
Chapter 22

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had found
it ... the invisible king the élan vital the principle of evolu-
tion ... writing a book, starting a war, founding a school....”

—F. Scott Fitzgerald,This Side of Paradise

I     we have moved rather briskly through the evolution
operator formalism. Here we slow down in order to develop some fingertip
feeling for the traces of evolution operators.

22.1 Escape rates

We start by verifying the claim (17.11) that for a nice hyperbolic flow the trace of
the evolution operator grows exponentially with time. Consider again the game
of pinball of figure 1.1. Designate byM a state space region that encloses the
three disks, say the surface of the table× all pinball directions. The fraction of
initial points whose trajectories start out within the state space regionM and recur
within that region at the timet is given by

Γ̂M(t) =
1
|M|

∫ ∫

M

dxdyδ
(

y− f t(x)
)

. (22.1)

This quantity is eminently measurable and physically interesting in a variety of
problems spanning nuclear physics to celestial mechanics.The integral overx
takes care of all possible initial pinballs; the integral over y checks whether they
are still withinM by the timet. If the dynamics is bounded, andM envelops the
entire accessible state space,Γ̂M(t) = 1 for all t. However, if trajectories exitM
the recurrence fraction decreases with time. For example, any trajectory that falls
off the pinball table in figure 1.1 is gone for good.
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These observations can be made more concrete by examining the pinball phase
space of figure 1.9. With each pinball bounce the initial conditions that survive
get thinned out, each strip yielding two thinner strips within it. The total fraction
of survivors (1.2) aftern bounces is given by

Γ̂n =
1
|M|

(n)
∑

i

|Mi | , (22.2)

where i is a binary label of theith strip, and|Mi | is the area of theith strip.
The phase space volume is preserved by the flow, so the strips of survivors are
contracted along the stable eigen-directions, and ejectedalong the unstable eigen-
directions. As a crude estimate of the number of survivors inthe ith strip, assume
that the spreading of a ray of trajectories per bounce is given by a factorΛ, the
mean value of the expanding eigenvalue of the correspondingJacobian matrix
of the flow, and replace|Mi | by the phase space strip width estimate|Mi |/|M| ∼

1/Λi . This estimate of a size of a neighborhood (given already on p. 97) is right in
spirit, but not without drawbacks. One problem is that in general the eigenvalues
of a Jacobian matrix for a finite segment of a trajectory have no invariant meaning;
they depend on the choice of coordinates. However, we saw in chapter 18 that the
sizes of neighborhoods are determined by Floquet multipliers of periodic points,
and those are invariant under smooth coordinate transformations.

In the approximation̂Γn receives 2n contributions of equal size

Γ̂1 ∼
1
Λ
+

1
Λ
, · · · , Γ̂n ∼

2n

Λn = e−n(λ−h)
= e−nγ , (22.3)

up to pre-exponential factors. We see here the interplay of the two key ingredients
of chaos first alluded to in sect. 1.3.1: the escape rateγ equals local expansion
rate (the Lyapunov exponentλ = lnΛ), minus the rate of global reinjection back
into the system (the topological entropyh = ln 2).

As at each bounce one loses routinely the same fraction of trajectories, one
expects the sum (22.2) to fall off exponentially withn. More precisely, by the
hyperbolicity assumption of sect. 18.1.1 the expanding eigenvalue of the Jacobian
matrix of the flow is exponentially bounded from both above and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (22.4)

and the area of each strip in (22.2) is bounded by|Λ−n
max| ≤ |Mi | ≤ |Λ

−n
min|. Replac-

ing |Mi | in (22.2) by its over (under) estimates in terms of|Λmax|, |Λmin| immedi-
ately leads to exponential bounds (2/|Λmax|)

n ≤ Γ̂n ≤ (2/|Λmin|)
n, i.e.,

ln |Λmax| − ln 2 ≥ −
1
n

ln Γ̂n ≥ ln |Λmin| − ln 2 . (22.5)
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The argument based on (22.5) establishes only that the sequenceγn = −
1
n ln Γn

has a lower and an upper bound for anyn. In order to prove thatγn converge to the
limit γ, we first show that for hyperbolic systems the sum over survivor intervals
(22.2) can be replaced by the sum over periodic orbit stabilities. By (22.4) the size
ofMi strip can be bounded by the stabilityΛi of ith periodic point:

C1
1
|Λi |
<
|Mi |

|M|
< C2

1
|Λi |
, (22.6)

for any periodic pointi of periodn, with constantsC j dependent on the dynamical
system but independent ofn. The meaning of these bounds is that for longer and
longer cycles in a system of bounded hyperbolicity, the shrinking of theith strip is
better and better approximated by the derivatives evaluated on the periodic point
within the strip. Hence the survival probability can be bounded close to the
periodic point stability sum

Ĉ1 Γn <

(n)
∑

i

|Mi |

|M|
< Ĉ2 Γn , (22.7)

whereΓn =
∑(n)

i 1/|Λi | is the asymptotic trace sum (18.26). In this way we have
established that for hyperbolic systems the survival probability sum (22.2) can be
replaced by the periodic orbit sum (18.26). exercise 22.1

exercise 16.4

We conclude that for hyperbolic, locally unstable flows the fraction (22.1) of
initial x whose trajectories remain trapped withinM up to timet is expected to
decay exponentially,

ΓM(t) ∝ e−γt ,

whereγ is the asymptoticescape ratedefined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (22.8)

22.2 Natural measure in terms of periodic orbits

We now refine the reasoning of sect. 22.1. Consider the trace (18.7) in the asymp-
totic limit (18.25):

trLn
=

∫

dxδ
(

x− f n(x)
)

eβA
n(x) ≈

(n)
∑

i

eβA
n(xi )

|Λi |
.
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The factor 1/|Λi | was interpreted in (22.2) as the area of theith phase space strip.
Hence trLn is a discretization of theintegral

∫

dxeβA
n(x) approximated by a tes-

sellation into strips centered on periodic pointsxi , figure 1.11, with the volume
of the ith neighborhood given by estimate|Mi | ∼ 1/|Λi |, andeβA

n(x) estimated by
eβA

n(xi ), its value at theith periodic point. If the symbolic dynamics is a complete,
any rectangle [s−m · · · s0.s1s2 · · · sn] of sect. 12.3.1 always contains the periodic
point s−m · · · s0s1s2 · · · sn; hence even though the periodic points are of measure
zero (just like rationals in the unit interval), they are dense on the non–wandering
set. Equipped with a measure for the associated rectangle, periodic orbits suf-
fice to cover the entire non–wandering set. The average ofeβA

n
evaluated on the

non–wandering set is therefore given by the trace, properlynormalized so〈1〉 = 1:

〈

eβA
n〉

n
≈

∑(n)
i eβA

n(xi )/|Λi |
∑(n)

i 1/|Λi |
=

(n)
∑

i

µi eβA
n(xi ) . (22.9)

Hereµi is thenormalized natural measure

(n)
∑

i

µi = 1 , µi = enγ/|Λi | , (22.10)

correct both for the closed systems as well as the open systems of sect. 17.1.3.

Unlike brute numerical slicing of the integration space into an arbitrary lattice
(for a critique, see sect. 16.3), the periodic orbit theory is smart, as it automatically
partitions integrals by the intrinsic topology of the flow, and assigns to each tile
the invariant natural measureµi.

22.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect. 17.1 was to evaluate the space and time averaged expectation
value (17.9). An average over all periodic orbits can accomplish the job only if
the periodic orbits fully explore the asymptotically accessible state space.

Why should the unstable periodic points end up being dense? The cycles are
intuitively expected to bedensebecause on a connected chaotic set a typical trajec-
tory is expected to behave ergodically, and pass infinitely many times arbitrarily
close to any point on the set, including the initial point of the trajectory itself. The
argument is more or less the following. Take a partition ofM in arbitrarily small
regions, and consider particles that start out in regionMi , and return to it inn
steps after some peregrination in state space. In particular, a particle might return
a little to the left of its original position, while a close neighbor might return a
little to the right of its original position. By assumption,the flow is continuous,
so generically one expects to be able to gently move the initial point in such a
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way that the trajectory returns precisely to the initial point, i.e., one expects a pe-
riodic point of periodn in cell i. As we diminish the size of regionsMi , aiming
a trajectory that returns toMi becomes increasingly difficult. Therefore, we are
guaranteed that unstable orbits of larger and larger periodare densely interspersed
in the asymptotic non–wandering set.

The above argument is heuristic, by no means guaranteed to work, and it must
be checked for the particular system at hand. A variety of ergodic but insuffi-
ciently mixing counter-examples can be constructed - the most familiar being a
quasiperiodic motion on a torus.

22.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remainconfined for all times,
escape rate (22.8) vanishesγ = −s0 = 0, and the leading eigenvalue of the Perron-
Frobenius operator (16.10) is simply exp(−tγ) = 1. Conservation of material flow
thus implies that for bound flows cycle expansions of dynamical zeta functions
and spectral determinants satisfy exactflow conservationsum rules:

1/ζ(0, 0) = 1+
∑′

π

(−1)k

|Λp1 · · ·Λpk |
= 0

F(0, 0) = 1−
∞
∑

n=1

cn(0, 0) = 0 (22.11)

obtained by settings = 0 in (20.15), (20.16) cycle weightstp = e−sTp/|Λp| →

1/|Λp| . These sum rules depend neither on the cycle periodsTp nor on the ob-
servablea(x) under investigation, but only on the cycle stabilitiesΛp,1, Λp,2, · · ·,
Λp,d, and their significance is purely geometric: they are a measure of how well
periodic orbits tessellate the state space. Conservation of material flow provides
the first and very useful test of the quality of finite cycle length truncations, and is
something that you should always check first when constructing a cycle expansion
for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes in
two varieties, one for the maps, and another for the flows. By flow conservation
the leading eigenvalue iss0 = 0, and for maps (20.14) yields

trLn
=

∑

i∈Fix f n

1
|det (1 − Mn(xi)) |

= 1+ es1n
+ . . . . (22.12)

For flows one can apply this rule by grouping together cycles from t = T to
t = T + ∆T

1
∆T

T≤rTp≤T+∆T
∑

p,r

Tp
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

=
1
∆T

∫ T+∆T

T
dt

(

1+ es1t
+ . . .

)
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= 1+
1
∆T

∞
∑

α=1

esαT

sα

(

esα∆T − 1
)

≈ 1+ es1T
+ · · · .(22.13)

As is usual for the fixed level trace sums, the convergence of (22.12) is controled
by the gap between the leading and the next-to-leading eigenvalues of the evolu-
tion operator.

22.4 Correlation functions

The time correlation function CAB(t) of two observablesA andB along the tra-
jectory x(t) = f t(x0) is defined as

CAB(t; x0) = lim
T→∞

1
T

∫ T

0
dτA(x(τ + t))B(x(τ)) , x0 = x(0) . (22.14)

If the system is ergodic, with invariant continuous measureρ0(x)dx, then correla-
tion functions do not depend onx0 (apart from a set of zero measure), and may be
computed by a state space average as well

CAB(t) =
∫

M

dx0 ρ0(x0)A( f t(x0))B(x0) . (22.15)

For a chaotic system we expect that time evolution will loosethe information
contained in the initial conditions, so thatCAB(t) will approach theuncorrelated
limit 〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of correlation functions

ĈAB := CAB− 〈A〉 〈B〉 (22.16)

for any pair of observables coincides with the definition ofmixing, a fundamental
property in ergodic theory. We now assume〈B〉 = 0 (otherwise we may define
a new observable byB(x) − 〈B〉). Our purpose is now to connect the asymptotic
behavior of correlation functions with the spectrum of the Perron-Frobenius oper-
atorL. We can write (22.15) as

C̃AB(t) =
∫

M

dx
∫

M

dy A(y)B(x)ρ0(x)δ(y− f t(x)) ,

and recover the evolution operator

C̃AB(t) =
∫

M

dx
∫

M

dy A(y)Lt(y, x)B(x)ρ0(x)
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We recall that in sect. 16.1 we showed thatρ(x) is the eigenvector ofL corre-
sponding to probability conservation

∫

M

dyLt(x, y)ρ(y) = ρ(x) .

Now, we can expand thex dependent part in terms of the eigenbasis ofL:

B(x)ρ0(x) =
∞
∑

α=0

cαρα(x) ,

whereρ0(x) is the natural measure. Since the average of the left hand side is zero
the coefficientc0 must vanish. The action ofL then can be written as

C̃AB(t) =
∑

α,0

e−sαtcα

∫

M

dy A(y)ρα(y). (22.17)

exercise 22.2

We see immediately that if the spectrum has agap, i.e., if the second largest
leading eigenvalue is isolated from the largest eigenvalue(s0 = 0) then (22.17)
impliesexponentialdecay of correlations

C̃AB(t) ∼ e−νt .

The correlation decay rateν = s1 then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading eigenvalue of the Perron-
Frobenius operator), while the choice of a particular observable influences only
the prefactor.

Correlation functions are often accessible from time series measurable in lab-
oratory experiments and numerical simulations: moreover they are linked to trans-
port exponents.

22.5 Trace formulas vs. level sums

Trace formulas (18.10) and (18.23) diverge precisely whereone would
like to use them, ats equal to eigenvaluessα. Instead, one can proceed as fol-
lows; according to (18.27) the “level” sums (all symbol strings of lengthn) are
asymptotically going likees0n

∑

i∈Fix f n

eβA
n(xi )

|Λi |
→ es0n ,
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so annth order estimates(n) of the leading eigenvalue is given by

1 =
∑

i∈Fix f n

eβA
n(xi )e−s(n)n

|Λi |
(22.18)

which generates a “normalized measure.” The difficulty with estimating thisn→
∞ limit is at least twofold:

1. due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximaln attainable experimentally or
numerically is in practice of order of something between 5 to20.

2. the pre-asymptotic sequence of finite estimatess(n) is not unique, because
the sumsΓn depend on how we define the escape region, and because in general
the areasMi in the sum (22.2) should be weighted by the density of initialcondi-
tions x0. For example, an overall measuring unit rescalingMi → αMi introduces
1/n corrections ins(n) defined by the log of the sum (22.8):s(n) → s(n) − lnα/n.
This can be partially fixed by defining a level average

〈

eβA(s)
〉

(n)
:=

∑

i∈Fix f n

eβA
n(xi )esn

|Λi |
(22.19)

and requiring that the ratios of successive levels satisfy

1 =

〈

eβA(s(n))
〉

(n+1)
〈

eβA(s(n))
〉

(n)

.

This avoids the worst problem with the formula (22.18), the inevitable 1/n cor-
rections due to its lack of rescaling invariance. However, even though much pub-
lished pondering of “chaos” relies on it, there is no need forsuch gymnastics: the
dynamical zeta functions and spectral determinants are already invariant not only
under linear rescalings, but underall smooth nonlinear conjugaciesx→ h(x), and
require non→ ∞ extrapolations to asymptotic times. Comparing with the cycle
expansions (20.7) we see what the difference is; while in the level sum approach
we keep increasing exponentially the number of terms with noreference to the
fact that most are already known from shorter estimates, in the cycle expansions
short terms dominate, longer ones enter only as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization independent:

both
∣

∣

∣

∣

det
(

1 − Mp

)

∣

∣

∣

∣

= |det (1 − MTp(x))| andeβAp = eβA
Tp(x) contribution to the

cycle weighttp are independent of the starting periodic point pointx. For the
Jacobian matrixMp this follows from the chain rule for derivatives, and foreβAp

from the fact that the integral overeβA
t(x) is evaluated along a closed loop. In

addition,
∣

∣

∣

∣

det
(

1 − Mp

)

∣

∣

∣

∣

is invariant under smooth coordinate transformations.
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Résum é

We conclude this chapter by a general comment on the relationof the finite trace
sums such as (22.2) to the spectral determinants and dynamical zeta functions.
One might be tempted to believe that given a deterministic rule, a sum like (22.2)
could be evaluated to any desired precision. For short finitetimes this is indeed
true: every regionMi in (22.2) can be accurately delineated, and there is no need
for fancy theory. However, if the dynamics is unstable, local variations in initial
conditions grow exponentially and in finite time attain the size of the system. The
difficulty with estimating then→ ∞ limit from (22.2) is then at least twofold:

1. due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximaln attainable experimentally or
numerically is in practice of order of something between 5 to20;

2. the pre-asymptotic sequence of finite estimatesγn is not unique, because
the sumŝΓn depend on how we define the escape region, and because in general
the areas|Mi | in the sum (22.2) should be weighted by the density of initialx0.

In contrast, the dynamical zeta functions and spectral determinants are invari-
ant underall smooth nonlinear conjugaciesx → h(x), not only linear rescalings,
and require non→ ∞ extrapolations.

Commentary

Remark 22.1 Nonhyperbolic measures. µi = 1/|Λi | is the natural measure only for
the strictly hyperbolic systems. For non-hyperbolic systems, the measure might develop
cusps. For example, for Ulam type maps (unimodal maps with quadratic critical point
mapped onto the “left” unstable fixed pointx0, discussed in more detail in chapter 24),
the measure develops a square-root singularity on the0 cycle:

µ0 =
1

|Λ0|1/2
. (22.20)

The thermodynamics averages are still expected to convergein the “hyperbolic” phase
where the positive entropy of unstable orbits dominates over the marginal orbits, but they
fail in the “non-hyperbolic” phase. The general case remains unclear [12.13, 22.2, 22.3,
22.5].

Remark 22.2 Trace formula periodic orbit averaging. The cycle averaging formulas
are not the first thing that one would intuitively write down;the approximate trace for-
mulas are more accessibly heuristically. The trace formulaaveraging (22.13) seems to
have be discussed for the first time by Hannay and Ozorio de Almeida [22.8, 6.9]. An-
other novelty of the cycle averaging formulas and one of their main virtues, in contrast
to the explicit analytic results such as those of ref. [20.4], is that their evaluationdoes
not require any explicit construction of the (coordinate dependent) eigenfunctions of the
Perron-Frobenius operator (i.e., the natural measureρ0).
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Remark 22.3 Role of noise in dynamical systems. In any physical application the
dynamics is always accompanied by additional external noise. The noise can be char-
acterized by its strengthσ and distribution. Lyapunov exponents, correlation decay and
dynamo rate can be defined in this case the same way as in the deterministic case. You
might fear that noise completely destroys the results derived here. However, one can show
that the deterministic formulas remain valid to accuracy comparable with noise width if
the noise level is small. A small level of noise even helps as it makes the dynamics more
ergodic, with deterministically non-communicating partsof the state space now weakly
connected due to the noise, making periodic orbit theory applicable to non-ergodic sys-
tems. For small amplitude noise one can expand

a = a0 + a1σ
2
+ a2σ

4
+ ... ,

around the deterministic averagesa0. The expansion coefficientsa1, a2, ... can also be
expressed via periodic orbit formulas. The calculation of these coefficients is one of the
challenges facing periodic orbit theory, discussed in refs. [16.9, 16.10, 16.11].

Remark 22.4 Escape rates. A lucid introduction to escape from repellers is given by
Kadanoff and Tang [22.9]. For a review of transient chaos see refs. [22.10, 22.12]. The
ζ–function formulation is given by Ruelle [22.13] and W. Parry and M. Pollicott [22.14]
and discussed in ref. [22.15]. Altmann and Tel [22.16] give adetailed study of escape
rates, with citations to more recent literature.

Exercises

22.1. Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining
trapped in the interval [0, 1] for the logistic map

f (x) = A(1− (2x− 1)2), (22.21)

and determine theA dependence of the escape rate
γ(A) numerically.

(b) Work out a numerical method for calculating the
lengths of intervals of trajectories remaining stuck
for n iterations of the map.

(c) What is your expectation about theA dependence
near the critical valueAc = 1?

22.2. Four-scale map correlation decay rate. Consider
the piecewise-linear map

f (x) =



























f00 = Λ0x
f01 = s01(x− b) + 1
f11 = Λ1(x− b) + 1
f10 = s10(x− 1)

with a 4-interval state space Markov partition

M = {M00,M01,M10,M11}

= {[0, b/Λ0], (b/Λ0, b](b, c](c, 1]} .

(a) computes01, s10, c.
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(b) Show that the 2-cycle Floquet multiplier does not
depend onb,

Λ01 = s01s10 = −
Λ0Λ1

(Λ0 − 1)(Λ1 + 1)
.

(c) Write down the [2×2] Perron-Frobenius operator
acting on the space of densities piecewise constant
over the four partitions.

(d) Construct the corresponding transition graph.

(e) Write down the corresponding spectral determin-
ant.

(f) Show that the escape rate vanishes,γ = − ln(z0) =
0.

(g) Determine the spectrum of the Perron-Frobenius
operator on the space of densities piecewise con-
stant over the four partitions. Show that the second
largest eigenvalue of the is1z1

= −1+ 1
Λ0
− 1
Λ1

.

(h) Is this value consistent with the tent map value
previously computed in exercise 16.4 (with the ap-
propriate choice of{Λ0,Λ1, c}).

(i) (optional) Is this next-to leading eigenvalue still
correct if the Perron-Frobenius operator acts on
the space of analytic functions?

22.3. Lyapunov exponents for 1-dimensional maps. Ex-
tend your cycle expansion programs so that the first and
the second moments of observables can be computed.
Use it to compute the Lyapunov exponent for some or
all of the following maps:

(a) the piecewise-linear skew tent, flow conserving
map

f (x) =

{

Λ0x if 0 ≤ x < Λ−1
0 ,

Λ1(1− x) if Λ−1
0 ≤ x ≤ 1.

,

Λ1 = Λ0/(Λ0 − 1).

(b) the Ulam mapf (x) = 4x(1− x) .

(c) the skew Ulam map

f (x) = Λ0x(1− x)(1− bx) , (22.22)

1/Λ0 = xc(1− xc)(1−bxc) . In our numerical work
we fix (arbitrarily, the value chosen in ref. [20.3])
b = 0.6, so

f (x) = 0.1218x(1− x)(1− 0.6 x)

with a peakf (xc) = 1 atxc = 0.7.

(d) the repeller off (x) = Ax(1−x), for eitherA = 9/2
or A = 6 (this is a continuation of exercise 20.2).

(e) for the 2-branch flow conserving map

f0(x) =
1
2h

(

h− p+
√

(h− p)2 + 4hx

)

f1(x) =
1
2h

(h+ p− 1) (22.23)

+
1
2h

√

(h+ p− 1)2 + 4h(x− p) ,

with a 2-interval state space Markov partition
M = {M0,M1} = {[0, p], (p, 1]} . This is a non-
linear perturbation of theh = 0 Bernoulli shift
map (23.6); the first 15 eigenvalues of the Perron-
Frobenius operator are listed in ref. [22.1] for
p = 0.8, h = 0.1. Use these parameter values
when computing the Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases
(c), (d) and (e) require numerical computation of cycle
stabilities. Just to see whether the theory is worth the
trouble, also cross check your cycle expansions results
for cases (c) and (d) with Lyapunov exponent computed
by direct numerical averaging along trajectories of ran-
domly chosen initial points:

(f) trajectory-trajectory separation (17.27) (hint:
rescaleδx every so often, to avoid numerical over-
flows),

(g) iterated stability (17.32).

How good is the numerical accuracy compared with the
periodic orbit theory predictions?
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