to have a very few chaotic degrees of freedom. Inrdgsne the chaotic
dynamics is restricted to a space of low dimension, the numielevant param-

eters is small, and we can proceed to step Il; coantandclassifyall possible chapter 11
topologically distinct trajectories of the system into afairchy whose successivehapter 15
layers require increased precision and patience on theopéne observer. This

we shall do in sect. 1.4.2. If successful, we can proceed stép IlI: investigate
theweightsof the diferent pieces of the system.

We commence our analysis of the pinball game with steps Idiignose,
count. We shall return to step Ill-measure—in sect. 1.5. thiee sections thatchapter 20
follow are highly technical, they go into the guts of what the book is about. Is
today is not your thinking day, skip them, jump straight totsé.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck-it is a low dimensiosgktem, free

motion in a plane. The motion of a point particle is such tH&graa collision

with one disk it either continues to another disk or it essapd we label the

three disks by 1, 2 and 3, we can associate every trajectdfy amiitinerary, a
sequence of labels indicating the order in which the disks/esited; for example,

the two trajectories in figure 1.2 have itinerari@813, 23132321 respectively. exercise 1.1
Such labeling goes by the narsgmbolic dynamicsAs the particle cannot collidesection 2.1
two times in succession with the same disk, any two consecsiimbols must

differ. This is an example gfruning a rule that forbids certain subsequences

of symbols. Deriving pruning rules is in general @hdiult problem, but with the

game of pinball we are lucky—for well-separated disks ttaeeeno further pruning

rules. chapter 12

The choice of symbols is in no sense unique. For example, @acatbounce
we can either proceed to the next disk or return to the previtisk, the above
3-letter alphabet can be replaced by a bin@i} alphabet, figure 1.6. A clever
choice of an alphabet will incorporate important featurethe dynamics, such as
its symmetries. section 11.6

Suppose you wanted to play a good game of pinball, that isthgepinball
to bounce as many times as you possibly can—what would berangistrategy?
The simplest thing would be to try to aim the pinball so it boem many times
between a pair of disks—if you managed to shoot it so it startsn the periodic
orbit bouncing along the line connecting two disk centdraauld stay there for-
ever. Your game would be just as good if you managed to getkiéép bouncing
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121212313

Figure 1.7: The 3-disk pinball cycled4232 and
121212313.

Figure 1.8 (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitti
two disks in a sequence requires a much sharper ¢
with initial conditions that hit further consecutive disk
nested within each other, as in Fig. 1.9.

b}

between the three disks forever, or place it on any periodiit.oThe only rub

is that any such orbit isinstable so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if onériterested in playing
well, unstable periodic orbits are important—they formskeletononto which all
trajectories trapped for long times cling.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting positi and momentum. We
shall sometimes refer to the set of periodic points thatrmpko a given periodic
orbit as acycle

Short periodic orbits are easily drawn and enumerated—ample is drawn in
figure 1.7-but it is rather hard to perceive the systematficshits from their con-
figuration space shapes. In mechanics a trajectory is fultyumiquely specified
by its position and momentum at a given instant, and no twindisstate space
trajectories can intersect. Their projections onto aslpjtrsubspaces, however,
can and do intersect, in rather unilluminating ways. In tioall example the
problem is that we are looking at the projections of a 4-disi@mal state space
trajectories onto a 2-dimensional subspace, the configurapace. A clearer
picture of the dynamics is obtained by constructing a setaiespace Poincaré
sections.

Suppose that the pinball has just bouncédlsk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. IHath happens in
between the bounces—the ball just travels at constantitiellong a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional Prthpt takes the
coordinates of the pinball from one disk edge to another édgie. The trajectory
just after the moment of impact is defined by, the arc-length position of the
nth bounce along the billiard wall, ang, = psing, the momentum component
parallel to the billiard wall at the point of impact, see figur.9. Such section of a
flow is called aPoincaré section In terms of Poincaré sections, the dynamicsei&mple 3.2
reduced to the set of siwaps Bs : (Sh, Pn) > (Sn+1, Pn+a), With s € {1, 2,3},
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1 1
Figure 1.9: The 3-disk game of pinball Poincaré \
section, trajectories emanating from the disk 1
with X = (S0, Po) - (&) Strips of initial pointsM;,,
M3 which reach disks 2, 3 in one bounce, respec- 23 \131
tively. (b) Strips of initial pointsMi1, Mia; Mz % 0 % 0

and M3 which reach disks 1, 2, 3 in two bounces, 121
respectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by
the appropriate relabeling of the strips. Disk ra-

132

dius : center separation ratio a=R1:2.5. (Y. by s o ‘fz - :
Lan) @ s by - s
from the boundary of the diskto the boundary of the next didk section 8

Next, we mark in the Poincaré section those initial coondii which do not
escape in one bounce. There are two strips of survivors,eagdfectories orig-
inating from one disk can hit either of the other two disks,escape without
further ado. We label the two strip§{;>, Mi3. Embedded within them there
are four stripsMio1, Mi23, M1z, Mazp of initial conditions that survive for two
bounces, and so forth, see figures 1.8 and 1.9. Providedhbatisks are -
ciently separated, afterbounces the survivors are divided intd distinct strips:
the M;th strip consists of all points with itineraiy= $1553... S, S = {1,2, 3}.
The unstable cycles as a skeleton of chaos are almost igbée each such patch
contains a periodic poirg $,S3. . . 5, with the basic block infinitely repeated. Pe-
riodic points are skeletal in the sense that as we look fudhd further, the strips
shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it pded a naviga-
tion chart through chaotic state space. There exists a artigiectory for every
admissible infinite length itinerary, and a unique itingréabels every trapped
trajectory. For example, the only trajectory labeled1®is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; arer dthjectory starting
out as 12.. either eventually escapes or hits the 3rd disk.

1.4.3 Escaperate

example 17.4

What is a good physical quantity to compute for the game digdi? Such a sys-
tem, for which almost any trajectory eventually leaves adinegion (the pinball
table) never to return, is said to be open, aepeller. The repellerescape rate
is an eminently measurable quantity. An example of such asurement would
be an unstable molecular or nuclear state which can be wptbapnated by a
classical potential with the possibility of escape in gert@irections. In an ex-
periment many projectiles are injected into a macroscdpliack box’ enclosing
a microscopic non-confining short-range potential, and tnean escape rate is
measured, as in figure 1.1. The numerical experiment mighsisbof injecting
the pinball between the disks in some random direction akthgshow many
times the pinball bounces on the average before it escapasdion between the
disks. exercise 1.2
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For a theorist, a good game of pinball consists in prediciingurately the
asymptotic lifetime (or the escape rate) of the pinball. \We&/show how periodic
orbit theory accomplishes this for us. Each step will be sopé that you can
follow even at the cursory pace of this overview, and st# thsult is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial coml#tiget thinned
out, yielding twice as many thin strips as at the previousngeu The total area
that remains at a given time is the sum of the areas of thessgothat the fraction
of survivors aftem bounces, or theurvival probabilityis given by

A Mol  IMy] A Mool  IMaol  |[Moal  [IMayl

I, = —+—, Iy = + + + ,
! M M 2TOM M T M T TIM

i 1 O

In = — Mil, 1.2
n | M'Z' i (1.2)

wherei is a label of thath strip, |M| is the initial area, andiM;| is the area of

theith strip of survivors.i = 01, 10,11,... is a label, not a binary number. Since

at each bounce one routinely loses about the same fractibrajettories, one
expects the sum (1.2) to falffoexponentially withn and tend to the limit chapter 22

fn+1/fn = e_yn - e_y. (13)

The quantityy is called theescape ratérom the repeller.

1.5 Chaosfor cyclists

Etant données des eéquations ... et une solution paéieuli
guelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vraigé
trés longue), telle que la fiierence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut. D’ailleurs, ce qui nous rend ces solu-
tions périodiques si précieuses, c'est qu’elles sontir po
ansi dire, la seule bréche par ou nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable

—H. Poincaré, Les meéthodes nouvelles de la
méchanique céleste

We shall now show that the escape ratean be extracted from a highly conver-
gentexactexpansion by reformulating the sum (1.2) in terms of unstaigriodic
orbits.

If, when asked what the 3-disk escape rate is for a disk ofigad| center-
center separation 6, velocity 1, you answer that the coatiauime escape rate
is roughlyy = 0.4103384077693464893384613078192 you do not need this
book. If you have no clue, hang on.
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x(t) o 0X(t) = 35 x(0)

Figure 1.10: The Jacobian matrif' maps an infinites- x(0)
imal displacementx at x, into a displacement(xg)5x
finite timet later. ox(0

1.5.1 How bigismy neighborhood?

Not only do the periodic points keep track of topological endg of the strips,
but, as we shall now show, they also determine their size. egectory evolves,
it carries along and distorts its infinitesimal neighbortiobet

X(t) = f'(x)

denote the trajectory of an initial poing = x(0). Expandingf(xo + 6xo) to
linear order, the evolution of the distance to a neighbotiagectoryx;(t) + 6x(t)
is given by the Jacobian matrik

0%(t)

B (1.4)

d
o) = Y Jo)joxoj. 3oy =
=1

A trajectory of a pinball moving on a flat surface is specifigchWwo position co-
ordinates and the direction of motion, so in this cdse 3. Evaluation of a cycle
Jacobian matrix is a long exercise - here we just state thdtreShe Jacobian section 8.2
matrix describes the deformation of an infinitesimal nemhiood ofx(t) along
the flow; its eigenvectors and eigenvalues give the dirastend the correspond-
ing rates of expansion or contraction, figure 1.10. The ttajges that start out in
an infinitesimal neighborhood separate along the unstatdetins (those whose
eigenvalues are greater than unity in magnitude), appreach other along the
stable directions (those whose eigenvalues are less thgnimmagnitude), and
maintain their distance along the marginal directions gtharhose eigenvalues
equal unity in magnitude).

In our game of pinball the beam of neighboring trajectoreddfocused along
the unstable eigen-direction of the Jacobian matrix

As the heights of the strips in figure 1.9 aréegtively constant, we can con-
centrate on their thickness. If the heightdsL, then the area of thih strip is
M; ~ Ll; for a strip of widthl;.

Each stripi in figure 1.9 contains a periodic poirt. The finer the intervals,
the smaller the variation in flow across them, so the cortidbufrom the strip
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of width |; is well-approximated by the contraction around the pedgabint x;
within the interval,

li = a/IAil, (1.5)

where A; is the unstable eigenvalue of the Jacobian mali{x;) evaluated at

theith periodic point fort = Ty, the full period (due to the low dimensionality,

the Jacobian can have at most one unstable eigenvalue). ti@nipagnitude of

this eigenvalue matters, we can disregard its sign. Theagiafsa; reflect the

overall size of the system and the particular distributibstarting values ok. As

the asymptotic trajectories are strongly mixed by bouncingotically around the

repeller, we expect their distribution to be insensitivesoooth variations in the
distribution of initial points. section 16.4

To proceed with the derivation we need thgperbolicity assumption: for
large n the prefactorsy; ~ O(1) are overwhelmed by the exponential growth of
Aj, so we neglect them. If the hyperbolicity assumption isfiest, we can replacesection 18.1.1
IMi| ~ Llj in (1.2) by Z/|A;| and consider the sum

(n)
o= > 1/IAil,

where the sum goes over all periodic points of pemodVe now define a gener-
ating function for sums over all periodic orbits of all lehgt

I'@2) = i . (1.6)
n=1

Recall that for largen the nth level sum (1.2) tends to the lindit, — e, so the
escape rate is determined by the smallest € for which (1.6) diverges:

(o8]

I'(2) ~ Z (ze)" =

n=1

ze?
1-zevr’

(1.7)

This is the property of (z) that motivated its definition. Next, we devise a formula
for (1.6) expressing the escape rate in terms of perioditsorb

I'(2

iwaﬂ
n=1

2,2,z 2z 7z 7
Aol A1l [Agol  |Aoil  |Azol  |A11l
z z z z

+ + + + +...
|[Aood  [Acoll  |Aoid  [Azod

(1.8)
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For suficiently smallzthis sum is convergent. The escape raie now given by section 18.3
the leading pole of (1.7), rather than by a numerical extiam of a sequence of

vn extracted from (1.3). As any finite truncation< n¢rync of (1.8) is a polyno-

mial in z, convergent for any, finding this pole requires that we know something
aboutl’, for anyn, and that might be a tall order.

We could now proceed to estimate the location of the leadingutarity of
I'(2) from finite truncations of (1.8) by methods such as Padex@mants. How-
ever, as we shall now show, it pays to first perform a simplemesation that
converts this divergence intozeroof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces prime cycler times, its expanding eigenvalueAs,. A
prime cyclep is a single traversal of the orbit; its label is a non-repeagymbol
string of n, symbols. There is only one prime cycle for each cyclic peation
class. For examplegy=0011=1001=1100= 0110 is prime, bub101= 01 is not.

By the chain rule for derivatives the stability of a cycle lie tsame everywhereexercise 15.2
along the orbit, so each prime cycle of lengthcontributesny, terms to the sumsection 4.5
(1.8). Hence (1.8) can be rewritten as

LAY Nptp il
I'(2 = n — | = —_— th = — 1.9
@ Zp: P L (|Ap|) - 1-1p SNy (9

where the indexp runs through all distincprime cycles. Note that we have re-
summed the contribution of the cycteto all times, so truncating the summation
up to givenp is nota finite timen < n, approximation, but an asymptoticfinite
time estimate based by approximating stabilities of alleyby a finite number of
the shortest cycles and their repeats. Tipg" factors in (1.9) suggest rewriting
the sum as a derivative

d
r@=-zg Zpl In(1-tp).

Hencel (2) is a logarithmic derivative of the infinite product

Zp

" (1.10)

Y@ =]]a-t),
p

This function is called thelynamical zeta functignin analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definitios H/(2). This is the
prototype formula of periodic orbit theory. The zero gZ1z) is a pole ofl'(2),
and the problem of estimating the asymptotic escape rates finite n sums
such as (1.2) is now reduced to a study of the zeros of the dgahgmeta function

intro - 9apr2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 1. OVERTURE 19

(1.10). The escape rate is related by (1.7) to a divergenc&pfandl’(2) diverges section 22.1
whenever 1/(2) has a zero. section 19.4

Easy, you say: “Zeros of (1.10) can be redtitbe formula, a zero
o = [ApM™

for each term in the product. What's the problem?” Dead wtong

1.5.3 Cycleexpansions

How are formulas such as (1.10) used? We start by computimdetigths and
eigenvalues of the shortest cycles. This usually requioesesnumerical work,

such as the Newton method searches for periodic solutioashall assume that

the numerics are under control, and thitshort cycles up to given length have

been found. In our pinball example this can be done by eleangmgeometrical chapter 13
optics. It is very important not to miss any short cycles, las ¢alculation is as

accurate as the shortest cycle dropped-including cyclegelothan the shortest

omitted does not improve the accuracy (unless expongntiaéiny more cycles

are included). The result of such numerics is a table of tletest cycles, their

periods and their stabilities. section 29.3

Now expand the infinite product (1.10), grouping together tkrms of the
same total symbol string length

(1 —to)(L - t1)(1 - tao)(1 - ta00) - - -

= 1-to—1t1—[tio— tato] — [(ta00 — tioto) + (tr01 — taot1)]

—[(t2000 — tot100) + (t1110— tat110)

+(t1001 — tatoo1 — troato + taotots)] — ... (1.11)

1/¢

The virtue of the expansion is that the sum of all terms of #maes total length chapter 20
n (grouped in brackets above) is a number that is expongniafialler than a
typical term in the sum, for geometrical reasons we explaithé next section. section 20.1

The calculation is now straightforward. We substitute adisiet of the eigen-
values and lengths of the shortest prime cycles into theeagbansion (1.11), and
obtain a polynomial approximation tg4. We then varyzin (1.10) and determine
the escape ratg by finding the smallest = € for which (1.11) vanishes.

154 Shadowing

When you actually start computing this escape rate, you fimtl out that the
convergence is very impressive: only three input numbées tft/o fixed point®,
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, togethe
with their linearized neighborhoods, (right frame). In
dicated are segments of two 1-cycles and a 2-cyt
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

1 and the 2-cycld0) already yield the pinball escape rate to 3-4 significégitsd
We have omitted an infinity of unstable cycles; so why does@pmating the section 20.2.2
dynamics by a finite number of the shortest cycle eigenvakak so well?

The convergence of cycle expansions of dynamical zetaifimeis a conse-
quence of the smoothness and analyticity of the underlymg. flintuitively, one
can understand the convergence in terms of the geometiicake sketched in
figure 1.11; the key observation is that the long orbitsstr@dowedy sequences
of shorter orbits.

Atypical termin (1.11) is a dierence of a long cyclgab} minus its shadowing
approximation by shorter cyclda} and{b}

Aap
tab — tath = tab(:l- - tatb/tab) =tap(1- ‘ 2 ‘ s (1-12)
AaAb

wherea andb are symbol sequences of the two shorter cycles. If all odoies
weighted equallytf, = z'), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in stabinations almost
cancel.

This can be understood in the context of the pinball gamelbsve. Consider
orbits0, 1 and01. The first corresponds to bouncing between any two diski®wh
the second corresponds to bouncing successively aroutitred, tracing out an
equilateral triangle. The cyclel starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk@so on, so its
itinerary is2321. In terms of the bounce types shown in figure 1.6, thedtajy is
alternating between 0 and 1. The incoming and outgoing anglen it executes
these bounces are very close to the corresponding angl@safd 1 cycles. Also
the distances traversed between bounces are similar sthéh2icycle expanding
eigenvalueAg; is close in magnitude to the product of the 1-cycle eigeraslu
AoAl.

To understand this on a more general level, try to visualime gartition of
a chaotic dynamical system’s state space in terms of cydtghberhoods as a
tessellation (a tiling) of the dynamical system, with snioibdw approximated by
its periodic orbit skeleton, each ‘tile’ centered on a peéicopoint, and the scale
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of the ‘tile’ determined by the linearization of the flow aralithe periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, suctabsand a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairs to
start out exponentially close to beat the exponential dnowtseparation with
time. If the weights associated with the orbits are multiglive along the flow
(for example, by the chain rule for products of derivativasyl the flow is smooth,
the term in parenthesis in (1.12) fall§ @xponentially with the cycle length, and
therefore the curvature expansions are expected to beylighivergent. chapter 23

1.6 Changeintime

The above derivation of the dynamical zeta function fornfolathe escape rate
has one shortcoming; it estimates the fraction of surviassa function of the
number of pinball bounces, but the physically interestingmgity is the escape
rate measured in units of continuous time. For continuaus flows, the escape
rate (1.2) is generalized as follows. Define a finite statespagionM such
that a trajectory that exitd1 never reenters. For example, any pinball that falls
of the edge of a pinball table in figure 1.1 is gone forever.rtStéth a uniform
distribution of initial points. The fraction of initiak whose trajectories remain
within M at timet is expected to decay exponentially

Sy dxdys(y - £(x) R

Jydx

The integral ovelx starts a trajectory at every € M. The integral ovey tests
whether this trajectory is still ipM at timet. The kernel of this integral

I(t) = e,

L'y, %) = o(y - () (1.13)

is the Dirac delta function, as for a deterministic flow théiah point x maps

into a unique poiny at timet. For discrete timef"(x) is the nth iterate of the
map f. For continuous flowsf!(x) is the trajectory of the initial poink, and it

is appropriate to express the finite time ker&lin terms of A, the generator of
infinitesimal time translations

section 16.6

very much in the way the quantum evolution is generated byHiémiltonianH,
the generator of infinitesimal time quantum transformagion

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as #velution operatofor a d-dimensional
map or ad-dimensional flow.
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Figure 1.12: The trace of an evolution operator is con '+. ¥ hickness o
centrated in tubes around prime cycles, of length Phime S conbu
and thickness /1A |" for therth repetition of the prime Z >
cyclep. rines repsl; ve

The number of periodic points increases exponentially withcycle length
(in the case at hand, a8)2As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a mattectpffhour compu-
tations will be carried out in the — oo limit. Though a quick look at long-time
density of trajectories might reveal it to be complex beybetief, this distribution
is still generated by a simple deterministic law, and witmsduck and insight,
our labeling of possible motions will reflect this simplicitf the rule that gets us
from one level of the classification hierarchy to the nextdoet depend strongly
on the level, the resulting hierarchy is approximately -satfilar. We now turn
such approximate self-similarity to our advantage, byingrnt into an operation,
the action of the evolution operator, whose iteration elesdtie self-similarity.

1.6.1 Traceformula

In physics, when we do not understand something, we give
it a name.

—NMatthias Neubert

Recasting dynamics in terms of evolution operators chaegesything. So far
our formulation has been heuristic, but in the evolutionraf formalism the es-
cape rate and any other dynamical average are given by exaatifas, extracted
from the spectra of evolution operators. The key toolstaaee formulasand
spectral determinants

The trace of an operator is given by the sum of its eigenvaliié® explicit
expression (1.13) fo!(x,y) enables us to evaluate the trace. Idenyifywith x
and integratex over the whole state space. The result is an expression fras

a sum over neighborhoods of prime cycleand their repetitions section 18.2
> ot—rT
tr £t = ZT Z O =rTy) : (1.14)
1 |det(1 - mj)

whereT, is the period of prime cyclg, and the monodromy matri¥, is the
flow-transverse part of Jacobian matdx1.4). This formula has a simple geo-
metrical interpretation sketched in figure 1.12. After tlte return to a Poincaré
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section, the initial tubeM, has been stretched out along the expanding eigen-

directions, with the overlap with the initial volume givew b/ |det(1 - M[)) -
1/IApl, the same weight we obtained heuristically in sect. 1.5.1.

The ‘spiky’ sum (1.14) is disquieting in the way reminiscefithe Poisson
resummation formulas of Fourier analysis; the left-hamtk $6 the smooth eigen-
value sum te” = ¥ e>!, while the right-hand side equals zero everywhere except
for the sett = rT,. A Laplace transform smooths the sum over Dirac delta func-
tions in cycle periods and yields tirace formulafor the eigenspectrurg, si, - - -

of the classical evolution operator: chapter 18
© 1
dteSttrt = tr =
0, L s—-A
> 1 > er(ﬂ Ap—sTp)
> = Z T Z (1.15)
Hs-% 1 |det(1- mp)

The beauty of trace formulas lies in the fact that everythingthe right-hand-
side—prime cycle, their periodsT, and the eigenvalues &fl,—is an invariant
property of the flow, independent of any coordinate choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zerdbeofappropriate
determinant. One way to evaluate determinants is to expagah in terms of
traces, using the identities exercise 4.1

E Indet(s— A) = trg In(s—A) = ! (1.16)

ds ds _trs—ﬂ’

and integrating oves. In this way thespectral determinandf an evolution oper-
ator becomes related to the traces that we have just computed chapter 19

@ STpr

(1.17)

det(s— A) = exp[ Z Z

|det 1- M)

The J/r factor is due to theintegration, leading to the replaceméipt— T,/rT,
in the periodic orbit expansion (1.15). section 19.5

We have now retraced the heuristic derivation of the divergeim (1.7) and
the dynamical zeta function (1.10), but this time with norapgpmations: formula
(1.17) isexact The computation of the zeros of det{ A) proceeds very much
like the computations of sect. 1.5.3.
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1.7 From chaosto statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of individual trajectories by evolutioregiors which prop-
agate densities feels like a bit of mathematical voodoo.elbeless, something
very radical and deeply foundational has taken place. Utaeding the distinc-
tion between evolution of individual trajectories and tkelation of the densities
of trajectories is key to understanding statistical medwasthis is the conceptual
basis of the second law of thermodynamics, and the originreférsibility of the
arrow of time for deterministic systems with time-revefsibquations of motion:
reversibility is attainable for distributions whose measin the space of density
functions goes exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and whati@tpoy some
deterministic machinelf we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure whitel @oure red; there
would be no pink. What is more, if we reversed the stirring, wald return to
the perfect whitgred separation. However, that cannot be—in a very few tufns o
the stirring stick the thickness of the layers goes from icegters to Angstroms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that stdtisigzanics ap-
plies only to systems with very many degrees of freedom. Mecent is the
realization that much of statistical mechanics followsrrohaotic dynamics, and
already at the level of a few degrees of freedom the evoluiictensities is irre-
versible. Furthermore, the theory that we shall develop generalizes notions of
‘measure’ and ‘averaging’ to systems far from equilibrivand transports us into
regions hitherto inaccessible with the tools of equilibristatistical mechanics.

By going to a description in terms of the asymptotic time atioh operators
we give up tracking individual trajectories for long timdsyt trade in the un-
controllable trajectories for a powerful description oethsymptotic trajectory
densities. This will enable us, for example, to give exacinigas for transport
codficients such as thefllision constants withowny probabilistic assumptions chapter 25
The classical Boltzmann equation for evolution of 1-péetidensity is based on
stosszahlansatzneglect of particle correlations prior to, or after a 2ijude col-
lision. It is a very good approximate description of dilutasgdynamics, but
a difficult starting point for inclusion of systematic correctsonIn the theory
developed here, no correlations are neglected - they anedilided in the cy-
cle averaging formulas such as the cycle expansion for tifasitin constant
2dD = lim15e <x(T)2> /T of a particle difusing chaoctically across a spatially-
periodic array, section 25.1

ket (py + -+ + i)
, 1.18
2d (T)g Z (-1) |Ap1 Apkl ( )
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whereri, is a translation along one period of a spatially periodicaway’ tra-
jectory p. Such formulas arexact the issue in their applications is what are
the most &ective schemes of estimating the infinite cycle sums reqdetheir
evaluation. Unlike most statistical mechanics, here thezgao phenomenological
macroscopic parameters; quantities such as transpdtiaieets are calculable to
any desired accuracy from the microscopic dynamics.

The concepts of equilibrium statistical mechanics do hslghowever, to un-
derstand the ways in which the simple-minded periodic dtsory falters. A
non-hyperbolicity of the dynamics manifests itself in povaawv correlations and chapter 24
even ‘phase transitions.’

1.8 Chaos. what isit good for?

Happy families are all alike; every unhappy family is un-
happy in its own way.

— Anna Kareninaby Leo Tolstoy

With initial data accuracyx = |6x(0)| and system sizk, a trajectory is predictable
only up to thefinite Lyapunov time (1.1),Tiyap = A71In|L/6x . Beyond that,
chaos rules. And so the most successful applications ob&tzeory’ have so far
been to problems where observation time is much longer thgpieal ‘turnover’
time, such as statistical mechanics, quantum mechanidsgaestions of long
term stability in celestial mechanics, where the notionratking accurately a
given state of the system is nonsensical.

So what is chaos good foifransport! Though superficially indistinguishable
from the probabilistic random walk filusion, in low dimensional settings the de-
terministic difusion is quite recognizable, through the fractal depenelariche
diffusion constant on the system parameters, and perhaps thnomgGaussion
relaxation to equilibrium (non-vanishing Burnett ¢ogents).

Several tabletop experiments that could measure trangporhacroscopic
scales are sketched in figure 1.13 (each a tabletop, but @mgixp tabletop). Fig-
ure 1.13 (a) depicts a ‘slanted washboard;’ a particle inaaityr field bouncing
down the washboard, losing some energy at each bounce, argechparticle in
a constant electric field trickling across a periodic corsgelhmatter device. The
interplay between chaotic dynamics and energy loss reisudtserminal mean ve-
locity/conductance, a function of the washboard slant or exteteetri field that
the periodic theory can predict accurately. Figure 1.13l@picts a ‘cold atom lat-
tice’ of very accurate spatial periodicity, with a diluteoadd of atoms placed onto
a standing wave established by strong laser fields. Interaot gravity with gen-
tle time-periodic jiggling of the EM fields induces dldision of the atomic cloud,
with a diffusion constant predicted by the periodic orbit theory. Fegi.13(c)
depicts a tip of an atomic force microscope (AFM) bouncingiast a periodic
atomic surface moving at a constant velocity. The frictlothi@g experienced
is the interplay of the chaotic bouncing of the tip and thergydoss at each
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Figure 1.13: (a) Washboard mean velocity, (b)
cold atom lattice dfusion, and (c) AFM tip drag

force. (Y. Lan) (C) velocity

tip/surface collision, accurately predicted by the periodibitotheory. None of chaosBook.org/projects
these experiments have actually been carried out, (saw®foe numerical exper-
imentation), but are within reach of what can be measurealytod

Given microscopic dynamics, periodic orbit theory presliabservable macro-
scopic transport quantities such as the washboard meacityelmld atom lattice
diffusion constant, and AFM tip drag force. But the experimentaposal is sex-
ier than that, and goes into the heart of dynamical systeswyh remark A.1

Smale 1960s theory of the hyperbolic structure of the nondeang set (AKA
‘horseshoe’) was motivated by his ‘structural stabilitpngecture, which - in non-
technical terms - asserts that all trajectories of a chatytamical system deform
smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in éidut3 (a) is
easy to see for a cyclist. Take a trajectory which barelyegdhe tip of one of the
groves. An arbitrarily small change in the washboard slogre result in loss of
this collision, change a forward scattering into a backwsaattering, and lead to
a discontinuous contribution to the mean velocity. You rigbld out hope that
such events are rare and average out, but not so - a loss oftacgble leads to a
significant change in the cycle-expansion formula for agpamt codficient, such
as (1.18).

When we write an equation, it is typically parameterized lsg&of parameters
by as coupling strengths, and we think of dynamical systdtesmed by a smooth
variation of a parameter as a ‘family. We would expect meakle predictions to
also vary smoothly, i.e., be ‘structurally stable.’
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But dynamical systems families are ‘families’ only in a narat the struc-
tural stability conjecture turned out to be badly wrong iswkever, not a blow for
chaotic dynamics. Quite to the contrary, it is actually daugr perhaps the mostection 12.2
dramatic experimentally measurable prediction of chadyitamics.

As long as microscopic periodicity is exact, the predicti®ounterintuitive
for a physicist - transport cdigcients arenot smooth functions of system parameection 25.2
ters, rather they are non-monotonmgwhere dfferentiablefunctions. Conversely,
if the macroscopic measurement yields a smooth dependértbe ransport on
system parameters, the periodicity of the microscopicchkais degraded by impu-
rities, and probabilistic assumptions of traditional istital mechanics apply. So
the proposal is to —by measurimgacroscopic transpor conductance, éusion,
drag —observe determinism manoscalesand —for example— determine whether
an atomic surface is clean.

The signatures of deterministic chaos are even mof@ifgato an engineer:
a small increase of pressure across a pipe exhibiting wmbdilow does not nec-
essarily lead to an increase in the mean flow; mean flow depeedan pressure
drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statisticakchanics? No - deter-
ministic chaos predictions are valid in settings where adegrees of freedom are
important, and chaotic motion time and space scales are emsumate with the
external driving and spatial scales. Further degrees efdsen act as noise that
smooths out the above fractdfects and restores a smooth functional dependence
of transport cofficients on external parameters.

1.9 What isnot in ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as | can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer

This book dfers everyman a breach into a domain hitherto reputed unabéeh
a domain traditionally traversed only by mathematical ptigtss and mathemati-
cians. What distinguishes it from mathematics is the iesist on computability
and numerical convergence of methodiered. A rigorous proof, the end of the
story as far as a mathematician is concerned, might staténtlzagiven setting,
for times in excess of 8 years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use tboaest, hard-
working plumber, especially if her hands-on experiencédg within the span of
a few typical ‘turnaround’ times the dynamics seems to eaitl a (transient?)
attractor of dimension less than 3. If rigor, magic, fragtat brains is your thing,
read remark 1.4 and beyond.
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So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unibdc the
nuts and bolt of the theory include ODEs, PDEs, stochasti€§)Path integrals,
group theory, coding theory, graph theory, ergodic thelimgar operator theory,
quantum mechanics, etc.. We include material into the teohgr on ‘need-to-
know' basis, relegate technical details to appendices garpointers to further
reading in the remarks at the end of each chapter.

Résumé

This text is an exposition of the best of all possible thenakdeterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, natarahow small,
will spread over the entire accessible state space. Hemcth#dory focuses on
describing the geometry of the space of possible outconmas.egaluating av-
erages over this space, rather than attempting the impessgikecise prediction
of individual trajectories. The dynamics of densities @fjectories is described
in terms of evolution operators. In the evolution operatanfalism the dynami-
cal averages are given by exact formulas, extracted fronspketra of evolution
operators. The key tools atace formulasandspectral determinants

The theory of evaluation of the spectra of evolution opesapoesented here is
based on the observation that the motion in dynamical systdrfew degrees of
freedom is often organized around a ffimdamentatycles. These short cycles
capture the skeletal topology of the motion on a strangeadcitiyrepeller in the
sense that any long orbit can approximately be pieced tegétim the nearby pe-
riodic orbits of finite length. This notion is made precisedpproximating orbits
by prime cycles, and evaluating the associated curvatdsesirvature measures
the deviation of a longer cycle from its approximation by eocycles; smooth-
ness and the local instability of the flow implies expondr{tiafaster) fall-dt for
(almost) all curvatures. Cycle expansiorfieo an éficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zetaction was the hy-
perbolicity assumption, i.e., the assumption of expoméstirinkage of all strips
of the pinball repeller. By dropping the prefactors in (1.5), we have given up on
any possibility of recovering the precise distribution &dréing x (which should
anyhow be impossible due to the exponential growth of exrdmst in exchange
we gain an &ective description of the asymptotic behavior of the systdrhe
pleasant surprise of cycle expansions (1.10) is that theitefiime behavior of an
unstable system is as easy to determine as the short timeibeha

To keep the exposition simple we have here illustrated thigyudf cycles
and their curvatures by a pinball game, but topics covere@haosBook — un-
stable flows, Poincaré sections, Smale horseshoes, signtlyolamics, pruning,

intro - 9apr2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 1. OVERTURE 29

discrete symmetries, periodic orbits, averaging over tibaets, evolution oper-
ators, dynamical zeta functions, spectral determinagtde @xpansions, quantum
trace formulas, zeta functions, and so on to the semicksgi@ntization of he-
lium — should give the reader some confidence in the broad sivélye theory.
The formalism should work for any average over any chaotiorvdgch satisfies
two conditions:

1. the weight associated with the observable under coraidaris multiplica-
tive along the trajectory,

2. the set is organized in such a way that the nearby pointseirsymbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class ohtjti@s characterizing
chaotic systems, such as the escape rates, Lyapunov expotransport coé-
cients and quantum eigenvalues. A big surprise is that tmé-slassical quantum
mechanics of systems classically chaotic is very much likectassical mechanics
of chaotic systems; both are described by zeta functionyacld expansions of
the same form, with the same dependence on the topology ofaksical flow.
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But the power of instruction is seldom of muctiieacy,
except in those happy dispositions where it is almost su-
perfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts. This text aims to bridge the gap between the
physics and mathematics dynamical systems literature.iffteaded audience is Henri
Roux, the perfect physics graduate student with a theaildtient who does not believe
anything he is told. As a complementary presentation wemagend Gaspard’s mono-
graph [1.8] which covers much of the same ground in a high4dable and scholarly
manner.

As far as the prerequisites are concerned—ChaosBook isnniatraduction to non-
linear dynamics. Nonlinear science requires a one semeatgt course (advanced un-
dergraduate or first year graduate). A good start is the toktlby Strogatz [1.9], an
introduction to the applied mathematician’s visualizataf flows, fixed points, mani-
folds, bifurcations. It is the most accessible introductio nonlinear dynamics—a book
on differential equations in nonlinear disguise, and its broaldtsen examples and many
exercises make it a favorite with students. It is not strongleaos. There the textbook
of Alligood, Sauer and Yorke [1.10] is preferable: an elégatroduction to maps, chaos,
period doubling, symbolic dynamics, fractals, dimensiengood companion to Chaos-
Book. Introduction more comfortable to physicists is theteok by Ott [1.11], with the
baker’s map used to illustrate many key techniques in aisabfhaotic systems. Ott is
perhaps harder than the above two as first books on nonliyeanaics. Sprott [1.12] and
Jackson [1.13] textbooks are very useful compendia of the &d onward ‘chaos’ liter-
ature which we, in the spirit of promises made in sect. 11id te pass over in silence.

An introductory course should give students skills in quadie and numerical anal-
ysis of dynamical systems for short times (trajectoriesediyoints, bifurcations) and
familiarize them with Cantor sets and symbolic dynamicsdioaotic systems. For the
dynamical systems material covered here in chapters 2 te Wwedl as for the in-depth
study of bifurcation theory we warmly recommend Kuznetsb\14]. A good introduc-
tion to numerical experimentation with physically reatistystems is Tufillaro, Abbott,
and Reilly [1.15]. Korsch and Jodl [1.16] and Nusse and Ydtk&7] also emphasize
hands-on approach to dynamics. With this, and a graduagd-éayposure to statistical
mechanics, partial flierential equations and quantum mechanics, the stage isrsatyf
of the one-semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses.  The courses taught so far (for a listing,
consultChaosBook . org/courses) start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continuéfferént directions:

Deter ministic chaos. Chaotic averaging, evolution operators, trace formulat func-
tions, cycle expansions, Lyapunov exponents, billiandsgport cofficients, thermody-
namic formalism, period doubling, renormalization operat A graduate level introduc-
tion to statistical mechanics from the dynamical point viewiven by Dorfman [1.18];
the Gaspard monograph [1.8] covers the same ground in mqo#h.deDriebe mono-
graph [1.19] dfers a nice introduction to the problem of irreversibilitydgnamics. The
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role of ‘chaos’ in statistical mechanics is critically dissed by Bricmont in his highly
readable essd{science of Chaos or Chaos in Sciencg?20].

Spatiotemporal dynamical systems. Partial diferential equations for dissipative sys-
tems, weak amplitude expansions, normal forms, symmegnies bifurcations, pseu-
dospectral methods, spatiotemporal chaos, turbulendeésp Lumley and Berkooz [1.21]
offer a delightful discussion of why the Kuramoto-Sivashinsgyation deserves study as
a staging ground for a dynamical approach to study of turiméen full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos. Semiclassical propagators, density of states, trace flaisnsemiclassi-
cal spectral determinants, billiards, semiclassicalume/idifraction, creeping, tunneling,
higher-orderi corrections. For further reading on this topic, consultgb@ntum chaos
part ofChaosBook.org.

Remark 1.3 Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbddie role of unstable periodic
orbits was already fully appreciated by Poincaré [1.223],.who noted that hidden in the
apparent chaos is a rigid skeleton, a treefles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cytiesld be the key to chaotic dy-
namics. Periodic orbits have been at core of much of the madkieal work on the theory
of the classical and quantum dynamical systems ever sineerefir the reader to the
reprint selection [1.24] for an overview of some of thatt#®ire.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. We recommendrigob’s advanced graduate
level exposition of dynamical systems theory [1.25] fromefenperspective. The most
extensive reference is the treatise by Katok and Hasse[@l&6], an impressive com-
pendium of modern dynamical systems theory. The fundarhpageers in this field, all
still valuable reading, are Smale [1.27], Bowen [1.28] amda5[1.29]. Sinai’'s paper
is prescient andfers a vision and a program that ties together dynamical systnd
statistical mechanics. It is written for readers versedtatistical mechanics. For a dy-
namical systems exposition, consult Anosov and Sinai [1.80arkov partitions were
introduced by Sinai in ref. [1.31]. The classical text (tgbwcertainly not an easy read)
on the subject of dynamical zeta functions is Rueltatistical Mechanics, Thermo-
dynamic Formalisni1.32]. In Ruelle’s monograph transfer operator technifurethe
‘Perron-Frobenius theory’) and Smale’s theory of hypeibfibws are applied to zeta
functions and correlation functions. The status of the thé@m Ruelle’s point of view
is compactly summarized in his 1995 Pisa lectures [1.33}thien excellent mathemati-
cal references on thermodynamic formalism are Parry anlicBtils monograph [1.34]
with emphasis on the symbolic dynamics aspects of the fasmahnd Baladi’s clear and
compact reviews of the theory of dynamical zeta function3911.36].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical magic
such as spaces of constant negative curvature, Poinkiags timodular domains, Selberg
Zeta functions, Riemann hypothesis, Why? While this beautiful mathematics has been
very inspirational, especially in studies of quantum chatmost no powerful method in

its repertoire survives a transplant to a physical systeahytou are likely to care about.
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Remark 1.6 Sorry, no schmactals! ChaosBook skirts mathematics and empirical
practice of fractal analysis, such as Haustland fractal dimensions. Addison’s intro-
duction to fractal dimensions [1.37fters a well-motivated entry into this field. While in
studies of probabilistically assembled fractals such fisslon limited aggregates (DLA)
better measures of ‘complexity’ are lacking, for deterrsiiti systems there are much
better, physically motivated and experimentally measierghantities (escape rates, dif-
fusion codficients, spectrum of helium, ...) that we focus on here.

Remark 1.7 Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, them line of research in neu-
ronal dynamics that focuses on possible unstable peritatiess described for example in
refs. [1.38, 1.39, 1.40, 1.41].
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A guideto exercises

God can #&ord to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; tilg way to develop

intuition about chaotic dynamics is by computing, and trelez is urged to try to

work through the essential exercises. As not to fragmeniietktethe exercises are

indicated by text margin boxes such as the one on this maagohcollected at theexercise 20.2
end of each chapter. By the end of a (two-semester) coursshauld have com-

pleted at least three small projects: (a) compute evergtfon a 1-dimensional

repeller, (b) compute escape rate for a 3-disk game of dinfeadlcompute a part

of the quantum 3-disk game of pinball, or the helium spectromif you are

interested in statistical rather than the quantum meckagizmpute a transport
codficient. The essential steps are:

e Dynamics

1. count prime cycles, exercise 1.1, exercise 9.6, exeldiske
pinball simulator, exercise 8.1, exercise 13.4

pinball stability, exercise 13.7, exercise 13.4

pinball periodic orbits, exercise 13.5, exercise 13.6
helium integrator, exercise 2.10, exercise 13.11

helium periodic orbits, exercise 13.12

R e

e Averaging, numerical
1. pinball escape rate, exercise 17.3
e Averaging, periodic orbits

cycle expansions, exercise 20.1, exercise 20.2

pinball escape rate, exercise 20.4, exercise 20.5

cycle expansions for averages, exercise 20.1, exergiSe 2
cycle expansions for flusion, exercise 25.1

pruning, transition graphs, exercise 15.6
desymmetrization exercise 21.1

intermittency, phase transitions, exercise 24.6

No ok wnN e

The exercises that you should do hawvelerlined titles . The rest §maller type )
are optional. Dfficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth a publication. Sols to some of the
problems are available athaosBook.org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be dudlteacknowledged.
Often going through a solution is more instructive than negdhe chapter that
problem is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics.

will turn out to be our main tool to breach deep into
the realm of chaos, it pays to start familiarizing oneself
with them now by sketching and counting the few short-
est prime cycles (we return to this in sect. 15.4). Show
that the 3-disk pinball has 32" itineraries of length

n. List periodic orbits of lengths 2, 3, 4, 5,-. Verify

that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123;. Try to sketch them.
(continued in exercise 12.6)

As periodic trajectories 1.2. Sensitivity toinitial conditions. Assume that two pin-

ball trajectories start out parallel, but separated by 1
Angstrom, and the disks are of radias= 1 cm and
center-to-center separatiéh= 6 cm. Try to estimate

in how many bounces the separation will grow to the
size of system (assuming that the trajectories have beer
picked so they remain trapped for at least that long). Es-
timate the Who'sPinball Wizards typical score (num-
ber of bounces) in a game without cheating, by hook or
crook (by the end of chapter 20 you should be in position

to make very accurate estimates).
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