Chapter 22

Why cycle?

“Progress was a labyrinth ... people plunging blindly in and then rushing wildly back, shouting that they had found it ... the invisible king the clan vital the principle of evolution ... writing a book, starting a war, founding a school....”

—F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the evolution operator formalism. Here we slow down in order to develop some fingertip feeling for the traces of evolution operators.

22.1 Escape rates

We start by verifying the claim (17.11) that for a nice hyperbolic flow the trace of the evolution operator grows exponentially with time. Consider again the game of pinball of figure 1.1. Designate by M a state space region that encloses the three disks, say the surface of the table \times all pinball directions. The fraction of initial points whose trajectories start out within the state space region M and recur within that region at the time t is given by

$$\hat{\Gamma}_M(t) = \frac{1}{|M|} \int_M \int_M f(x) \delta(y - f(x)) \, dx \, dy.$$

(22.1)

This quantity is eminently measurable and physically interesting in a variety of problems spanning nuclear physics to celestial mechanics. The integral over x takes care of all possible initial pinballs; the integral over y checks whether they are still within M by the time t. If the dynamics is bounded, and M envelops the entire accessible state space, $\hat{\Gamma}_M(t) = 1$ for all t. However, if trajectories exit M the recurrence fraction decreases with time. For example, any trajectory that falls off the pinball table in figure 1.1 is gone for good.

CHAPTER 22. WHY CYCLE?

These observations can be made more concrete by examining the pinball phase space of figure 1.9. With each pinball bounce the initial conditions that survive get thinned out, each strip yielding two thinner strips within it. The total fraction of survivors (1.2) after n bounces is given by

$$\hat{\Gamma}_n = \frac{1}{|M|} \sum_{i} |M_i|,$$

(22.2)

where i is a binary label of the ith strip, and $|M_i|$ is the area of the ith strip. The phase space volume is preserved by the flow, so the strips of survivors are contracted along the stable eigen-directions, and ejected along the unstable eigen-directions. As a crude estimate of the number of survivors in the ith strip, assume that the spreading of a ray of trajectories per bounce is given by a factor Λ, the mean value of the expanding eigenvalue of the corresponding Jacobian matrix of the flow, and replace $|M_i|$ by the phase space strip width estimate $|M_i|/|M| \sim \Lambda^{-1}$.

This estimate of a size of a neighborhood (given already on p. 97) is right in spirit, but not without drawbacks. One problem is that in general the eigenvalues of a Jacobian matrix for a finite segment of a trajectory have no invariant meaning; they depend on the choice of coordinates. However, we saw in chapter 18 that the sizes of neighborhoods are determined by Floquet multipliers of periodic points, and those are invariant under smooth coordinate transformations.

In the approximation $\hat{\Gamma}_n$ receives 2^n contributions of equal size

$$\hat{\Gamma}_1 \sim \frac{1}{\Lambda} + \frac{1}{\Lambda} \cdots, \quad \hat{\Gamma}_n \sim \frac{2^n}{\Lambda^n} = e^{-n(1-\Lambda)} = e^{-ny},$$

(22.3)

up to pre-exponential factors. We see here the interplay of the two key ingredients of chaos first alluded to in sect. 1.3.1: the escape rate γ equals local expansion rate (the Lyapunov exponent $\alpha = \ln \Lambda$), minus the rate of global reinjection back into the system (the topological entropy $h = \ln 2$).

As at each bounce one loses routinely the same fraction of trajectories, one expects the sum (22.2) to fall off exponentially with n. More precisely, by the hyperbolicity assumption of sect. 18.1.1 the expanding eigenvalue of the Jacobian matrix of the flow is exponentially bounded from both above and below,

$$1 < |\Lambda_{\max}| \leq |\Lambda(x)| \leq |\Lambda_{\min}|,$$

(22.4)

and the area of each strip in (22.2) is bounded by $|\Lambda_{\min}| \leq |M_i| \leq |\Lambda_{\max}|$. Replacing $|M_i|$ in (22.2) by its over (under) estimates in terms of $|\Lambda_{\max}|, |\Lambda_{\min}|$ immediately leads to exponential bounds $(2|\Lambda_{\max}|)^n \leq \hat{\Gamma}_n \leq (2|\Lambda_{\min}|)^n$, i.e.,

$$\ln |\Lambda_{\max}| - \ln 2 \geq -\frac{1}{n} \ln \hat{\Gamma}_n \geq \ln |\Lambda_{\min}| - \ln 2.$$
CHAPTER 22. WHY CYCLE?

The argument based on (22.5) establishes only that the sequence $\gamma_n = -\frac{1}{t} \ln \Gamma_n$ has a lower and an upper bound for any n. In order to prove that γ_n converges to the limit γ, we first show that for hyperbolic systems the sum over survivor intervals (22.2) can be replaced by the sum over periodic orbit stabilities. By (22.4) the size of M_i strip can be bounded by the stability Λ_i of ith periodic point:

$$C_1 \frac{1}{|\Lambda_i|} < \frac{|M_i|}{|\Lambda_i|} < C_2 \frac{1}{|\Lambda_i|},$$

(22.6)

for any periodic point i of period n, with constants C_j dependent on the dynamical system but independent of n. The meaning of these bounds is that for longer and longer cycles in a system of bounded hyperbolicity, the shrinking of the nth strip is better and better approximated by the derivatives evaluated on the periodic point within the strip. Hence the survival probability can be bounded close to the periodic point stability sum

$$C_1 \Gamma_n < \sum_{i} \frac{|M_i|}{|\Lambda_i|} < C_2 \Gamma_n,$$

(22.7)

where $\Gamma_n = \sum_{i} \frac{1}{|\Lambda_i|}$ is the asymptotic trace sum (18.26). In this way we have established that for hyperbolic systems the survival probability sum (22.2) can be replaced by the periodic orbit sum (18.26).

We conclude that for hyperbolic, locally unstable flows the fraction (22.1) of initial x whose trajectories remain trapped within M up to time t is expected to decay exponentially,

$$\Gamma_M(t) \approx e^{-\gamma t},$$

where γ is the asymptotic escape rate defined by

$$\gamma = \lim_{t \to \infty} \frac{1}{t} \ln \Gamma_M(t).$$

(22.8)

22.2 Natural measure in terms of periodic orbits

We now refine the reasoning of sect. 22.1. Consider the trace (18.7) in the asymptotic limit (18.25):

$$\text{tr} L^n = \int dx \delta(x - f^n(x)) e^{B^n(x)} = \sum_{i} \frac{e^{B^n(x_i)}}{|\Lambda_i|}.$$
way that the trajectory returns precisely to the initial point, i.e., one expects a periodic point of period \(n \) in cell \(i \). As we diminish the size of regions \(M_i \), aiming a trajectory that returns to \(M_i \) becomes increasingly difficult. Therefore, we are guaranteed that unstable orbits of larger and larger period are densely interspersed in the asymptotic non–wandering set.

The above argument is heuristic, by no means guaranteed to work, and it must be checked for the particular system at hand. A variety of ergodic but insufficiently mixing counter-examples can be constructed - the most familiar being a quasiperiodic motion on a torus.

22.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remain confined for all times, escape rate (22.8) vanishes \(\gamma = - \alpha_0 = 0 \), and the leading eigenvalue of the Perron-Frobenius operator (16.10) is simply \(\exp(-\gamma) = 1 \). Conservation of material flow thus implies that for bound flows cycle expansions of dynamical zeta functions and spectral determinants satisfy exact flow conservation sum rules:

\[
1/\zeta(0,0) = 1 + \sum_{n} \frac{(-1)^n}{|\lambda_{p_1} \cdots \lambda_{p_n}|} = 0
\]

\[
F(0,0) = 1 - \sum_{n} c_n(0,0) = 0
\]

(22.11)

obtained by setting \(s = 0 \) in (20.15), (20.16) cycle weights \(T_p = e^{-\gamma T_p}/|\lambda_p| \rightarrow 1/|\lambda_p| \). These sum rules depend neither on the cycle periods \(T_p \) nor on the observable \(a(x) \) under investigation, but only on the cycle stabilities \(\lambda_{p_1}, \lambda_{p_2}, \cdots \), \(\lambda_{p_{p'}}, \) and their significance is purely geometric: they are a measure of how well periodic orbits tessellate the state space. Conservation of material flow provides the first and very useful test of the quality of finite cycle length truncations, and is something that you should always check first when constructing a cycle expansion for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes in two varieties, one for the maps, and another for the flows. By flow conservation the leading eigenvalue is \(\alpha_0 = 0 \), and for maps (20.14) yields

\[
\text{tr } L^n = \sum_{\alpha \in \text{Per}(\alpha)} \frac{1}{\det (1 - M'(x_\alpha))} = 1 + e^{\nu_\alpha} + \ldots
\]

(22.12)

For flows one can apply this rule by grouping together cycles from \(t = T \) to \(t = T + \Delta T \)

\[
\frac{1}{\Delta T} \sum_{p} \frac{T_p}{\det (1 - M_p)} = \frac{1}{\Delta T} \int_{T}^{T + \Delta T} dt \left(1 + e^{\nu_\alpha} + \ldots \right)
\]

(22.13)

As is usual for the fixed level trace sums, the convergence of (22.12) is controlled by the gap between the leading and the next-to-leading eigenvalues of the evolution operator.

22.4 Correlation functions

The time correlation function \(C_{AB}(t) \) of two observables \(A \) and \(B \) along the trajectory \(x(t) = f'(x_0) \) is defined as

\[
C_{AB}(t; x_0) = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T dx A(x(t + \tau))B(x(\tau)) \quad x_0 = x(0).
\]

(22.14)

If the system is ergodic, with invariant continuous measure \(\rho_0(x) \), then correlation functions do not depend on \(x_0 \) (apart from a set of zero measure), and may be computed by a state space average as well

\[
C_{AB}(t) = \int_M dx \rho_0(x) A(f'(x_0))B(x_0).
\]

(22.15)

For a chaotic system we expect that time evolution will loose the information contained in the initial conditions, so that \(C_{AB}(t) \) will approach the uncorrelated limit \(\langle A \rangle \cdot \langle B \rangle \). As a matter of fact the asymptotic decay of correlation functions

\[
\tilde{C}_{AB} := C_{AB} - \langle A \rangle \cdot \langle B \rangle
\]

(22.16)

for any pair of observables coincides with the definition of mixing, a fundamental property in ergodic theory. We now assume \(\langle B \rangle = 0 \) (otherwise we may define a new observable by \(B(x) - \langle B \rangle \)). Our purpose is now to connect the asymptotic behavior of correlation functions with the spectrum of the Perron-Frobenius operator \(L \). We can write (22.15) as

\[
\tilde{C}_{AB}(t) = \int_M dx \int_M dy \ A(y)B(x) \delta(y - f'(x)).
\]

and recover the evolution operator

\[
\tilde{C}_{AB}(t) = \int_M dx \int_M dy \ A(y) \tilde{L}(y, x)B(x) \rho_0(x)
\]

(22.17)
22. WHY CYCLE?

We recall that in sect. 16.1 we showed that \(\rho(x) \) is the eigenvector of \(L \) corresponding to probability conservation

\[
\int_M dy \ L'(x,y) \rho(y) = \rho(x).
\]

Now, we can expand the \(x \) dependent part in terms of the eigenbasis of \(L \):

\[
B(x) \rho(x) = \sum_{n=0}^\infty c_n \rho_n(x),
\]

where \(\rho_n(x) \) is the natural measure. Since the average of the left hand side is zero the coefficient \(c_0 \) must vanish. The action of \(L \) then can be written as

\[
C_{AB}(t) = \sum_{n=0}^\infty c_n \rho_n \int_M dy A(y) \rho_n(y), \quad (22.17)
\]

We see immediately that if the spectrum has a gap, i.e., if the second largest leading eigenvalue is isolated from the largest eigenvalue \((s_0 = 0) \) then (22.17) implies exponential decay of correlations

\[
C_{AB}(t) \sim e^{-\nu t}.
\]

The correlation decay rate \(\nu = s_1 \) then depends only on intrinsic properties of the dynamical system (the position of the next-to-leading eigenvalue of the Perron-Frobenius operator), while the choice of a particular observable influences only the prefactor.

Correlation functions are often accessible from time series measurable in laboratory experiments and numerical simulations; moreover they are linked to transport exponents.

22.5 Trace formulas vs. level sums

Trace formulas (18.10) and (18.23) diverge precisely where one would like to use them, at \(s \) equal to eigenvalues \(s_n \). Instead, one can proceed as follows: according to (18.27) the “level” sums (all symbol strings of length \(n \)) are asymptotically going like \(e^{\nu n} \)

\[
\sum_{n \in \mathbb{N}^+} \frac{\det (1 - M_p)}{[\Lambda]} e^{\nu n}.
\]

so an \(\nu \)th order estimate \(s_n \) of the leading eigenvalue is given by

\[
1 = \sum_{i \in \mathbb{N}^+} \frac{\det (1 - A^i)}{[\Lambda]} e^{-s_n i} \quad (22.18)
\]

which generates a “normalized measure.” The difficulty with estimating this \(n \to \infty \) limit is at least twofold:

1. due to the exponential growth in number of intervals, and the exponential decrease in attainable accuracy, the maximal \(n \) attainable experimentally or numerically is in practice of order of something between 5 to 20.

2. the pre-asymptotic sequence of finite estimates \(s_n \) is not unique, because the sums \(\Gamma_n \) depend on how we define the escape region, and because in general the areas \(M_n \) in the sum (22.2) should be weighted by the density of initial conditions \(\rho_0 \). For example, an overall measuring unit rescaling \(M_n \to M_n \) introduces \(1/n \) corrections in \(s_n \) defined by the log of the sum (22.8): \(s_n \to s_n - \ln n/n \). This can be partially fixed by defining a level average

\[
\langle e^{\nu (n)} \rangle_{(s_0)} := \sum_{n \in \mathbb{N}^+} \frac{\det (1 - A^i)}{[\Lambda]} e^{-s_n i} \quad (22.19)
\]

and requiring that the ratios of successive levels satisfy

\[
1 = \frac{\langle e^{\nu (n+1)} \rangle_{(s_0)}}{\langle e^{\nu (n)} \rangle_{(s_0)}}.
\]

This avoids the worst problem with the formula (22.18), the inevitable \(1/n \) corrections due to its lack of rescaling invariance. However, even though much published pondering of “chaos” relies on it, there is no need for such gymnastics: the dynamical zeta functions and spectral determinants are already invariant not only under linear rescalings, but under all smooth nonlinear conjugacies \(x \to h(x) \), and require no \(n \to \infty \) extrapolations to asymptotic times. Comparing with the cycle expansions (20.7) we see what the difference is; while in the level sum approach we keep increasing exponentially the number of terms with no reference to the fact that most are already known from shorter estimates, in the cycle expansions short terms dominate, longer ones enter only as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization independent: both \(\det (1 - M_p) \) and \(\det (1 - M_p'(x)) \) and \(\det (1 - M_p'(x)) \) contribution to the cycle weight \(t_p \) are independent of the starting periodic point \(x \). For the Jacobian matrix \(M_p \) this follows from the chain rule for derivatives, and for \(M_p' \) from the fact that the integral over \(e^{\nu (n)} \) is evaluated along a closed loop. In addition, \(\det (1 - M_p) \) is invariant under smooth coordinate transformations.
Résumé

We conclude this chapter by a general comment on the relation of the finite trace sums such as (22.2) to the spectral determinants and dynamical zeta functions. One might be tempted to believe that given a deterministic rule, a sum like (22.2) could be evaluated to any desired precision. For short finite times this is indeed true: every region A_n in (22.2) can be accurately delineated, and there is no need for fancy theory. However, if the dynamics is unstable, local variations in initial conditions grow exponentially and in finite time attain the size of the system. The difficulty with estimating the $n \to \infty$ limit from (22.2) is then at least twofold:

1. due to the exponential growth in number of intervals, and the exponential decrease in attainable accuracy, the maximal n attainable experimentally or numerically is in practice of order of something between 5 to 20;

2. the pre-asymptotic sequence of finite estimates γ_n is not unique, because the sums $\bar{\gamma}_n$ depend on how we define the escape region, and because in general the areas $|A_n|$ in the sum (22.2) should be weighted by the density of initial x_0.

In contrast, the dynamical zeta functions and spectral determinants are invariant under all smooth nonlinear conjugacies $x \to h(x)$, not only linear rescalings, and require no $n \to \infty$ extrapolations.

Commentary

Remark 22.1 Nonhyperbolic measures. $\mu_i = 1/|A_i|$ is the natural measure only for the strictly hyperbolic systems. For non-hyperbolic systems, the measure might develop cusps. For example, for Ulam type maps (unimodal maps with quadratic critical point mapped onto the "left" unstable fixed point x_0, discussed in more detail in chapter 24), the measure develops a square-root singularity on the \bar{B} cycle:

$$\mu_0 = \frac{1}{|A_0|^{1/2}}.$$ \hspace{1cm} (22.20)

The thermodynamics averages are still expected to converge in the "hyperbolic" phase where the positive entropy of unstable orbits dominates over the marginal orbits, but they fail in the "non-hyperbolic" phase. The general case remains unclear [12.13, 22.2, 22.3, 22.5].

Remark 22.2 Trace formula periodic orbit averaging. The cycle averaging formulas are not the first thing that one would intuitively write down; the approximate trace formulas are more accessibly heuristically. The trace formula averaging (22.13) seems to have been discussed for the first time by Hannay and Ozorio de Almeida [22.8, 6.9]. Another novelty of the cycle averaging formulas and one of their main virtues, in contrast to the explicit analytic results such as those of ref. [20.4], is that their evaluation does not require any explicit construction of the (coordinate dependent) eigenfunctions of the Perron-Frobenius operator (i.e., the natural measure ρ_0).

Exercises

22.1. Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining trapped in the interval [0, 1] for the logistic map

$$f(x) = A(1 - (2x - 1)^2),$$ \hspace{1cm} (22.21)

and determine the A dependence of the escape rate $\gamma(A)$ numerically.

(b) Work out a numerical method for calculating the lengths of intervals of trajectories remaining stuck for n iterations of the map.

(c) What is your expectation about the A dependence near the critical value $A_c = 1$?

22.2. Four-scale map correlation decay rate. Consider the piecewise-linear map

$$f(x) = \begin{cases} f_{00} = A_0x \\ f_{01} = x_0(x-b) + 1 \\ f_{11} = A_1(x-b) + 1 \\ f_{10} = x_1(x-1) \end{cases}$$

with a 4-interval state space Markov partition

$$M = \{M_{00}, M_{01}, M_{10}, M_{11}\} = \{(0, b), (b, A_0b), (b, c), (c, 1)\}.$$

(a) compute $\rho_{01}, \rho_{10}, \rho_{11}$.
\(\Lambda_{01} = \frac{A_0 A_1}{(A_0 - 1)(A_1 + 1)} \).

(c) Write down the \([2 \times 2]\) Perron-Frobenius operator acting on the space of densities piecewise constant over the four partitions.

(d) Construct the corresponding transition graph.

(e) Write down the corresponding spectral determinant.

(f) Show that the escape rate vanishes, \(\gamma = -\ln(\gamma_0) = 0 \).

(g) Determine the spectrum of the Perron-Frobenius operator on the space of densities piecewise constant over the four partitions. Show that the second largest eigenvalue of the is \(\frac{1}{2} \), with a peak at \(x = 1 \).

(h) Is this value consistent with the tent map value previously computed in exercise 16.4 (with the appropriate choice of \([A_0, A_1, c]\))?

(i) (optional) Is this next-to-leading eigenvalue still correct if the Perron-Frobenius operator acts on the space of analytic functions?

22.3. Lyapunov exponents for 1-dimensional maps. Extend your cycle expansion programs so that the first and the second moments of observables can be computed. Use it to compute the Lyapunov exponent for some or all of the following maps:

(a) the piecewise-linear skew tent, flow conserving map

\[
 f(x) = \begin{cases}
 A_0 x & \text{if } 0 \leq x < A_0^{-1}, \\
 A_1 (1 - x) & \text{if } A_0^{-1} \leq x \leq 1.
\end{cases}
\]

(b) the Ulam map \(f(x) = 4x(1 - x) \).

(c) the skew Ulam map

\[
 f(x) = A_0 A_1 (1 - x)(1 - bx),
\]

where \(A_0 = 0.6 \), so

\[
 f(x) = 0.1218 x(1 - x)(1 - 0.6 x)
\]

with a peak \(f(x_0) = 1 \) at \(x_0 = 0.7 \).

(d) the repellor of \(f(x) = Ax(1 - x) \), for either \(A = 9/2 \) or \(A = 6 \) (this is a continuation of exercise 20.2).

22.4. References

