
Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...] The
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

W  a dynamical system(M, f ), classify its solutions as equilibria,
periodic, and aperiodic, refine the ‘aperiodic’ into wandering and non-
wandering sets, decompose the non-wandering into chain-recurrent sets,

and illustrate various cases with concrete examples, the R¨ossler and Lorenz sys-
tems.

fast track:

chapter 16, p. 309

2.1 Dynamical systems

In a dynamical system we observe the world as it evolves with time. We express
our observations as numbers and record how they change; given sufficiently de-
tailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planetsagainst the celestialsection 1.3

firmament provides an example. Against the daily motion of the stars from East
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CHAPTER 2. GO WITH THE FLOW 38

Figure 2.1: A trajectory traced out by the evolution
rule f t. Starting from the state space pointx, after a
time t, the point is atf t(x).

f (x)f (x)
t

x

to West, the planets distinguish themselves by moving amongthe fixed stars. An-
cients discovered that by knowing a sequence of planet’s positions–latitudes and
longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude inthe celestial sphere
suffices to completely specify the planet’s apparent motion. Allpossible values for
positions and velocities of the planets form thephase spaceof the system. More
generally, a state of a physical system, at a given instant intime, can be represented
by a single point in an abstract space calledstate spaceM (mnemonic: curly ‘M’
for a ‘manifold’). As the system changes, so does therepresentative pointin state
space. We refer to the evolution of such points asdynamics, and the functionf t

which specifies where the representative point is at timet as theevolution rule. remark 2.1

If there is a definite rulef that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministicdynamical system,
the evolution rule takes one point of the state space and mapsit into exactly one
point. However, this is not always possible. For example, knowing the tempera-
ture today is not enough to predict the temperature tomorrow; knowing the value
of a stock today will not determine its value tomorrow. The state space can be en-
larged, in the hope that in a sufficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state of theatmosphere, mea-
sured over many points over the entire planet should be sufficient to determine the
temperature tomorrow. Even that is not quite true, and we areless hopeful when
it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-
ries cannot intersect. We say ‘almost’ because there might exist a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may chapter 12

think such sets a nuisance, but it is quite the contrary–theywill enable us to parti-
tion state space, so that the dynamics can be better understood.

Locally, the state spaceM looks like Rd, meaning that a dynamical evolu-
tion is an initial value problem, withd numbers sufficient to determine what will
happen timet later. Globally, it may be a more complicated manifold formed by
patching together several pieces ofRd, forming a torus, a cylinder, or some other
geometric object. When we need to stress that the dimensiond ofM is greater
than one, we may refer to the pointx ∈ M as xi wherei = 1, 2, 3, . . . , d. If the
dynamics is described by a set of PDEs (partial differential equations), the state
space is the infinite dimensional function space. The evolution rule f t :M→M
tells us where a pointx is inM after a time intervalt.

The pair (M, f ) constitute adynamical system.
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CHAPTER 2. GO WITH THE FLOW 39

Figure 2.2: The evolution rulef tcan be used to map a
regionMi of the state space into the regionf t(Mi).
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The dynamical systems we will be studying are smooth. This isexpressed
mathematically by saying that the evolution rulef t can be differentiated as many
times as needed. Its action on a pointx is sometimes indicated byf (x, t) to re-
mind us thatf is really a function of two variables: the time and a point in state
space. Note that time is relative rather than absolute, so only the time interval is
necessary. This follows from the fact that a point in state space completely de-
termines all future evolution, and it is not necessary to know anything else. The
time parameter can be a real variable (t ∈ R), in which case the evolution is called
a flow, or an integer (t ∈ Z), in which case the evolution advances in discrete
steps in time, given byiteration of a map. The evolution parameter need not be
the physical time; for example, a time-stationary solutionof a partial differential
equation is parameterized by spatial variables. In such situations one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-
selves through their trajectories: given an initial pointx0, the evolution rule traces
out a sequence of pointsx(t) = f t(x0), thetrajectorythrough the pointx0 = x(0).
A trajectory is parameterized by the timet and thus belongs to (f t(x0), t) ∈ M×R. exercise 2.1

By extension, we can also talk of the evolution of a regionMi of the state space:
just apply f t to every point inMi to obtain a new regionf t(Mi), as in figure 2.2.

Becausef t is a single-valued function, any point of the trajectory canbe used
to label the trajectory.

If we mark the trajectory by its initial pointx0, we are describing it in the
Lagrangian coordinates.

The subset of pointsMx0 ⊂ M that belong to the infinite-time trajectory
of a given pointx0 is called theorbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. An orbit is adynamically invariant
notion. While “trajectory” refers to a statex(t) at time instantt, “orbit” refers to
the totality of states that can be reached fromx0, with state spaceM foliated into
a union of such orbits (eachMx0 labeled by a single point belonging to the set,
x0 = x(0) for example).

2.1.1 A classification of possible motions?

What are the possible trajectories? This is a grand question, and there are many
answers, the chapters to follow offering some. Here is the first attempt to classify
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CHAPTER 2. GO WITH THE FLOW 40

Figure 2.3: A periodic point returns to the initial point
after a finite time,x = f Tp(x). Periodic orbitp is the
set of periodic pointsp =Mp = {x1, x2, · · ·} swept out
by the trajectory of any one of them in the finite time
Tp.

x1
x(T) = x(0)

x2

x3

all possible trajectories:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum periodTp

aperiodic: f t(x) , f t′ (x) for all t , t′ .

A periodic orbit (or a cycle) p is the set of pointsMp ⊂ M swept out by a
trajectory that returns to the initial point in a finite time.We refer to a point on a
periodic orbit as aperiodic point, see figure 2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rational numbers are a set of zero
measure on the unit interval. chapter 5

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamicscan also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are theM-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the superposition of M incommen-
surate frequencies) motion on a smooth torus, and families of solutions related by
a continuous symmetry.

The ancients tried to make sense of all dynamics in terms of periodic motions,
epicycles, integrable systems. The embarrassing truth is that for a generic dynam-
ical systems almost all motions are aperiodic. So we refine the classification by
dividing aperiodic motions into two subtypes: those that wander off, and those
that keep coming back.

A point x ∈ M is called awandering point, if there exists an open neighbor-
hoodM0 of x to which the trajectory never returns

f t(x) <M0 for all t > tmin . (2.1)

In physics literature, the dynamics of such state is often referred to astransient.

Wandering points do not take part in the long-time dynamics,so your first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time trajectories, or thenon-wandering set.
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For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity, and replace it by the notionof recurrence. A point
is recurrentor non-wanderingif for any open neighborhoodM0 of x and any time
tmin there exists a later timet, such that

f t(x) ∈ M0 . (2.2)

In other words, the trajectory of a non-wandering point reenters the neighborhood
M0 infinitely often. We shall denote byΩ the non–wandering setof f , i.e., the
union of all the non-wandering points ofM. The setΩ, the non–wandering set of
f , is the key to understanding the long-time behavior of a dynamical system; all
calculations undertaken here will be carried out on non–wandering sets.

So much about individual trajectories. What about clouds ofinitial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flowis globally contracting
onto a subset ofM which we shall refer to as theattractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point, a periodic orbit, aperiodic,
or any combination of the above. The most interesting case isthat of an aperiodic
recurrent attractor, to which we shall refer loosely as astrange attractor. We say example 2.3

‘loosely’, as will soon become apparent that diagnosing andproving existence of
a genuine, card-carrying strange attractor is a highly nontrivial undertaking.

Conversely, if we can enclose the non–wandering setΩ by a connected state
space volumeM0 and then show that almost all points withinM0, but not in
Ω, eventually exitM0, we refer to the non–wandering setΩ as arepeller. An
example of a repeller is not hard to come by–the pinball game of sect. 1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we havegiven up the ancients’
fixation on periodic motions. Nothing could be further from truth. As longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we shall establish control over non–wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better
grip on what chaotic motion might look like, we need to ponderflows in a little
more depth.
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2.2 Flows

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rulef t is a family
of mappings ofM → M parameterized byt ∈ R. Becauset represents a time
interval, any family of mappings that forms an evolution rule must satisfy: exercise 2.2

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′ (x) (the evolution law is the same at all times)

(c) the mapping (x, t) 7→ f t(x) fromM× R intoM is continuous.

We shall often find it convenient to represent functional composition by ‘◦ :’ appendix H.1

f t+s = f t ◦ f s = f t( f s) . (2.3)

The family of mappingsf t(x) thus forms a continuous (forward semi-) group.
Why ‘semi-’group? It may fail to form a group if the dynamics is not reversible,
and the rulef t(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inversef −t( f t(x)) = f 0(x) =
x , in which case the family of mappingsf t(x) does not form a group. In ex-
ceedingly many situations of interest–for times beyond theLyapunov time, for
asymptotic attractors, for dissipative partial differential equations, for systems
with noise, for non-invertible maps–the dynamics cannot berun backwards in
time, hence, the circumspect emphasis onsemigroups. On the other hand, there
are many settings of physical interest, where dynamics is reversible (such as finite-
dimensional Hamiltonian flows), and where the family of evolution mapsf t does
form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.4)

and express the time derivative of a trajectory at pointx(t), exercise 2.3

dx
dτ

∣

∣

∣

∣

∣

τ=0
= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) . (2.5)

as the time derivative of the evolution rule, a vector evaluated at the same point.
By considering all possible trajectories, we obtain the vector ẋ(t) at any point
x ∈ M. Thisvector fieldis a (generalized) velocity field:

ẋ(t) = v(x) . (2.6)
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Figure 2.4: (a) The 2-dimensional vector field for
the Duffing system (2.7), together with a short tra-
jectory segment. (b) The flow lines. Each ‘comet’
represents the same time interval of a trajectory,
starting at the tail and ending at the head. The
longer the comet, the faster the flow in that region.(a) (b)

Newton’s laws, Lagrange’s method, or Hamilton’s method areall familiar pro-
cedures for obtaining a set of differential equations for the vector fieldv(x) that
describes the evolution of a mechanical system. Equations of mechanics may ap-
pear different in form from (2.6), as they are often involve higher time derivatives,
but an equation that is second or higher order in time can always be rewritten as a
set of first order equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.6). At each point of the
state space a vector indicates the local direction in which the trajectory evolves.
The length of the vector|v(x)| is proportional to the speed at the pointx, and the
direction and length ofv(x) changes from point to point. When the state space is a
complicated manifold embedded inRd, one can no longer think of the vector field
as being embedded in the state space. Instead, we have to imagine that each point
x of state space has a different tangent planeTMx attached to it. The vector field
lives in the union of all these tangent planes, a space calledthe tangent bundle
TM.

Example 2.1 A 2-dimensional vector field v(x): A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15y(t) + x(t) − x(t)3 (2.7)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (x(t), y(t)) of state spaceM, but they belong to a different space, the
tangent bundle TM.

If v(xq) = 0 , (2.8)

xq is anequilibrium point(also referred to as astationary, fixed, critical, invariant,
rest, stagnationpoint, zeroof the vector fieldv, standing waveor steady state-
our usage is ‘equilibrium’ for a flow, ‘fixed point’ for a map),and the trajectory
remains forever stuck atxq. Otherwise the trajectory passing throughx0 at time
t = 0 can be obtained by integrating the equations (2.6):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.9)
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Figure 2.5: Lorenz “butterfly” strange attractor. (J.
Halcrow)
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We shall consider here onlyautonomousflows, i.e., flows for which the velocity
field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy
dτ
= w(y, τ) , (2.10)

can always be converted into a system where time does not appear explicitly. exercise 2.4
exercise 2.5To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining

x = {y, τ}, with a stationary vector field

v(x) =

[

w(y, τ)
1

]

. (2.11)

The new flowẋ = v(x) is autonomous, and the trajectoryy(τ) can be read off x(t)
by ignoring the last component ofx.

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation

ẋ = v(x) =

















ẋ
ẏ
ż

















=

















σ(y− x)
ρx− y− xz

xy− bz

















(2.12)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,
and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the
origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at remark 2.3

xEQ1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.13)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows,
but here is a brief synopsis: the EQ0 1-dimensional unstable manifold closes into a
homoclinic orbit at ρ = 13.56. . .. Beyond that, an infinity of associated periodic orbits
are generated, until ρ = 24.74. . ., where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
σ = 10, b = 8/3, ρ = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 9.3. (continued in example 3.5)
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Figure 2.6: A trajectory of the Rössler flow at time
t = 250. (G. Simon)
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Example 2.3 Rössler strange attractor: The Duffing flow of figure 2.4 is bit of
a bore–every trajectory ends up in one of the two attractive equilibrium points. Let’s
construct a flow that does not die out, but exhibits a recurrent dynamics. Start with a
harmonic oscillator

ẋ = −y , ẏ = x . (2.14)

The solutions are reit , re−it , and the whole x-y plane rotates with constant angular
velocity θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x+ ay, a > 0 , (2.15)

or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1+ (a/2) sin 2θ. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value c
by adding

ż= b+ z(x− c) , c > 0 . (2.16)

As x crosses c, z shoots upwards exponentially, z ≃ e(x−c)t. In order to bring it back,
start decreasing x by modifying its equation to

ẋ = −y− z.

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler flow

ẋ = −y− z

ẏ = x+ ay

ż = b+ z(x− c) , a = b = 0.2 , c = 5.7 (2.17)

(for definitiveness, we fix the parameters a, b, c in what follows). The system is asexercise 2.8
simple as they get–it would be linear, were it not for the sole bilinear term zx. Even for
so ‘simple’ a system the nature of long-time solutions is far from obvious.
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There are two repelling equilibrium points (2.8):

x± = (
1
2
± 1

2

√

1− 4ab/c2)(c,−c/a, c/a)

x− ≈ (ab/c,−b/c, b/c) , x+ ≈ (c,−c/a, c/a)

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351)

(x+, y+, z+) = ( 5.6929, −28.464, 28.464) (2.18)

One is close to the origin by construction. The other, some distance away, exists be-
cause the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical in-
tegration. A typical numerically integrated long-time trajectory is sketched in figure 2.6
(see also figure 11.10). Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor. We say ‘seem’ as there exists no proof that suchexercise 3.5
an attractor is asymptotically aperiodic–it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and
similar figures in what follows are examples of ‘strange attractors.’ (continued in
exercise 2.8 and example 3.4) (R. Paškauskas)

The Rössler flow is the simplest flow which exhibits many of the key aspects
of chaotic dynamics; we shall use it and the 3-pinball (see chapter 8) systems
throughout ChaosBook to motivate introduction of Poincar´e sections, return maps,
symbolic dynamics, cycle expansions, and much else. Rössler flow is integrated
in exercise 2.7, its equilibria are determined in exercise 2.8, its Poincaré sections
constructed in exercise 3.1, and the corresponding return Poincaré map computed
in exercise 3.2. Its volume contraction rate is computed in exercise 4.3, its topol-
ogy investigated in exercise 4.4, the shortest Rössler flowcycles are computed
and tabulated in exercise 13.10, and its Lyapunov exponentsevaluated in exer-
cise 17.4.

fast track:

chapter 3, p. 54

2.3 Computing trajectories

On two occasions I have been asked [by members of Par-
liament], ’Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ I am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, youneed to implement
some finite time-step prescription for integration of the equations of motion (2.6).
The simplest is the Euler integrator which advances the trajectory byδτ× velocity
at each time step:

xi → xi + vi(x) δτ . (2.19)
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This might suffice to get you started, but as soon as you need higher numericalac-
curacy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If a ‘sophisticated’ integration routine takes days and gob-exercise 2.6

bles up terabits of memory, you are using brain-damaged highlevel software. Try
writing a few lines of your own Runge-Kutta code in some mundane everyday
language. While you absolutely need to master the requisitenumerical methods,exercise 2.7

this is neither the time nor the place to expound upon them; how you learn them is
your business. And if you have developed some nice routines for solving problems exercise 2.9

in this text or can point another student to some, let us know. exercise 2.10

Résum é

Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the samespirit, turbulence in
spatially extended systems can be described in terms of recurrent spatiotemporal
patterns. Pictorially, dynamics drives a given spatially extended system through
a repertoire of unstable patterns; as we watch a turbulent system evolve, every so
often we catch a glimpse of a familiar pattern. For any finite spatial resolution
and finite time the system follows approximately a pattern belonging to a finite
repertoire of possible patterns, and the long-term dynamics can be thought of as
a walk through the space of such patterns. Recasting this image into mathematics
is the subject of this book.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In this text we denote by the termstate
spacethe set of admissible states of a generald- or∞-dimensional dynamical system, and
reserve the termphase spaceto Hamiltonian 2D-dimensional state spaces, whereD is the
number of Hamiltonian degrees of freedom. If the state spaceis a continuous smooth
manifold much of the literature refers to it as ‘phase space,’ but we find the control engi-
neering usage sharper: in the state space (or ‘time-domain’) description of an autonomous
physical system, the state of the system is represented as a vector within the ‘state space,’
space whose axes are the state variables, and the set of statevariables is related by first-
order differential equations. The distinction made here is needed in atext where one treats
both general dynamical systems and quantum-mechanical systems. The term ‘phase’ has
a precise meaning in wave mechanics, quantum mechanics and dynamics of integrable
systems at the heart of Hamilton’s formulation of Newtonianmechanics, while ‘state
space’ is more descriptive of the way the notion is used in thegeneral theory of dynami-
cal systems. Further confusion arises when prefix spatio- asin ‘spatiotemporal’ is used in
reference to states extended in the (1, 2, or 3-dimensional)physical configuration space.
They may exhibit spatial wave-like behaviors, but theirstate spaceis∞-dimensional.

Much of the literature denotes the vector field in a first orderdifferential equation
(2.6) by f (x) or F(x) or evenX(x), and its integral for timet by the ‘time-t forward map’

flows - 6dec2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 2. GO WITH THE FLOW 48

x(x0, t) = Φ(x0, t) or φt(x0) or something else. As we shall treat here maps and flows on
equal footing, and need to save Greek letters for matters quantum-mechanical, we reserve
the notationf (x) for mapssuch as (2.9), and refer to a state space velocity vector fieldas
v(x). We come to regret this choice very far into the text, only bythe time we delve into
Navier-Stokes equations.

Remark 2.2 Rössler and Duffing flows. The Duffing system (2.7) arises in the study
of electronic circuits [2.1]. The Rössler flow (2.17) is thesimplest flow which exhibits
many of the key aspects of chaotic dynamics. It was introduced in ref. [2.2] as a set of
equations describing no particular physical system, but capturing the essence of Lorenz
chaos in a simplest imaginable smooth flow. Otto Rössler, a man of classical education,
was inspired in this quest by that rarely cited grandfather of chaos, Anaxagoras (456
B.C.). This, and references to earlier work can be found in refs. [2.3, 2.4, 2.5]. We
recommend in particular the inimitable Abraham and Shaw illustrated classic [2.6] for its
beautiful sketches of the Rössler and many other flows. Timothy Jones [2.7] has a number
of interesting simulations on a Drexel website.

Remark 2.3 Lorenz equation. The Lorenz equation (2.12) is the most celebrated
early illustration of “deterministic chaos” [2.8] (but notthe first - the honor goes to Dame
Cartwright [2.9]). Lorenz’s paper, which can be found in reprint collections refs. [2.10,
2.11], is a pleasure to read, and is still one of the best introductions to the physics motivat-
ing such models. For a geophysics derivation, see Rothman course notes [2.12]. The equa-
tions, a set of ODEs inR3, exhibit strange attractors [2.13, 2.14, 2.15]. Frøyland [2.16]
has a nice brief discussion of Lorenz flow. Frøyland and Alfsen [2.17] plot many peri-
odic and heteroclinic orbits of the Lorenz flow; some of the symmetric ones are included
in ref. [2.16]. Guckenheimer-Williams [2.18] and Afraimovich-Bykov-Shilnikov [2.19]
offer in-depth discussion of the Lorenz equation. The most detailed study of the Lorenz
equation was undertaken by Sparrow [2.20]. For a physical interpretation ofρ as “Rayleigh
number.” see Jackson [2.21] and Seydel [2.22]. Lorenz truncation to 3 modes is so drastic
that the model bears no relation to the geophysical hydrodynamics problem that motivated
it. For a detailed pictures of Lorenz invariant manifolds consult Vol II of Jackson [2.21].
Lorenz attractor is a very thin fractal – as we saw, stable manifold thickness is of order
10−4 – whose fractal structure has been accurately resolved by D.Viswanath [2.23, 2.24].
If you wander what analytic function theory has to say about Lorenz, check ref. [2.25].
Refs. [2.26, 2.27] might also be of interest. (continued in remark 9.2)

Remark 2.4 Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its trajectories are locally unstable (positive Lyapunov expo-
nent) and globally mixing (positive entropy). In sect. 17.3we shall define Lyapunov
exponents, and discuss their evaluation, but already at this point it would be handy to
have a few quick numerical methods to diagnose chaotic dynamics. Laskar’sfrequency
analysismethod [2.28] is useful for extracting quasi-periodic and weakly chaotic regions
of state space in Hamiltonian dynamics with many degrees of freedom. For pointers to
other numerical methods, see ref. [2.29].

Remark 2.5 Dynamical systems software: J.D. Meiss [2.30] has maintained for many
yearsSci.nonlinear FAQwhich is now in part superseded by the SIAM Dynamical Sys-
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tems websitewww.dynamicalsystems.org. The website glossary contains most of
Meiss’s FAQ plus new ones, and a up-to-date software list [2.31], with links to DSTool,
xpp, AUTO, etc.. Springer on-lineEncyclopaedia of Mathematicsmaintains links to dy-
namical systems software packages on eom.springer.de/D/d130210.htm. Kuznetsov [1.14]
Appendix D.9 gives an exhaustive overview of software available in 2004. (see also re-
mark 12.1)
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The exercises that you should do haveunderlined titles . The rest (smaller type )
are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1. Trajectories do not intersect. A trajectory in the
state spaceM is the set of points one gets by evolving
x ∈ M forwards and backwards in time:

Cx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group. The trajectory evolutionf t is
a one-parameter semigroup, where (2.3)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the (semi-
)group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other (semi-)group replacing time?

2.3. Almost ODE’s.

(a) Consider the pointx on R evolving according
ẋ = eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ˙x = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that
a point of a vector fieldv where the velocity is zero is a
fixed point of the dynamicsf t.

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’φ

ẋ = −∇φ(x)

wherex ∈ Rd, andφ is a function from that space to the
realsR.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the functionφ.

(b) Show that all extrema ofφ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

2.6. Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for exam-
ple, ref. [2.32]) forẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)

k3 = δτ v(xn + k2/2)

k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

2.7. Rössler flow. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rössler flow (2.17). Does the result look like a ‘strange
attractor’?

2.8. Equilibria of the R össler flow.

(a) Find all equilibrium points (xq, yq, zq) of the
Rössler system (2.17). How many are there?

(b) Assume thatb = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

ǫ = a/c , D = 1− 4ǫ2 , p± = (1±
√

D)/2 .

Express all the equilibria in terms of (c, ǫ,D, p±).
Expand equilibria to the first order inǫ. Note that
it makes sense because fora = b = 0.2, c = 5.7 in
(2.17),ǫ ≈ 0.03. (continued as exercise 3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations nu-
merically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
differential equations has a solution for all times and
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there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in exercise 2.6.
The equation ¨x = −x with initial conditionsx(0) =
2 andẋ = 0 has as solutionx(t) = e−t(1+e2 t) .Can
your integrator reproduce this solution for the in-
terval t ∈ [0, 10]? Check you solution by plotting
the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ+ ẋ− |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.
As initial conditions we will always use ¨x(0) =
ẋ(0) = x(0) = 0 . Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are sig-
nificant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fac-
tor is≈ 2.4).

(d) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists.

2.10. Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to quantization of helium we

shall need to compute classical periodic orbits of the he-
lium system. In this exercise we commence their evalu-
ation for the collinear helium atom (7.6)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
− Z

r2
+

1
r1 + r2

.

The nuclear charge for helium isZ = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the (r1, r2), r i ≥ 0 quad-
rant. In (r1, r2)-coordinates the potential is singular for
r i → 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. 6.3. In the transformed coor-
dinates (x1, x2, p1, p2) the Hamiltonian equations of mo-
tion take the form

Ṗ1 = 2Q1













2−
P2

2

8
− Q2

2(1+
Q2

2

R4
)













Ṗ2 = 2Q2













2−
P2

1

8
− Q2

1(1+
Q2

1

R4
)













Q̇1 =
1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.20)

whereR= (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A
convenient way to visualize the 3− dimensional
state space orbit is by projecting it onto the 2-
dimensional (r1(t), r2(t)) plane. (continued as ex-
ercise 3.4)

(Gregor Tanner, Per Rosenqvist)
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