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Chapter 24

Figure 24.1: Typical phase space for an area- ) 1
preserving map with mixed phase space dynamic: ] | . ] 082 08 086
here the standard map for= 1.2 .

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanovic)

N THE THEORY Of chaotic dynamics developed so far we assumed that tha-evol
tion operators have discrete spedug z;, 2, . . .} given by the zeros of

6@ =) |@-z2).
k

The assumption was based on the tacit premise that the dyséw®@verywhere
exponentially unstable. Real life is nothing like that tstspaces are gener-
ically infinitely interwoven patterns of stable and unseabkhaviors. The

stable (in the case of Hamiltonian flows, integrable) orbitsnot communicate
with the ergodic components of the phase space, and candiedriy classical
methods. In general, one is able to treat the dynamics nablesorbits as well
as chaotic components of the phase space dynamics welhvatheriodic orbit
approach. Problems occur at the borderline between chabsegnlar dynamics
where marginally stable orbits and manifolds presefiiatilties and still unre-
solved challenges.

We shall use the simplest example of such behavior - integnay in 1-
dimensional maps - to illustratefects of marginal stability. The main message

will be that spectra of evolution operators are no longecrgie, dynamical zeta
functions exhibit branch cuts of the form

Y@ =()+0-27C-).

and correlations decay no longer exponentially, but as ptaves.

458

24.1 Intermittency everywhere

In many fluid dynamics experiments one observes transifions regular behav-
iors to behaviors where long time intervals of regular bétra/laminar phases”)
are interrupted by fast irregular bursts. The closer thaipeter is to the onset of
such bursts, the longer are the intervals of regular behaibe distributions of
laminar phase intervals are well described by power laws.

This phenomenon is calledtermittency and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginallylststiate space regions.
Complete hyperbolicity assumed in (18.5) is the exceptather than the rule,
and for almost any dynamical system of interest (dynamicsiooth potentials,
billiards with smooth walls, the infinite horizon Lorentzggatc.) one encounters
mixed state spaces with islands of stability coexistinghwiyperbolic regions,
see figure 24.1 andexample 7.6. Wherever stable islandsit@rspersed with
chaotic regions, trajectories which come close to the stisbdnds can stay ‘glued’
for arbitrarily long times. These intervals of regular nuotiare interrupted by
irregular bursts as the trajectory is re-injected into thaatic part of the phase
space. How the trajectories are precisely ‘glued’ to thegimaily stable region is
often hard to describe. What coarsely looks like a bordemaikand will under
magnification dissolve into infinities of island chains otdEsing sizes, broken
tori and bifurcating orbits, as illustrated in figure 24.1.

Intermittency is due to the existence of fixed points and eyaf marginal
stability (5.6), or (in studies of the onset of intermittghto the proximity of a
nearly marginal complex or unstable orbits. In Hamiltorsgstems intermittency
goes hand in hand with the existence of (marginally stabl&MKori. In more
general settings, the existence of marginal or nearly matgirbits is due to in-
complete intersections of stable and unstable manifoldsSmale horseshoe type
dynamics (see figure 12.11). Following the stretching aifdirig of the invariant
manifolds in time one will inevitably find state space pomtsvhich the stable and
unstable manifolds are almost or exactly tangential to edlolr, implying non-
exponential separation of nearby points in state spaca other words, marginal
stability. Under small parameter perturbations such r@ghoods undergo tan-
gent bifurcations - a stahlenstable pair of periodic orbits is destroyed or created
by coalescing into a marginal orbit, so the pruning which \Wellsencounter in
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Figure 24.2: A complete binary repeller with a
marginal fixed point.

chapter 12, and the intermittency discussed here are tves sithe same coin. section 12.4

How to deal with the full complexity of a typical Hamiltonissystem with
mixed phase space is a venfiitiult, still open problem. Nevertheless, it is pos-
sible to learn quite a bit about intermittency by considgnather simple exam-
ples. Here we shall restrict our considerations to 1-dirwerad maps which in the
neighborhood of a single marginally stable fixed poink-a® take the form

x> f(X) = x+ O(xX9), (24.1)

and are expanding everywhere else. Such a map may allowdapeslike the
map shown in figure 24.2 or the dynamics may be bounded, likd-trey map
(20.31)

x/(L-x) xe€][0,1/2]
x> 19 ={ (1-X)/x xe[1/2,1]

introduced in sect. 20.5.

Figure 24.3 compares a trajectory of the tent map (11.4) lsydside with a
trajectory of the Farey map. In a stark contrast to the unifgrchaotic trajectory
of the tent map, the Farey map trajectory alternates integntly between slow
regular motion close to the marginally stable fixed point] ahaotic bursts. section 20.5.3

The presence of marginal stability has striking dynamicelsequences: cor-
relation decay may exhibit long range power law asymptogibavior and dtu-
sion processes can assume anomalous character. Escapae fepaller of the
form figure 24.2 may be algebraic rather than exponentiallog time explo-
rations of the dynamics intermittency manifests itself bp&ncement of natural
measure in the proximity of marginally stable cycles.

The questions we shall address here are: how does margafslitgt affect

zeta functions or spectral determinants? And, can we degliwer law decays of
correlations from cycle expansions?
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Figure 24.3: (a) A tent map trajectory. (b) A . .
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In example 23.5 we saw that marginal stability violates ohthe conditions
which ensure that the spectral determinant is an entiretifumcAlready the sim-
ple fact that the cycle weight/[l — A'pl in the trace (18.3) or the spectral determi-
nant (19.3) diverges for marginal orbits with,| = 1 tells us that we have to treat
these orbits with care.

In the following we will incorporate marginal stability ditb into cycle-expansions
in a systematic manner. To get to know théidulties lying ahead, we will start
in sect. 24.2 with a piecewise linear map, with the asymgsotR4.1). We will
construct a dynamical zeta function in the usual way withwoitrying too much
about its justification and show that it has a branch cut $argy We will cal-
culate the rate of escape from our piecewise linear map addHat it is charac-
terized by decay, rather than exponential decay, a power\gvwill show that
dynamical zeta functions in the presence of marginal stalw&in still be written
in terms of periodic orbits, exactly as in chapters 17 andv@gh) one exception:
the marginally stable orbits have to be explicitly exclud&dis innocent looking
step has far reaching consequences; it forces us to chaaggrtibolic dynamics
from a finite to an infinite alphabet, and entails a reorgdiumaof the order of
summations in cycle expansions, sect. 24.2.4.

Branch cuts are typical also for smooth intermittent maph igblated marginally
stable fixed points and cycles. In sect. 24.3, we discussyttle expansions and
curvature combinations for zeta functions of smooth mapesréal to intermit-
tency. The knowledge of the type of singularity one encasnemables us to
develop the fiicient resummation method presented in sect. 24.3.1.

Finally, in sect. 24.4, we discuss a probabilistic appradaahtermittency that

yields approximate dynamical zeta functions and providdsable information
about more complicated systems, such as billiards.
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Figure 24.4: A piecewise linear intermittent map of 02
(24.2) type: more specifically, the map piecewise lin-
ear over intervals (24.8) of the toy example studied be- 0

low,a=.5b=.6s=1.0.

24.2 Intermittency for pedestrians

Intermittency does not only present us with a large repetof interesting dy-
namics, it is also at the root of many sorrows such as slowemgence of cycle
expansions. In order to get to know the kind of problems whidbe when study-
ing dynamical zeta functions in the presence of marginailittawe will consider

an artfully concocted piecewise linear model first. Fronr¢hge will move on to
the more general case of smooth intermittant maps, se@. 24.

24.2.1 Atoy map

The Bernoulli shift map (23.6) is an idealized, but highlgtiuctive, example
of a hyperbolic map. To study intermittency we will now caust a likewise
piecewise linear model, an intermittent map stripped dawitstbare essentials.

Consider a map — f(x) on the unit intervalM = [0, 1] with two monotone
branches

_ | fo(x) for xe Mo =1[0,3]

(9 = { f100 for xe My = [b, 1] (24.2)

The two branches are assumed complete, thiag{i8lo) = f1(M1) = M. The map
allows escape i < b and is bounded i& = b (see figure 24.2 and figure 24.4).
We take the right branch to be expanding and linear:

09 = Top(x-b).

Next, we will construct the left branch in a way, which will@k us to model
the intermittent behavior (24.1) near the origin. We chosaanotonically de-
creasing sequence of poingg in [0,a] with gz = aandg, — 0 asn — co.
This sequence defines a partition of the left intei¥] into an infinite number of
connected intervaldf,, n > 2 with

Ma=]thGha]l  and  Mo={ M (24.3)
n=2
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The mapfy(x) is now specified by the following requirements

e fo(X) is continuous.
o fo(X) is linear on the intervald, for n > 2.
o fo(Gn) = Gn-1, thatisM, = f5™([a, 1]) .
This fixes the map for any given sequer(cg}. The last condition ensures the

existence of a simple Markov partition. The slopes of théower linear segments
are

fo0) = llb@ _ el for xe My, n>3
09 = G - gE forxes (24.4)
fo) = = = ﬁ for xe My

with [My| = gn-1 — 0n for n > 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code™glays a key role
for intermittent maps of the form (24.1). An orbit1@nters the intervaldt; —
Mni1 = My — ... > My successively and the family approaches the marginal
stable fixed point ak = O for n — co. The stability of a cycle 10forn > 1 is
given by the chain rule (4.51),

1 1-a
Asor = f(*ns1) fo(%n) . .. (%) F(x1) = Malib (24.5)
+

with X € M;.

The properties of the map (24.2) are completely determinethé sequence
{gn}. By choosingg, = 27", for example, we recover the uniformly hyperbolic
Bernoulli shift map (23.6). An intermittent map of the fori24(3) having the
asymptotic behavior (24.1) can be constructed by choosinglgebraically de-
caying sequencf,} behaving asymptotically like

1

On ~ s’ (24.6)

wheresis the intermittency exponent in (24.1). Such a partiticadketo intervals
whose length decreases asymptotically like a power-laat,igh

1

IMn‘ ~ m

(24.7)
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As can be seen from (24.5), the Floquet multipliers of padaubit families ap-
proaching the marginal fixed point, such as thé& fnily increase in turn only
algebraically with the cycle length.

It may now seem natural to construct an intermittent toy nraferms of a
partition |M,| = 1/n*1/s, that is, a partition which follows (24.7) exactly. Such
a choice leads to a dynamical zeta function which can beesritt terms of so-
called Jonquiere functions (or polylogarithms) whichsarnaturally also in the
context of the Farey map (20.31), and the anomalo@fsigion of sect. 25.3.
We will, however, not go along this route here; instead, w @vigage in a bit remark 25.7
of reverse engineering and construct a less obvious partithich will simplify
the algebra considerably later without loosing any of the features typical for
intermittent systems. We fix the intermittent toy map by $fyeéwg the intervals
M, in terms of Gamma functions according to

I'lh+m-1/s-1)

Ml =C (n+m)

for n>2, (24.8)

wherem = [1/s] denotes the integer part of ¢andC is a normalization constant
fixed by the conditiory} ., [Mn| = a1 = a, that is,

-1

c= al i fin-1/9 (24.9)

I'(n+1)

n=m+1

Using Stirling’s formula for the Gamma function
@ ~e?ZY2V2r(1+1/122+..),

we verify that the intervals decay asymptotically liké*¥/9, as required by the
condition (24.7).

Next, let us write down the dynamical zeta function of the togp in terms
of its periodic orbits, that is

1@ =1 | (1— |f_p|)
p

One may be tempted to expand the dynamical zeta functiomrirstef the binary
symbolic dynamics of the map; we saw, however, in sect. 2@bduch cycle ex-
pansion converges extremely slowly. The shadowing meshabetween orbits
and pseudo-orbits fails for orbits of the form™With stabilities given by (24.5),
due to the marginal stability of the fixed poidt It is therefore advantageous to
choose as the fundamental cycles the family of orbits witthecdQ' or, equiva-
lently, switch from the finite (binary) alphabet to an infandlphabet given by

107t 5 n.
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Due to the piecewise-linear form of the map which maps irstisnM,, exactly
onto Mp_1, all periodic orbits entering the left branch at least twéce canceled
exactly by pseudo cycles, and the cycle expanded dynangtafunction depends
only on the fundamental series1D, 10Q .. .:

% S
@ = [[[r1-Z)=1-
4@ D)( |Ap|) 2. ]
1-baI'(N+m-1/s-1)
S lorm-s-1),

1-(1-bz-CcT— 2~ Torm (24.10)

The fundamental term (20.7) consists here of an infinite suer algebraically
decaying cycle weights. The sum is divergent [for> 1. We will see that this
behavior is due to a branch cut ofdlstarting atz = 1. We need to find analytic
continuations of sums over algebraically decreasing tem{24.10). Note also
that we omitted the fixed poir@i in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta funcfiomore detail in
sect. 24.2.4.

24.2.2 Branch cuts

Starting from the dynamical zeta function (24.10), we firatérto worry about

finding an analytical continuation of the sum fgr> 1. We do, however, get this
part for free here due to the particular choice of intervalglias made in (24.8).
The sum over ratios of Gamma functions in (24.10) can be atetuanalytically

by using the following identities valid for/5 = @ > 0 (the famed binomial

theorem in disguise),

e « non-integer

oo

I'n-a)
1-27=y ———Z 5, 24.11
-2 HZ:;] ICa)r(n+ 1) (24.11)
e «integer
1-2"log(1-2) = (-1’ (24.12)
n=1
N (N—a—1)!
+ (1)t —
n;l n!
with
. _( @ )n—l 1
- _t
n a- k
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In order to simplify the notation, we restrict the interraitty parameter to the
range 1< 1/s < 2 with [1/s] = m = 1. All what follows can easily be generalized
to arbitrarys > 0 using equations (24.11) and (24.12). The infinite sum inl@4
can now be evaluated with the help of (24.11) or (24.12), i#hat

Zr(” Y9 n {F(—%)[(l—z)1/5—1+§z] for 1<1/s<2;
I'(n+1) (1-2log(1-2+2z for s=1.

The normalization constar in (24.8) can be evaluated explicitly using (24.9)
and the dynamical zeta function can be given in closed forma.otain for 1<
1/s<2

1@ =1-1-b)z- mi 2((1 Vs -1+ %z) (24.13)
and fors=1,
1-b
1/{(2=1-(1-b)z- am (1-2log(1-2 + 2. (24.14)

It now becomes clear why the particular choice of intervilg made in the last
section is useful; by summing over the infinite family of joelic orbits 01 ex-
plicitly, we have found the desired analytical continuatfor the dynamical zeta
function for|Z > 1. The function has a branch cut starting at the branch peint
and running along the positive real axis. That means, thamiyecal zeta function
takes on dferent values when approaching the positive real axis far:Ré& from
above and below. The dynamical zeta function for generaD takes on the form

c1_(l-pz 2 1=b 1 0 s
Vi@ =1-(-bz- i o (1-27° - 0:02) (24.15)
for non-integerswith m = [1/s] and
a 1-b 1 m
1/ = 1-(1-b)z—- @ 1-azr1 ((1-2"log(1-2) - gm(2))(24.16)

for 1/s = minteger andgs(2) are polynomials of ordem = [1/s] which can
be deduced from (24.11) or (24.12). We thus find algebraiadirauts for non
integer intermittency exponentgdand logarithmic branch cuts for/ & integer.
We will see in sect. 24.3 that branch cuts of that form are gef@r 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamictl fenctions due
to intermittency. So, how do we calculate averages or esedes of the dynamics
of the map from a dynamical zeta function with branch cuts?take ‘a learning
by doing’ approach and calculate the escape from our toy e £ b.
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Figure 24.5: The survival probabilityl’, calcu-
lated by contour integration; integrating (24.17)
inside the domain of convergentz < 1 (shaded
area) of ¥¢(2) in periodic orbit representation
yields (18.26). A deformation of the contoyf

(dashed line) to a larger circlgy gives contribu-
tions from the poles and zeros (x) of Az) be-
tween the two circles. These are the only contribu-
tions for hyperbolic maps (a), for intermittent sys-
tems additional contributions arise, given by the
contoury, running along the branch cut (b). (a)

(b)
24.2.3 Escape rate

Our starting point for the calculation of the fraction of gwprs afterntime steps,
is the integral representation (19.19)

Ih= %95 ( logs™ 1(z))dz (24.17)

where the contour encircles the origin in the clockwise atimn. If the contour
lies inside the unit circldzd = 1, we may expand the logarithmic derivative of
7X(2) as a convergent sum over all periodic orbits. Integrals sunis can be
interchanged, the integrals can be solved term by term, l@dormula (18.26)
is recovered. For hyperbolic maps, cycle expansion metbodsher techniques
may provide an analytic extension of the dynamical zetatfandeyond the lead-
ing zero; we may therefore deform the original contour intarger circle with ra-
diusRwhich encircles both poles and zeros/ot(2), see figure 24.5 (a). Residue
calculus turns this into a sum over the zerpsaind poles; of the dynamical zeta
function, that is

zeros 4 P0|95

1,
In= Z — -\ = 36 dzz |ogr1 (24.18)
AR%E AR ZE 2

where the last term gives a contribution from a large cirgle We thus find
exponential decay df,, dominated by the leading zero or poleof(2).

Things change considerably in the intermittent case. Thetgo= 1 is a
branch cut singularity and there exists no Taylor seriesesjon of/~* around
z=1. Second, the path deformation that led us to (24.18) reguiore care, as it
must not cross the branch cut. When expanding the contoardel|y values, we
have to deform it along the branch R ¢ 1, Im (2) = 0 encircling the branch cut
in anti-clockwise direction, see figure 24.5 (b). We will dénthe detour around
the cut agycy. We may write symbolically

zeros poles
37566
e R Yeut
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where the sums include only the zeros and the poles in theemaased by the
contours. The asymptotics is controlled by the zero, poleutrclosest to the
origin.

Let us now go back to our intermittent toy map. The asympsgatitthe sur-
vival probability of the map is here governed by the behawbthe integrand
dﬂzlog 71in (24.17) at the branch poit= 1. We restrict ourselves again to the
case 1< 1/s < 2 first and write the dynamical zeta function (24.13) in therfo

1@ =a0+a(l-2 +by(1l-2YS=G(1-2)

and

a 1-b
1-1/s1-a’

[

b-
ao—ra bo =

Q

Settingu = 1 - z, we need to evaluate

1 _nd
i m(l—u) @IogG(u)du (24.19)

whereyc: goes around the cut (i.e., the negativaxis). Expanding the integrand
d% logG(u) = G’(u)/G(u) in powers ofu andu'/s atu = 0, one obtains

d _a 100 s
au logG(u) = 2% + Saou + O(u). (24.20)

The integrals along the cut may be evaluated using the gefoenzula

1 N “n _l‘(n—a—l)Ni
o u(1-uwdu= m nar+l(l +0O(1/n)) (24.21)

Yeut

which can be obtained by deforming the contour back to a lgoprai the point
u =1, now in positive (anti-clockwise) direction. The contdntegral then picks
up the (—1)st term in the Taylor expansion of the functighatu = 1, cf. (24.11).
For the continuous time case the corresponding formula is

1 o101
o 7'eldz= F(*Q) el

(24.22)
2ni Yeut

Plugging (24.20) into (24.19) and using (24.21) we get tlyengdotic result

bp 1 1 1 a 1-b 1 1
M~z =~ - _ 8279 = - 24.2
" aysr(l-1/9)nt/s  s—1b-al(l-1/s)nl/s (24.23)
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Figure 24.6: The asymptotic escape from an intermit
tent repeller is a power law. Normally it is precede:
by an exponential, which can be related to zeros clo
to the cut but beyond the branch point= 1, asin .
ﬁgure 245(b) 200 400 R 600 800 1000

10

We see that, asymptotically, the escape from an interniitegreller is described
by power law decay rather than the exponential decay we andida with for
hyperbolic maps; a numerical simulation of the power-lasege from an inter-
mittent repeller is shown in figure 24.6.

For general non-integer/$ > 0, we write
1¢(@) = AU + (WY°B(U) = G(u)

with u = 1 - zandA(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansion&(af andB(u) are

see (24.15). Expandingj logG(u) aroundu = 0, one again obtains leading or-
der contributions according to (24.20) and the generallrésilows immediately
using (24.21), that is,

Tn~ se(l)b—al(l-1/9nl/s’ (24.24)

Applying the same arguments for integer intermittency exguas Js = m, one
obtains

a 1—bm!
sgn(1)b—anm’

Iy~ (-)™! (24.25)

So far, we have considered the survival probability for aefiep, that is we
assumedh < b. The formulas (24.24) and (24.25) do obviously not applytifier
casea = b, that is, for the bounded map. The €ogentay = (b —a)/(1 - @)
in the series representation G{u) is zero, and the expansion of the logarithmic
derivative ofG(u) (24.20) is no longer valid. We get instead

(1 + O(ul/s‘l)) s<1

: ]
aj logG(u) = { %(% 4 O(Ulfl/s)) s>1
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assuming non-integer/ & for convenience. One obtains for the survival probabil-
ity.

I 1+0(n*Ys) s<1
n 1/s+0onYs Y s>1 -

For s > 1, this is what we expect. There is no escape, so the survighbpility

is equal to 1, which we get as an asymptotic result here. Thdtréor s > 1 is
somewhat more worrying. It says thgt defined as sum over the instabilities of
the periodic orbits as in (22.12) does not tend to unity fogéan. However, the
cases > 1is in many senses anomalous. For instance, the invariasttgeannot
be normalized. It is therefore not reasonable to expectpdaodic orbit theories
will work without complications.

24.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructeldeptevious section,
we had the nice property that interval lengths did exactip@de with the inverse
of the stability of periodic orbits of the system, that is

IMnl = 1/|A10™ ™.

There is thus no problem in replacing the survival probgpili, given by (1.2),
(22.2), that is the fraction of state spasésurvivingn iterations of the map,

1 (n)
I'hn=— il .
n MZM

by a sum over periodic orbits of the form (18.26). The onlyitidworry about is
the marginal fixed poind itself which we excluded from the zeta function (24.10).

For smooth intermittent maps, things are less clear andaitteliat we had to
prune the marginal fixed point is a warning sign that inteestimates by periodic
orbit stabilities might go horribly wrong. The derivatiofithe survival probability
in terms of cycle stabilities in chapter 22 did indeed relg\ily on a hyperbolicity
assumption which is clearly not fulfilled for intermittentaps. We therefore have
to carefully reconsider this derivation in order to showttberiodic orbit formulas
are actually valid for intermittent systems in the first @ac

We will for simplicity consider maps, which have a finite nuenlof says
branches defined on intervalels and we assume that the map maps each inter-
val Ms onto M, that is f(Ms) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see figure 24.2)
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The generating partition is composed of the domalifis Thenth level parti-
tion C™ = {M;} can be constructed iteratively. Hete are words = $S,... s,
of lengthn, and the intervals\{; are constructed recursively

Msj= A M). (24.26)

wheres jis the concatenation of lettsrwith word j of lengthn; < n.

In what follows we will concentrate on the survival probilill,, postponing
other quantities of interest, such as averages, to latesiderations. In establish-
ing the equivalence of the survival probability and the pdi¢ orbit formula for
the escape rate for hyperbolic systems we have assumedéhatap is expand-
ing, with a minimal expansion raté’(x)| > Amin > 1. This enabled us to bound
the size of every survivor stripf; by (22.6), the stability\; of the periodic orbii
within the M;, and bound the survival probability by the periodic orbits(22.7).

The bound (22.6)

oL Ml 1
AT TIME T TEIA

relies on hyperbolicity, and is thus indeed violated foemtittent systems. The
problem is that now there is no lower bound on the expansit# the minimal

expansion rate i&min = 1. The survivor stripMy which includes the marginal
fixed point is thus completely overestimated byAky»| = 1 which is constant for

all n. exercise 19.7

However, bounding survival probability strip by strip istnehat is required
for establishing the bound (22.7). For intermittent systeamsomewhat weaker
bound can be established, saying that the average sizenfaigalong a periodic
orbit can be bounded close to the stability of the periodic orhit&ib but the
interval My. The weaker bound applies to averaging over each prime gycle
separately

1 1o M 1
C—<—E—<C—, 24.27
Al T e £ TME T TPIA #4:20

where the word represents a code of the periodic onpiand all its cyclic permu-
tations. It can be shown that one can find positive cons@nte; independent
of p. Summing over all periodic orbits leads then again to (22.7)

To study averages of multiplicative weights we follow sdat.1 and introduce
a state space observallE) and the integrated quantity

n-1
A = " a(f(x).
k=0
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o

Figure 24.7: Transition graph corresponding to the al- /\
phabet(0“11;0, k> 1} SN

This leads us to introduce the generating function (17.10)
(&0,

where(.) denote some averaging over the distribution of initial p&irvhich we
choose to be uniform (rather than thgriori unknown invariant density). Again,
all we have to show is, that constauts, C» exist, such that

1 1 n A
Gel 2 L [ gy S (24.28)
Al 1y 24 TME g Al

is valid for all p. After performing the above average one gets

Ciln(B) < ﬁ fM AN dx < Coln(B), (24.29)
with
n eBAP
I'n(B) = T (24.30)
p p

and a dynamical zeta function can be derived. In the intéemtitcase one can
expect that the bound (24.28) holds using an averaging agusimilar to the

one discussed in (24.27). This justifies the use of dynanzietdl functions for

intermittent systems.

One lesson we should have learned so far is that the natylaiagt to use
is not {0, 1} but rather the infinite alphabeo'tll,o; k > 1}. The symbol O
occurs unaccompanied by any 1's only in thenarginal fixed point which is

disconnected from the rest of the transition graph, seedigdr7. chapter 12

What happens if we remove a single prime cycle from a dyndmeta func-
tion? In the hyperbolic case such a removal introduces aipdkes 1/ and slows
down the convergence of cycle expansions. The heuriséecgretation of such a
pole is that for a subshift of finite type removal of a singlém® cycle leads to
unbalancing of cancellations within the infinity of of shadiog pairs. Neverthe-
less, removal of a single prime cycle is an exponentiallylsp&aturbation of the

trace sums, and the asymptotics of the associated tracelsris unéected. chapter 23
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In the intermittent case, the fixed poitdoes not provide any shadowing ,
and a statement such as

A1,0k+1 ~ Al.ok/\o,

is meaningless. It seems therefore sensible to take ouatterf(1-to) = 1-z
from the product representation of the dynamical zeta fand{19.15), that is, to
consider a pruned dynamical zeta functioidiker(2) defined by

142 = (1 - 21/ dinter (D) -

We saw in the last sections, that the zeta functitfiir(2) has all the nice prop-
erties we know from the hyperbolic case, that is, we can fingckecexpansion
with - in the toy model case - vanishing curvature contribasi and we can calcu-
late dynamical properties like escape after having undedsthow to handle the
branch cut. But you might still be worried about leaving dw extra factor + z
all together. It turns out, that this is not only a matter ohwenience, omitting
the marginal0 cycle is a dire necessity. The cycle weighff = 1 overestimates
the corresponding interval length 8l in the partition of the phase spadé by
an increasing amount thus leading to wrong results whenlzdlog escape. By
leaving out thed cycle (and thus also th&ly contribution), we are guaranteed to
get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determin@9.3), given
in product form as

o "
det (1- z£) = I;“_[(l—m) ,

m=0

for intermittent maps the marginal stable cycle has to béuebedl. It introduces
an (unphysical) essential singularityzat 1 due the presence of a factor{%)~
stemming from thé cycle.

24.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piecse linear-
ity of the map led to exact cancellations of the curvaturetriioutions leaving
only the fundamental terms. There are still infinitely mampits included in the
fundamental term, but the cycle weights were chosen in swehyethat the zeta
function could be written in closed form. For a smooth intétemt map this all
will not be the case in general; still, we will argue that werdalready seen al-
most all the fundamentally new features due to intermitfetwhat remains are
technicalities - not necessarily easy to handle, but ngthéry surprise any more.
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In the following we will sketch, how to make cycle expansienhniques work
for general 1-dimensional maps with a single isolated nmaitgfixed point. To
keep the notation simple, we will consider two-branch majik & complete bi-
nary symbolic dynamics as for example the Farey map, figur& &4 the repeller
depicted in figure 24.2. We again assume that the behavioitmedixed point is
given by (24.1). This implies that the stability of a familf geriodic orbits ap-
proaching the marginally stable orbit, as for example timeilia10", will increase
only algebraically, that is we find again for large

1 1
A1 nl+l/s”’

wheres denotes the intermittency exponent.

When considering zeta functions or trace formulas, we algave to take out
the marginal orbi0; periodic orbit contributions of the forrgn, are now unbal-
anced and we arrive at a cycle expansion in terms of infinitedyy fundamental
terms as for our toy map. This corresponds to moving from dnady symbolic
dynamics to an infinite symbolic dynamics by making the idiation

10"t 5 n; 100110™ > nmp 100110™ 110 S nmk . ..

see also table 24.1. The topological length of the orbitus to longer determined
by the iterations of our two-branch map, but by the numberiroés the cycle
goes from the right to the left branch. Equivalently, one rdafine a new map,
for which all the iterations on the left branch are done in step. Such a map is

called annduced magnd the topological length of orbits in the infinite alphabet
corresponds to the iterations of this induced map. exercise 12.1

For generic intermittent maps, curvature contributionshie cycle expanded
zeta function will not vanish exactly. The most natural waytganize the cycle
expansion is to collect orbits and pseudo orbits of the sampeldgical length
with respect to the infinite alphabet. Denoting cycle wedghtthe new alphabet
astym.. = tyg-110n-1_, ONE Obtains

o= []a-t)=1- i ce (24.31)

p#0 n=1
= 1- Ztn - ZZ %(tmn_tmtn)
n=1 m=1n=1
- Z z Z(%tkmn ;tkmtn étktmtn) Z Z Z Z
k=1 m=1n=1 =1 k=1 m=1n=1

The first sum is the fundamental term, which we have alreaéy $e the toy
model, (24.10). The curvature terrogin the expansion are noefold infinite
sums where the prefactors take care of double counting wfepgeriodic orbits.
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Table 24.1: Infinite alphabet versus the original binary alphabet f@ shortest periodic
orbit families. Repetitions of prime cycles (34 12,0101 = 012,...) and their cyclic
repeats (116 101, 1110= 1101 ...) are accounted for by cancelations and combination
factors in the cycle expansion (24.31).

oo — alphabet binary alphabet
n=1 n=2 n=3 n=4 n=5
I-cycles n 1 10 100 1000 10000
2-cycles mn
1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000

3n 1001 10010 100100 1001000 10010000

4n 10001 100010 1000100 10001000 100010000
3-cycles kmn

1in 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21In 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

Let us consider the fundamental term first. For generic imtiéent maps, we
can not expect to obtain an analytic expression for the tefisuim of the form

f@) = Z hnZ". (24.32)
n=0
with algebraically decreasing cfiieients
hy, ~ n—i with a>0

To evaluate the sum, we face the same problem as for our toy theppower
series diverges for > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expectgdaifully subtract-
ing the asymptotic behavior with the help of (24.11) or (23, bne can in general
construct an analytic continuation 6z) aroundz = 1 of the form

f@ ~ A@+0-2"'B@ ¢ N (24.33)
f@ ~ A@+(1-2"'In(l-2 «eN,

whereA(2) and B(z) are functions analytic in a disc arourd= 1. We thus again
find that the zeta function (24.31) has a branch cut alongehkaxis Re > 1.
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From here on we can switch to auto-pilot and derive algebzamape, decay of
correlation and all the rest. We find in particular that thgnagtotic behavior
derived in (24.24) and (24.25) is a general result, thathis,survival probability
is given asymptotically by

1

Fn~Cm

(24.34)

for all 1-dimensional maps of the form (24.1). We have to warkit harder if
we want more detailed information like the prefac@yrexponential precursors
given by zeros or poles of the dynamical zeta function or &igirder corrections.
This information is buried in the function&(z) andB(2) or more generally in the
analytically continued zeta function. To get this analytimntinuation, one may
follow either of the two diferent strategies which we will sketch next.

24.3.1 Resummation

One way to get information about the zeta function near tla@dir cut is to de-
rive the leading ca@cients in the Taylor series of the functioA$z) andB(2) in
(24.33) atz = 1. This can be done in principle, if the d@eientsh, in sums like
(24.32) are known (as for our toy model). One then consideesammation of
the form

iaj(:l-* 2l +(1- Z)"’libj(le)j, (24.35)

=0 j=0

hjZJ

e

J

Il
o

and the cofiicientsa; andb; are obtained in terms of thg's by expanding (22)
and (1- 2)/**~1 on the right hand side arourml= 0 using (24.11) and equating
the codficients.

In practical calculations one often has only a finite numbfecaxtficients
hj, 0 < j < N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resuation scheme for the
computation of the cdBcientsa; andbj in (24.35). We replace the infinite sums
in (24.35) by finite sums of increasing degregsandny,, and require that

Na Np N
Da-2'+(@1-2"1 ) b(1-2' = ) hZ + 0@ . (24.36)
i=0 i=0 i=0

One proceeds again by expanding the right hand side arpen@, skipping all
powersz¥*1 and higher, and then equating @eients. It is natural to require that
Inp + @ — 1 — Ny < 1, so that the maximal powers of the two sums in (24.36) are
adjacent. If one chooses + n, + 2 = N + 1, then, for each cufblengthN, the
integersn, andny, are uniquely determined from a linear system of equatiohg T
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price we pay is that the so obtained fia@ents depend on the cuifdN. One can
now study convergence of the dbeientsa;, andb;, with respect to increasing
values ofN, or various quantities derived froay andb;. Note that the leading
codficientsag andby determine the prefactd® in (24.34), cf. (24.23). The re-
summed expression can also be used to compute zeros, ingidesiole the radius
of convergence of the cycle expansiﬁmjzi.

The scheme outlined in this section tacitly assumes thap@sentation of
form (24.33) holds in a disc of radius 1 aroun& 1. Convergence is improved
further if additional information about the asymptoticssaims like (24.32) is used
to improve the ansatz (24.35).

24.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytictoaration of sums
of the form (24.32) without explicitly relying on an ansa24(35). The main
idea is to rewrite the sum (24.32) as a sum over integrals thithhelp of the
Poisson summation formula and find an analytic continuatiogach integral by
contour deformation. In order to do so, we need to knowrtleependence of
the codficientsh, = h(n) explicitly for all n. If the codficients are not known
analytically, one may proceed by approximating the largpehavior in the form

h(n) = n(Cy1+Cont+..), n#0,

and determine the constar@snumerically from periodic orbit data. By using the
Poisson resummation identity

0 )

Z 6(x—n) = Z exp(Zrimx), (24.37)

N=—co m=—co

we may write the sum as (24.32)
1(2) = 2h(0) + D f dx € Mh(x) 2", (24.38)
2 m=—co V0

The continuous variabl& corresponds to the discrete summation indeand it
is convenient to write = r exp(o) from now on. The integrals are still not con-
vergent forr > 0, but an analytical continuation can be found by considetire
contour integral, where the contour goes out along the rdal enakes a quarter
circle to either the positive or negative imaginary axis goes back to zero. By
letting the radius of the circle go to infinity, we essenyiatbtate the line of inte-
gration from the real onto the imaginary axis. For the= O term in (24.38), we
transformx — ix and the integral takes on the form

fw dxh(X) r* e =i fm dx hix) rixe™>.
0 0

inter - 12sep2003 ChaosBook.org version13, Dec 31 2009



CHAPTER 24. INTERMITTENCY 478

The integrand is now exponentially decreasing fora# 0 ando- # 0 or 2r. The
last condition reminds us again of the existence of a brantfatcRez > 1. By
the same technique, we find the analytic continuation fathallother integrals in
(24.38). The real axis is then rotated accordingte> sign(m)ix where signifn)
refers to the sign ofn.

f dx 2 IMXh(x) r¥e o = 4 f dx h(ix) r=X e x@im=o)
0 0

Changing summation and integration, we can carry out theaarm| explicitly
and one finally obtains the compact expression

fd = 1h(0)+i f wdxl’(ix)rixe’x‘r (24.39)

f X e [h('x)rlx e - h(—ix)r’ixe"‘r].

The transformation from the original sum to the two integrial (24.39) is exact
forr < 1, and provides an analytic continuation for 0. The expression (24.39)
is especially useful for anficient numerical calculations of a dynamical zeta
function for|z > 1, which is essential when searching for its zeros and poles.

24.3.3 Curvature contributions

So far, we have discussed only the fundamental t&ifn, t, in (24.31), and

showed how to deal with such power series with algebraicddigreasing coef-
ficients. The fundamental term determines the main straattithe zeta function
in terms of the leading order branch cut. Corrections to ltéhzeros and poles
of the dynamical zeta function as well as the leading andesualihg order terms
in expansions like (24.33) are contained in the curvatumagen (24.31). The

first curvature correction is the 2-cycle sum

1
E(tmn - tmtn) B

gk
Nl

T
L

with algebraically decaying céigcients which again diverge fdg > 1. The
analytically continued curvature terms have as usual brants along the positive
real z axis. Our ability to calculate the higher order curvatunene depends on
how much we know about the cycle weigltts,. The form of the cycle stability
(24.5) suggests that,, decrease asymptotically as

1

(nm)+1/s (24.40)

tmn ~
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for 2-cycles, and in general forcycles as

1

B CCTS E
If we happen to know the cycle weights m,..m, analytically, we may proceed as
in sect. 24.3.2, transform the multiple sums into multipieegrals and rotate the
integration contours.

We have reached the edge of what has been accomplished s@émputing
and what is worth the dynamical zeta functions from periaatigit data. In the
next section, we describe a probabilistic method appleeablintermittent maps
which does not rely on periodic orbits.

24.4 BER zeta functions

X
J So far we have focused on 1-d models as the simplest settiwbigh to
investigate dynamical implications of marginal fixed psintWe now take an al-
together diferent track and describe how probabilistic methods may hglared
in order to write down approximate dynamical zeta functiforantermittent sys-
tems.

We will discuss the method in a very general setting, for a flovarbitrary
dimension. The key idea is to introduce a surface of sedficguch that all tra-
jectories traversing this section will have spent some tioth near the marginal
stable fixed point anh the chaotic phase. An important quantity in what follows
is (3.5), thefirst return timer(x), or the time of flight of a trajectory starting in
x to the next return to the surface of sect®n The period of a periodic orbip
intersecting the” sectionn, times is

-1

(40,
0

n,

=

=~
)

where f(x) is the Poincaré map, ang, € ¥ is a periodic point. The dynamical
zeta function (19.15)

AoeBAo-sTp np—1
s = [(1-Z5) . Aem X atoe.  (@aan
p k=0

chapter 17

associated with the observalalé) captures the dynamics of both the flandthe
Poincaré map. The dynamical zeta function for the flow isimietd as 1£(s,8) =
1/£(1, s, B), and the dynamical zeta function for the discrete time €ari@ map is
1/¢(z ) = 1/¢(z.0,B).
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Our basic assumption will bprobabilistic.  We assume that the chaotic in-
terludes render the consecutieturn (or recurrencg times T(x;), T(xi+1) and ob-
servablesi(x), a(xi.1) effectively uncorrelated. Consider the quanéfg®on)-sT(o.n)
averaged over the surface of secti®n With the above probabilistic assumption
the largen behavior is

<e6A(xo,n)—sT(xo‘n)>{P - (f e(ia(x)—srp(x)dx)n ,
p

wherep(X) is the invariant density of the Poincaré map. This typeeadidvior is
equivalent to there being only one zexgs, 8) = [ €3-S p(x)dxof 1/¢(z s.8)
in the B plane. In the language of Ruelle-Pollicott resonancesrtgans that
there is an infinite gap to the first resonance. This in turnliesghat ¥(z s, B)

may be written as remark 17.1

108 = 2= [ 0 Wpax (24.42)

where we have neglected a possible analytic and non-zefacpwe The dynam-
ical zeta function of the flow is now

Y2(sB) = 1zl sp) =1- L 09 p(x)e W lx (24.43)

Normally, the best one can hope for is a finite gap to the leadi#sonance of
the Poincaré map. with the above dynamical zeta functidy approximatively
valid. Asitis derived from an approximation due to Baladikenann, and Ruelle,
we shall refer to it as the BER zeta functiof¢ger(s, £) in what follows.

A central role is played by the probability distribution @fturn times

W) = fp 5(r - 1(9)p(9dx (24.44)

exercise 25.6

The BER zeta function 4 = 0 is then given in terms of the Laplace transform of
this distribution

1/aer(s) = 1 fo Y(r)edr

exercise 24.5

Example 24.1 Return times for the Bernoulli map. For the Bernoulli shift map

(23.6)

x> f(X) =2xmod 1,
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one easily derives the distribution of return times

anﬁ n>1

The BER zeta function becomes (by the discrete Laplace transform (18.9))

o o
1/{ger(@d = 1—Zlﬁn2"=l—2§
n=1 n=1
_ -z _
S 127 7 (@/(L-2/Ao). (24.45)

Thanks to the uniformity of the piecewise linear map measure (17.19) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the periodic point 0

pruned.

Example 24.2 Return times for the model of sect. 24.2.1. For the toy model of
sect. 24.2.1 one gets ¢y = |IMyl, and yin = IMy|(1 - b)/(1 - a), forn > 2, leading to a

BER zeta function

1/iger@ = 1-AMil - ) IMilZ,

n=2

which again coincides with the exact result, (24.10).

It may seem surprising that the BER approximation produgestaesults in
the two examples above. The reason for this peculiarityashbth these systems
are piecewise linear and have complete Markov partitions.lohg as the map
is piecewise linear and complete, and the probabilistic@pmation is exactly
fulfilled, the cycle expansion curvature terms vanish. TE&RBzeta function and
the fundamental part of a cycle expansion discussed in 86ct.1 are indeed
intricately related, but not identical in general. In peutar, note that the BER zeta
function obeys the flow conservation sum rule (22.11) by tanton, whereas
the fundamental part of a cycle expansion as a rule does not.

Résum é

The presence of marginally stable fixed points and cyclesgés the analytic
structure of dynamical zeta functions and the rules for tonsng cycle ex-
pansions. The marginal orbits have to be omitted, and thé ayxpansions
now need to include families of infinitely many longer andden unstable or-
bits which accumulate toward the marginally stable cyctestrelations for such
non-hyperbolic systems may decay algebraically with theagieates controlled
by the branch cuts of dynamical zeta functions. Comparedute pyperbolic
systems, the physical consequences are drastic: expahéetays are replaced
by slow power-law decays, and transport properties, suctheslifusion may
become anomalous.
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Commentary

Remark 24.1 What about the evolution operator formalism? The main virtue of evo-
lution operators was their semigroup property (17.25).sThas natural for hyperbolic
systems where instabilities grow exponentially, and eNofuoperators capture this be-
havior due to their multiplicative nature. Whether the enimn operator formalism is a
good way to capture the slow, power law instabilities ofiintitent dynamics is less clear.
The approach taken here leads us to a formulation in terndyémical zeta functions
rather than spectral determinants, circumventing evafudiperators altogether. It is not
known if the spectral determinants formulation would yiaelty benefits when applied to
intermittent chaos. Some results on spectral determirsanttsntermittency can be found
in [24.2]. A useful mathematical technique to deal with &etl marginally stable fixed
pointis that ofinducing that is, replacing the intermittent map by a completelydnpplic
map with infinite alphabet and redefining the discrete timehave used this method im-
plicitly by changing from a finite to an infinite alphabet. Wefer to refs. [24.3, 24.20]
for detailed discussions of this technique, as well as apfitins to 1-dimensional maps.

Remark 24.2 Intermittency. Intermittency was discovered by Manneville and Pomeatd|24.

in their study of the Lorentz system. They demonstratedithaeighborhood of param-
eter valuer, = 16607 the mean duration of the periodic motion scalesras I(c)"/2.

In ref. [24.5] they explained this phenomenon in terms ofdirhensional map (such as
(24.1)) near tangent bifurcation, and classified possifges of intermittency.

Piecewise linear models like the one considered here haga beidied by Gas-
pard and Wang [24.6]. The escape problem has here beendifeditaving ref. [24.7],
resummations following ref. [24.8]. The proof of the bourg#t27) can be found in
P. Dahlqgvist’s notes oGhaosBook.org/PDahlqvistEscape.ps.gz.

Farey map (20.31) has been studied widely in the contexttefrimttent dynamics,
for example in refs. [24.16, 24.17, 20.3, 24.18, 24.19, 2024.2]. The Fredholm deter-
minant and the dynamical zeta functions for the Farey maB@@&nd the related Gauss
shift map (16.46) have been studied by Mayer [24.16]. Heeslthe continued fraction
transformation to the Riemann zeta function, and constrai¢ilbert space on which the
evolution operator is self-adjoint, and its eigenvaluesexponentially spaced, just as for
the dynamical zeta functions [24.24] for “Axiom A” hyperlosystems.

Remark 24.3 Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller's monogra!®]2s a highly recommended
introduction to these methods.

Remark 24.4 Probabilistic methods, BER zeta functions.  Probabilistic description
of intermittent chaos was introduced by Geisal and Thomdel[l]. The BER approx-
imation studied here is inspired by Baladi, Eckmann and RU&K.14], with further
developments in refs. [24.13, 24.15].
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Exercises

24.1. Integral representation of Jonquiere functions. 24.6. Accelerated difusion. ~ Consider a map, such th:

24.2.

24.3.

24.4.

24.5.

exerlnter - 6jun2003

Check the integral representation

z 00 é_«u—l
Iza) = Wfo 4 for a>0.(24.46)

Note how the denominator is connected to Bose-
Einstein distribution. Computd(x + i) — J(x — i€) for
arealx> 1.

Power law correction to a power law. Expand

(24.20) further and derive the leading power law correc-
tion to (24.23).

Power-law fall off. In cycle expansions the stabilitiesp4.7.

of orbits do not always behave in a geometric fashion.
Consider the mafh

1
0.8]
0.6]
0.4]

0.2

02 04 06 08 1

This map behaves as — x asx — 0. Define a sym-
bolic dynamics for this map by assigning 0 to the points
that land on the interval [@/2) and 1 to the points that
land on (¥2,1]. Show that the stability of orbits that
spend a long time on the 0 side goes&sin particular,
show that

2
A go0 1~ N
Q00

n

Power law fall-off of Floquet multipliers in the sta-
dium billiard **. From the cycle expansions point
of view, the most important consequence of the shear in
J" for long sequences of rotation bounagsin (8.13)

is that theA,, grows only as a power law in number of
bounces:

Anocng. (24.47)
Check.
Probabilistic zeta function for maps. Derive the

probabilistic zeta function for a map with recurrence dis-
tribution .

h = f, but now running branches are turner into st
ing branches and vice versa, so tha2,B, 4 are stan
ing while 0 leads to both positive and negative jul
Build the corresponding dynamical zeta function
show that

t for @ >2
tint  for a=2
o2t ~{ T for ae(L,2)
t?/Int for a=1
t2 for a € (0,1)

Anomalous diffusion (hyperbolic maps).  Anoma
lous difusive properties are associated to devia
from linearity of the variance of the phase variable
are looking at: this means thefflision constant (17.1
either vanishes or diverges. We briefly illustrate in
exercise how the local local properties of a map are
cial to account for anomalous behavior even for h)
bolic systems.

Consider a class of piecewise linear maps, relev:
the problem of the onset offilusion, defined by

AX for xe O,xﬂ
a—Ae, X=X for xe|x}, x5
fe(®) = ¢ 1-A(x-Xx3) for xe|x3,x;
l-a+ A Ix=x7| for xe|x;, %
1+A(x-1) for xe xg,l]

whereA = (1/3 - €)1, A = (1/3 - 2¢¥7), A, =
e a=1+e, X" = 1/3,x) = Xt -7, %5 = xF+€llY
and the usual symmetry properties (25.11) are sati
Thus this class of maps is characterized by two e
ing windows (through which the fiusion process m
take place) of size€/”: the exponeng mimicks the o
der of the maximum for a continuous map, while pi
wise linearity, besides making curvatures vanish
leading to finite cycle expansions, prevents the ap
ance of stable cycles. The symbolic dynamics is
ily described once we consider a sequence of pi
eter valuesien}, wheree, = A~ ™D: we then pa
tition the unit interval though the sequence of pt
0, X7, X", X5, X[, X, %;,1 and label the correspond
sub—intervals 1s,, S, 2, dp, da, 3: symbolic dynamics
described by an unrestricted grammar over the follo
set of symbols

(1,2,3,5-1,d:-3  #=ab ik=mm-
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This leads to the following dynamical zeta function: a matter of fact, from (24.49) we get the asymptotic be-
27 7 gl _;haviorD ~ €7, which shows how the onset offtlision
HHza) =1-—"-—=- 4t:osh(z)eﬂ7‘1F (1 - X) is governed by the order of the map at its maximum.

f hich, by (25.8 t
rom which, by ( ) we ge Remark 24.5 Onset of diffusion for continuous maps.

26" IAM(1 - 1/A) 2 he zoology of behavior for continuous maps at the
1-2_1 _461/7—1( ml )(24'4 nset of difusion is described in refs. [25.15, 25.16,
M \ATASLA) T ATEI-L/AR 24.25]: our treatment for piecewise linear maps was
The main interest in this expression is that it allows ex- introduced in ref. [24.26].
ploring howD vanishes in the — 0 (m— ) limit: as

D=
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