Chapter 22

Why cycle?

“Progress was a labyrinth ... people plunging blindly in

and then rushing wildly back, shouting that they had found

it ... the invisible king the élan vital the principle of due

tion ... writing a book, starting a war, founding a schodl...
—F. Scott FitzgeraldThis Side of Paradise

operator formalism. Here we slow down in order to develop edimgertip

I N THE PRECEDING CHAPTERS We have moved rather briskly through the evolution
feeling for the traces of evolution operators.

22.1 Escaperates

We start by verifying the claim (17.11) that for a nice hyp#it flow the trace of
the evolution operator grows exponentially with time. ddes again the game
of pinball of figure 1.1. Designate by a state space region that encloses the
three disks, say the surface of the taklall pinball directions. The fraction of
initial points whose trajectories start out within the stapace regiom and recur
within that region at the timeis given by

fM(t):ﬁ f fM dxdys(y - () . (22.1)

This quantity is eminently measurable and physically ggéng in a variety of
problems spanning nuclear physics to celestial mechanite integral overx
takes care of all possible initial pinballs; the integraéoy checks whether they
are still within M by the timet. If the dynamics is bounded, and envelops the
entire accessible state spafg(t) = 1 for all t. However, if trajectories exit
the recurrence fraction decreases with time. For exampietrajectory that falls
off the pinball table in figure 1.1 is gone for good.
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These observations can be made more concrete by examieipgntiall phase
space of figure 1.9. With each pinball bounce the initial ¢omals that survive
get thinned out, each strip yielding two thinner strips with. The total fraction
of survivors (1.2) aften bounces is given by

L
P . 22.2
iy gi [IMil, (22.2)

wherei is a binary label of theth strip, and|M;| is the area of theth strip.
The phase space volume is preserved by the flow, so the sfrgsnavors are
contracted along the stable eigen-directions, and ejedted) the unstable eigen-
directions. As a crude estimate of the number of survivotthénith strip, assume
that the spreading of a ray of trajectories per bounce isngbsea factorA, the
mean value of the expanding eigenvalue of the correspondegbian matrix
of the flow, and replacéM;| by the phase space strip width estimpt|/|M| ~
1/A;. This estimate of a size of a neighborhood (given already. &7 )is right in
spirit, but not without drawbacks. One problem is that ingr@hthe eigenvalues
of a Jacobian matrix for a finite segment of a trajectory havewariant meaning;
they depend on the choice of coordinates. However, we saheipter 18 that the
sizes of neighborhoods are determined by Floquet multgplié periodic points,
and those are invariant under smooth coordinate transtansga

In the approximatiorfn receives 2 contributions of equal size

PR RSO M- LS (22.3)

>l
>l

up to pre-exponential factors. We see here the interplalgeofwo key ingredients

of chaos first alluded to in sect. 1.3.1: the escape yatguals local expansion
rate (the Lyapunov exponent= In A), minus the rate of global reinjection back
into the system (the topological entropy= In 2).

As at each bounce one loses routinely the same fraction jettomies, one
expects the sum (22.2) to fallfoexponentially withn. More precisely, by the
hyperbolicity assumption of sect. 18.1.1 the expandingmiglue of the Jacobian
matrix of the flow is exponentially bounded from both above aelow,

1 < |Aminl < A < [Amad, (22.4)

and the area of each strip in (22.2) is boundedAgyad < IMi| < |A" |. Replac-

ing |IMi] in (22.2) by its over (under) estimate§ in termg®f,ay, |An,:i:,| immedi-
ately leads to exponential bound¥/|(®max)" < T'n < (2/|Amin)", i.€.,

1 -
IN|Amay —IN2 > —ﬁlnl"n > In|Aminl —In2. (22.5)
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The argument based on (22.5) establishes only that the segye= —% InT,
has a lower and an upper bound for amyin order to prove thag, converge to the
limit y, we first show that for hyperbolic systems the sum over sonitervals
(22.2) can be replaced by the sum over periodic orbit stagsli By (22.4) the size
of M; strip can be bounded by the stability of ith periodic point:

1 IMi 1
RGN (22.8)
for any periodic point of periodn, with constant€; dependent on the dynamical
system but independent of The meaning of these bounds is that for longer and
longer cycles in a system of bounded hyperbolicity, thergimig of theith strip is
better and better approximated by the derivatives evaluaitethe periodic point
within the strip.  Hence the survival probability can be bded close to the
periodic point stability sum

\ O vl 4
CiTa< ) vy <CeTn (22.7)
i

wherel, = Zi(”) 1/|Ai| is the asymptotic trace sum (18.26). In this way we have
established that for hyperbolic systems the survival poditya sum (22.2) can be

replaced by the periodic orbit sum (18.26). exercise 22.1
exercise 16.4

We conclude that for hyperbolic, locally unstable flows treefion (22.1) of
initial x whose trajectories remain trapped with¥ up to timet is expected to
decay exponentially,

Tyt o« e,

wherey is the asymptoti@scape ratelefined by

y=—im %In Cp(t). (22.8)

22.2 Natural measurein termsof periodic orbits

We now refine the reasoning of sect. 22.1. Consider the t&&&)in the asymp-
totic limit (18.25):

0 pA(x)
trL" = fdx(i(x— (X)) SN » Z Gﬁ|A»|
1
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The factor Z|Aj| was interpreted in (22.2) as the area of ithephase space strip.
Hence tr£" is a discretization of théntegral [ dxé”"® approximated by a tes-
sellation into strips centered on periodic pointsfigure 1.11, with the volume
of theith neighborhood given by estimae(;| ~ 1/|A;|, ande’"® estimated by
e#A"(%) its value at théth periodic point. If the symbolic dynamics is a complete,
any rectangle§.m--- S.51% - - - Sn] of sect. 12.3.1 always contains the periodic
point S, SS1%2 - - - v, hence even though the periodic points are of measure
zero (just like rationals in the unit interval), they are demn the non—wandering
set. Equipped with a measure for the associated rectangt@dir orbits suf-
fice to cover the entire non—wandering set. The averagé®6fevaluated on the
non-wandering set is therefore given by the trace, propeiyalized sq1) = 1:

O a0
~ # - Z“i HAX) (22.9)
2 IAl i

(&),

Herey; is thenormalized natural measure

()
D=1, pi = € /IAl, (22.10)

correct both for the closed systems as well as the open sysiesect. 17.1.3.

Unlike brute numerical slicing of the integration spaceiah arbitrary lattice
(for a critique, see sect. 16.3), the periodic orbit thesrgmart, as it automatically
partitions integrals by the intrinsic topology of the flomdaassigns to each tile
the invariant natural measure.

22.2.1 Unstableperiodic orbits are dense

(L. Rondoni and P. Cvitanovic)

Our goal in sect. 17.1 was to evaluate the space and timegacrxpectation
value (17.9). An average over all periodic orbits can acd®hghe job only if
the periodic orbits fully explore the asymptotically acsibte state space.

Why should the unstable periodic points end up being densecycles are
intuitively expected to bdensebecause on a connected chaotic set a typical trajec-
tory is expected to behave ergodically, and pass infinitedypyrtimes arbitrarily
close to any point on the set, including the initial pointfoé trajectory itself. The
argument is more or less the following. Take a partitiomdfin arbitrarily small
regions, and consider particles that start out in reghdp and return to it inn
steps after some peregrination in state space. In pantj@ufzarticle might return
a little to the left of its original position, while a closeighbor might return a
little to the right of its original position. By assumptiothe flow is continuous,
so generically one expects to be able to gently move thaimptint in such a

getused - 14jun2006 ChaosBook.org version13, Dec 31 2009



CHAPTER 22. WHY CYCLE? 423

way that the trajectory returns precisely to the initialripi.e., one expects a pe-
riodic point of periodn in cell i. As we diminish the size of regions;, aiming

a trajectory that returns td4; becomes increasingly fiiicult. Therefore, we are
guaranteed that unstable orbits of larger and larger periedlensely interspersed
in the asymptotic non—wandering set.

The above argument is heuristic, by no means guaranteedrko ama it must
be checked for the particular system at hand. A variety obdigbut insufi-
ciently mixing counter-examples can be constructed - thetrfamiliar being a
quasiperiodic motion on a torus.

22.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories rencainfined for all times,
escape rate (22.8) vanishes —sp = 0, and the leading eigenvalue of the Perron-
Frobenius operator (16.10) is simply expg) = 1. Conservation of material flow
thus implies that for bound flows cycle expansions of dynaieta functions
and spectral determinants satisfy ex@i@iv conservatiorsum rules:

(1
1 =1 =
1£(0.0) Z Ty whi
F(0,0) = 1—ch(o,0):o (22.11)
n=1

obtained by setting = 0 in (20.15), (20.16) cycle weights = e ST /|Ap| —
1/IApl . These sum rules depend neither on the cycle peflgdsor on the ob-
servablea(x) under investigation, but only on the cycle stabiliti®g1, Ap2, -+,
Apd, and their significance is purely geometric: they are a meastihow well
periodic orbits tessellate the state space. Conservafiomaterial flow provides
the first and very useful test of the quality of finite cycledémtruncations, and is
something that you should always check first when constrgeicycle expansion
for a bounded flow.

The trace formula version of the flow conservation flow sune rcbmes in
two varieties, one for the maps, and another for the flows. 8y flonservation
the leading eigenvalue & = 0, and for maps (20.14) yields

1
tr LM = — = 14+eMy . 22.12
Pl (#2142

For flows one can apply this rule by grouping together cyctesnft = T to
t=T+AT

1 T<ITp<T+AT Tp 1 T+AT (L e51t
[E— _— t s
AT ; [det(1 )| AT fT (treter)
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00

- 141 es—'T(eSv“—l)zlJreSlH.u (22.13)
AT 4L s, T

As is usual for the fixed level trace sums, the convergenc@2f.@) is controled
by the gap between the leading and the next-to-leading eagigzs of the evolu-
tion operator.

22.4 Correlation functions

Thetime correlation function Gg(t) of two observable#\ and B along the tra-
jectory x(t) = f'(xo) is defined as

1 (T
Caslti o) = Jim = fo drAX(T + ))B(X(7)), X0 = x(0). (22.14)

If the system is ergodic, with invariant continuous meagu(&)dx, then correla-
tion functions do not depend og (apart from a set of zero measure), and may be
computed by a state space average as well

Cag(t) = fM d%0 po(x0)A(F'(x0)) B(Xo) - (22.19)

For a chaotic system we expect that time evolution will lodse information
contained in the initial conditions, so th@kg(t) will approach theuncorrelated
limit (A) - (B). As a matter of fact the asymptotic decay of correlation fioms

Cag = Cag— (A)(B) (22.16)

for any pair of observables coincides with the definitiomoking a fundamental
property in ergodic theory. We now assurt®) = O (otherwise we may define
a new observable bB(x) — (B)). Our purpose is now to connect the asymptotic
behavior of correlation functions with the spectrum of thegrBn-Frobenius oper-
ator £. We can write (22.15) as

Calt) = fM dx fM dy AY)BOpo(5(y - 1(4).

and recover the evolution operator
Cantt) = [ dx [ dy AL 0BOIP000
M M
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We recall that in sect. 16.1 we showed th&t) is the eigenvector of. corre-
sponding to probability conservation

f dy L1(x y)py) = p(¥).
M

Now, we can expand thedependent part in terms of the eigenbasigof

B(Xpo(X) = ), CapalX).

a=0

wherepo(X) is the natural measure. Since the average of the left haledsizero
the codficientco must vanish. The action of then can be written as

Coclt) = e, [ dy Aty (22.17)

a#0

exercise 22.2

We see immediately that if the spectrum hagag, i.e., if the second largest
leading eigenvalue is isolated from the largest eigenvédge= 0) then (22.17)
impliesexponentiadecay of correlations

Cag(t) ~ e,

The correlation decay rate= s; then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading migkie of the Perron-
Frobenius operator), while the choice of a particular olsele influences only
the prefactor.

Correlation functions are often accessible from time semeasurable in lab-
oratory experiments and numerical simulations: moredwey are linked to trans-
port exponents.

22.5 Traceformulasvs. level sums

§
J Trace formulas (18.10) and (18.23) diverge precisely wioere would
like to use them, as equal to eigenvalues,. Instead, one can proceed as fol-
lows; according to (18.27) the “level” sums (all symbol sg$ of lengthn) are
asymptotically going likee™"

A (x)
Al

ieFixfn
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so annth order estimateyy, of the leading eigenvalue is given by

BA(X) @SN
1= Z AT (22.18)
ieFixfn !

which generates a “normalized measure.” Th&dlilty with estimating this1 —
oo limit is at least twofold:

1. due to the exponential growth in number of intervals, drel éxponen-
tial decrease in attainable accuracy, the maximattainable experimentally or
numerically is in practice of order of something between 2@o

2. the pre-asymptotic sequence of finite estimatgsis not unique, because
the sumd’, depend on how we define the escape region, and because irmlgener
the areasV(; in the sum (22.2) should be weighted by the density of ind@idi-
tions xp. For example, an overall measuring unit rescalivig— aM; introduces
1/n corrections ins;, defined by the log of the sum (22.8§) — s — Ina/n.

This can be partially fixed by defining a level average

A"(X) gsn
<eﬁA(S)> = E eﬂ—es (22.19)
O Fm A

and requiring that the ratios of successive levels satisfy

_ <eGA(S(n)) )(n+ 1)
(ng(W)(n)

This avoids the worst problem with the formula (22.18), thevitable ¥n cor-
rections due to its lack of rescaling invariance. Howevegnethough much pub-
lished pondering of “chaos” relies on it, there is no needsfmch gymnastics: the
dynamical zeta functions and spectral determinants agadyrinvariant not only
under linear rescalings, but undat smooth nonlinear conjugacies— h(x), and
require non — oo extrapolations to asymptotic times. Comparing with theleyc
expansions (20.7) we see what th&etience is; while in the level sum approach
we keep increasing exponentially the number of terms withraference to the
fact that most are already known from shorter estimateshercycle expansions
short terms dominate, longer ones enter only as exponlgrsialall corrections.

The beauty of the trace formulas is that they are coordiatitin independent:
both |det(1— Mp)| = |det(L — MTp(x))| and e = &A™ contribution to the
cycle weightt, are independent of the starting periodic point pointFor the
Jacobian matriM, this follows from the chain rule for derivatives, and &t
from the fact that the integral ovefA ™ is evaluated along a closed loop. In
addition,|det(1— Mp)| is invariant under smooth coordinate transformations.
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Résum é

We conclude this chapter by a general comment on the relafitme finite trace
sums such as (22.2) to the spectral determinants and dyalpe&ta functions.
One might be tempted to believe that given a deterministe, misum like (22.2)
could be evaluated to any desired precision. For short fimites this is indeed
true: every regiomM; in (22.2) can be accurately delineated, and there is no need
for fancy theory. However, if the dynamics is unstable, logaiations in initial
conditions grow exponentially and in finite time attain theesof the system. The
difficulty with estimating th& — oo limit from (22.2) is then at least twofold:

1. due to the exponential growth in number of intervals, drel éxponen-
tial decrease in attainable accuracy, the maximattainable experimentally or
numerically is in practice of order of something between 2@p

2. the pre-asymptotic sequence of finite estimatgis not unique, because
the sumd’, depend on how we define the escape region, and because irlgener
the areagM;| in the sum (22.2) should be weighted by the density of inigal

In contrast, the dynamical zeta functions and spectrakaitents are invari-
ant underall smooth nonlinear conjugacies— h(x), not only linear rescalings,
and require nm — oo extrapolations.

Commentary

Remark 22.1 Nonhyperbolic measures. gy = 1/|Aj| is the natural measure only for
the strictly hyperbolic systems. For non-hyperbolic sysiethe measure might develop
cusps. For example, for Ulam type maps (unimodal maps widdratic critical point
mapped onto the “left” unstable fixed poirg, discussed in more detail in chapter 24),
the measure develops a square-root singularity of ityele:

1
Mo = W . (22.20)
The thermodynamics averages are still expected to conwertiee “hyperbolic” phase
where the positive entropy of unstable orbits dominates theemarginal orbits, but they
fail in the “non-hyperbolic” phase. The general case remainclear [12.13, 22.2, 22.3,
22.5].

Remark 22.2 Trace formula periodic orbit averaging. The cycle averaging formulas
are not the first thing that one would intuitively write dowthe approximate trace for-
mulas are more accessibly heuristically. The trace fornamkraging (22.13) seems to
have be discussed for the first time by Hannay and Ozorio desilan[22.8, 6.9]. An-
other novelty of the cycle averaging formulas and one ofrthrdin virtues, in contrast
to the explicit analytic results such as those of ref. [20ig}that their evaluatiodoes
notrequire any explicit construction of the (coordinate degent) eigenfunctions of the
Perron-Frobenius operator (i.e., the natural measgje
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Remark 22.3 Role of noise in dynamical systems.  In any physical application the
dynamics is always accompanied by additional externalenoEhe noise can be char-
acterized by its strengthr and distribution. Lyapunov exponents, correlation decay a
dynamo rate can be defined in this case the same way as in grenitgstic case. You
might fear that noise completely destroys the results ddrhere. However, one can show
that the deterministic formulas remain valid to accuracynparable with noise width if
the noise level is small. A small level of noise even helpg asakes the dynamics more
ergodic, with deterministically non-communicating pasfshe state space now weakly
connected due to the noise, making periodic orbit theoryiegipe to non-ergodic sys-
tems. For small amplitude noise one can expand

A=+l + ot + ...,

around the deterministic averagag The expansion cdicientsay, ay, ... can also be
expressed via periodic orbit formulas. The calculationhafse cofficients is one of the
challenges facing periodic orbit theory, discussed in.f@f8.9, 16.10, 16.11].

Remark 22.4 Escape rates. A lucid introduction to escape from repellers is given by
Kadandf and Tang [22.9]. For a review of transient chaos see refs1{222.12]. The
¢{—function formulation is given by Ruelle [22.13] and W. Baand M. Pollicott [22.14]
and discussed in ref. [22.15]. Altmann and Tel [22.16] givaéegailed study of escape
rates, with citations to more recent literature.

Exercises

22.1. Escaperate of the logistic map.

f

01

(a) Calculate the fraction of trajectories remaining
trapped in the interval [] for the logistic map

f(3) = AL - (2x— 19, (22.21) fio

b
and determine tha dependence of the escape rate 00 ot 10 M

y(A) numerically. foo = AgX
(b) Work out a numerical method for calculating the f(x) = ;Ol - /S\m((:: g)) Ijl_
lengths of intervals of trajectories remaining stuck fié = Slt(X -1)

for n iterations of the map.

(c) What is your expectation about thedependence with a 4-interval state space Markov partition

near the critical valué, = 1? M = (Moo Mow, Mio, Maa)

{[0. b/Ao]. (b/ Ao, bI(b, c|(c, 1]}

22.2. Four-scale map correlation decay rate. Consider
the piecewise-linear map (a) computesys, Sio, C.
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(b) Show that the 2-cycle Floquet multiplier does not
depend orb,

 Moh
(Ao-1)(A1+1)"
(c) Write down the [2<2] Perron-Frobenius operator

acting on the space of densities piecewise constant
over the four partitions.

(d) Construct the corresponding transition graph.

(e) Write down the corresponding spectral determin-
ant.

(f) Show that the escape rate vanishes, — In(z) =
0.

Determine the spectrum of the Perron-Frobenius
operator on the space of densities piecewise con-
stant over the four partitions. Show that the second

largest eigenvalue of the %; =-1+ Aiu - Ail

Is this value consistent with the tent map value
previously computed in exercise 16.4 (with the ap-
propriate choice ofAo, A1, ¢}).

(optional) Is this next-to leading eigenvalue still
correct if the Perron-Frobenius operator acts on
the space of analytic functions?

Ao1 = S01810 =

=

(9

(h

=

G

=

22.3. Lyapunov exponentsfor 1-dimensional maps.  Ex-
tend your cycle expansion programs so that the first and

the second moments of observables can be computed.

Use it to compute the Lyapunov exponent for some or
all of the following maps:

(a) the piecewise-linear skew tent, flow conserving
map

_f Aox if 0<x<Agh
e = { Al-%  if At<x<l
A1 =Ao/(Ao-1).
(b) the Ulam mapf(x) = 4x(1 - x).
(c) the skew Ulam map

f(X) = Aox(1 - X)(1 - bX), (22.22)

References
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1/A0 = Xe(1-Xc)(1-bx) . In our numerical work
we fix (arbitrarily, the value chosen in ref. [20.3])
b= 0.6, so

f(x) = 0.1218x(1 - x)(1 - 0.6 x)

with a peakf(xc) = 1 atx. = 0.7.

the repeller off (x) = Ax(1-Xx), for eitherA = 9/2
or A = 6 (this is a continuation of exercise 20.2).

d

=

(e) forthe 2-branch flow conserving map

fo(X) z—t(h—p+ ‘/(h—p)2+4hx)

1
s(h+p-1) (22.23)

1 / 2
+% (h+ p—1)2+4h(x-p),

with a 2-interval state space Markov partition
M = {Mo, M1} = {[0, pl, (p, 1]} . This is a non-
linear perturbation of thén = 0 Bernoulli shift
map (23.6); the first 15 eigenvalues of the Perron-
Frobenius operator are listed in ref. [22.1] for
p = 0.8, h = 0.1. Use these parameter values
when computing the Lyapunov exponent.

fi(x) =

Cases (a) and (b) can be computed analytically; cases
(c), (d) and (e) require numerical computation of cycle
stabilities. Just to see whether the theory is worth the
trouble, also cross check your cycle expansions results
for cases (c) and (d) with Lyapunov exponent computed
by direct numerical averaging along trajectories of ran-
domly chosen initial points:

(f) trajectory-trajectory separation (17.27) (hint:
rescalesx every so often, to avoid numerical over-
flows),

(9) iterated stability (17.32).

How good is the numerical accuracy compared with the
periodic orbit theory predictions?
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