Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...]e Th
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanovit and E.A. Spiegel)

periodic, and aperiodic, refine the ‘aperiodic’ into waridgrand non-

wandering sets, decompose the non-wandering into chain¥ent sets,
and illustrate various cases with concrete examples, tssIBi and Lorenz sys-
tems.

WE perINE a dynamical systeniM, f), classify its solutions as equilibria,

fast track:
W chapter 16, p. 309

2.1 Dynamical systems o o
XX
In a dynamical system we observe the world as it evolves witk.t We express

our observations as numbers and record how they change) gifigciently de-

tailed information and understanding of the underlyingureltlaws, we see the

future in the present as in a mirror. The motion of the plaag@inst the celestialsection 1.3
firmament provides an example. Against the daily motion efstars from East
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fx)

Figure 2.1: A trajectory traced out by the evolution
rule f'. Starting from the state space pointafter a
timet, the point is atf!(x).

to West, the planets distinguish themselves by moving artfeméjxed stars. An-
cients discovered that by knowing a sequence of planet#igos-latitudes and
longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longituddencelestial sphere
sufices to completely specify the planet’'s apparent motionpédisible values for
positions and velocities of the planets form filease spacef the system. More
generally, a state of a physical system, at a given instdirhig, can be represented
by a single point in an abstract space cali&ate spaceéV (mnemonic: curly A’
for a ‘manifold’). As the system changes, so doesrédpesentative point state
space. We refer to the evolution of such pointsigsamics and the functionf!
which specifies where the representative point is at tiseetheevolution rule  remark 2.1

If there is a definite ruld that tells us how this representative point moves in
M, the system is said to be deterministic. For a determinggtitamical system,
the evolution rule takes one point of the state space and maye exactly one
point. However, this is not always possible. For exampl@wing the tempera-
ture today is not enough to predict the temperature tomqrkmwwing the value
of a stock today will not determine its value tomorrow. Thatstspace can be en-
larged, in the hope that in afficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state ofdaimneosphere, mea-
sured over many points over the entire planet should fecmnt to determine the
temperature tomorrow. Even that is not quite true, and wdem® hopeful when
it comes to stocks.

For a deterministic system almost every point has a unigueduso trajecto-
ries cannot intersect. We say ‘almost’ because there migbt a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectoryosdefined. We may chapter 12
think such sets a nuisance, but it is quite the contrary—ttihyenable us to parti-
tion state space, so that the dynamics can be better unoersto

Locally, the state spaca looks like RY, meaning that a dynamical evolu-
tion is an initial value problem, witkd numbers sfiicient to determine what will
happen time later. Globally, it may be a more complicated manifold fodhisy
patching together several piecesRS forming a torus, a cylinder, or some other
geometric object. When we need to stress that the dimemsahM is greater
than one, we may refer to the poirte M asx wherei = 1,2,3,...,d. If the
dynamics is described by a set of PDEs (partiffiedéential equations), the state
space is the infinite dimensional function space. The eiasiutle f' : M — M
tells us where a pointis in M after a time intervat.

The pair M, f) constitute alynamical system
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Figure 2.2: The evolution ruleftcan be used to map a
region M; of the state space into the regidi{M;).

The dynamical systems we will be studying are smooth. Thexmessed
mathematically by saying that the evolution rifecan be dfferentiated as many
times as needed. Its action on a pamit sometimes indicated bf(x,t) to re-
mind us thatf is really a function of two variables: the time and a point fats
space. Note that time is relative rather than absolute, Botba time interval is
necessary. This follows from the fact that a point in statecepcompletely de-
termines all future evolution, and it is not necessary tovkamything else. The
time parameter can be a real variallle R), in which case the evolution is called
aflow, or an integert( € Z), in which case the evolution advances in discrete
steps in time, given biteration of amap The evolution parameter need not be
the physical time; for example, a time-stationary solutbéra partial diferential
equation is parameterized by spatial variables. In suclatins one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systemsy femnifest them-
selves through their trajectories: given an initial poigtthe evolution rule traces
out a sequence of poinigt) = f'(xo), thetrajectorythrough the poinky = x(0).
A trajectory is parameterized by the tirhand thus belongs td{(Xg), t) € MxR. exercise 2.1
By extension, we can also talk of the evolution of a regidnof the state space:
just apply f! to every point inM; to obtain a new regiori*(M;), as in figure 2.2.

Becausef! is a single-valued function, any point of the trajectory baused
to label the trajectory.

If we mark the trajectory by its initial poinkg, we are describing it in the
Lagrangian coordinates

The subset of points\ly, ¢ M that belong to the infinite-time trajectory
of a given pointx is called theorbit of xgo; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbiaismooth continuous
curve; for a map, it is a sequence of points. An orbit idyaamically invariant
notion. While “trajectory” refers to a statgt) at time instant, “orbit” refers to
the totality of states that can be reached frgnwith state spacé foliated into
a union of such orbits (eacMy, labeled by a single point belonging to the set,
Xo = X(0) for example).

2.1.1 Aclassification of possible motions?

What are the possible trajectories? This is a grand quesdia there are many
answers, the chapters to folloviffering some. Here is the first attempt to classify
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Figure 2.3: A periodic point returns to the initial point
after a finite timex = fTr(x). Periodic orbitp is the
set of periodic pointp = My = {X1, X, - - -} swept out
by the trajectory of any one of them in the finite time
Tp.

1

all possible trajectories:

stationary: f{(x) = x for all t
periodic:  fi(x) = f*Tr(x) for a given minimum period
aperiodic: fi(x) # f'(x)  forallt#t’ .

A periodic orbit (or acyclg p is the set of points\l, ¢ M swept out by a
trajectory that returns to the initial point in a finite timé/e refer to a point on a
periodic orbit as geriodic point see figure 2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rationbersiare a set of zero
measure on the unit interval. chapter 5

Periodic orbits and equilibrium points are the simplestneples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynaro&s also preserve
higher-dimensional smooth compact invariant manifoldggstncommonly en-
countered are thé1-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the supstipm of M incommen-
surate frequencies) motion on a smooth torus, and famifieelations related by
a continuous symmetry.

The ancients tried to make sense of all dynamics in termsriggie motions,
epicycles, integrable systems. The embarrassing trutfatdar a generic dynam-
ical systems almost all motions are aperiodic. So we refipectassification by
dividing aperiodic motions into two subtypes: those thahder df, and those
that keep coming back.

A point x € M is called awandering pointif there exists an open neighbor-
hood My of x to which the trajectory never returns

() g Mo forall t>toin. 2.1)

In physics literature, the dynamics of such state is oftéerred to agransient
Wandering points do not take part in the long-time dynansosjour first task

is to prune them from\1 as well as you can. What remains envelops the set of the
long-time trajectories, or theon-wandering set
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For times much longer than a typical ‘turnover’ time, it malgense to relax
the notion of exact periodicity, and replace it by the notdmecurrence A point
is recurrentor non-wanderingf for any open neighborhood 1 of x and any time
tmin there exists a later timie such that

f{(x) € Mo. (2.2)

In other words, the trajectory of a non-wandering point teethe neighborhood
Mo infinitely often. We shall denote b§ the non—wandering setf f, i.e., the
union of all the non-wandering points #8fl. The sek, the non—-wandering set of
f, is the key to understanding the long-time behavior of a dyinal system; all
calculations undertaken here will be carried out on non-deéang sets.

So much about individual trajectories. What about cloudsitial points? If
there exists a connected state space volume that mapssdatbunder forward
evolution (and you can prove that by the method of Lyapunawtionals, or
several other methods available in the literature), the foglobally contracting
onto a subset oM which we shall refer to as thattractor. The attractor may
be unique, or there can coexist any number of distinct ditigsets, each with
its own basin of attraction the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point, a mhdmrbit, aperiodic,
or any combination of the above. The most interesting cafetsof an aperiodic
recurrent attractor, to which we shall refer loosely agrange attractor We say example 2.3
‘loosely’, as will soon become apparent that diagnosing @oging existence of
a genuine, card-carrying strange attractor is a highly maat undertaking.

Conversely, if we can enclose the non—wanderingtsbly a connected state
space volumeM, and then show that almost all points withivlp, but not in
Q, eventually exitMg, we refer to the non—wandering s®tas arepeller. An
example of a repeller is not hard to come by—the pinball gafmsect. 1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are s®@kenal that
almost all non-wandering points are aperiodic, that we lggwen up the ancients’
fixation on periodic motions. Nothing could be further fromath. As longer and
longer cycles approximate more and more accurately fingengats of aperiodic
trajectories, we shall establish control over non—wamdgsets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non—wandering set and petter
grip on what chaotic motion might look like, we need to ponflews in a little
more depth.
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2.2 Flows

different things. Far, far away.
—T.D. Lee

A flowis a continuous-time dynamical system. The evolution fiiles a family
of mappings ofM — M parameterized by € R. Becausd represents a time
interval, any family of mappings that forms an evolutionerohust satisfy: exercise 2.2

(@) f°%x) = x (in O time there is no motion)
(b) fY(fY(x) = f*'(X) (the evolution law is the same at all times)

(c) the mappingX,t) — f'(x) from M x R into M is continuous.
We shall often find it convenient to represent functional position by © :’ appendix H.1
frs = flo 5 = fY(£5). (2.3)

The family of mappingsf!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-'group? It may fail to form a group if the dynamicsnot reversible,
and the rulef'(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inverge!(f'(x)) = fO(x) =

X, in which case the family of mappingg(x) does not form a group. In ex-
ceedingly many situations of interest—for times beyond Lip@punov time, for
asymptotic attractors, for dissipative partiaffdrential equations, for systems
with noise, for non-invertible maps—the dynamics cannoture backwards in
time, hence, the circumspect emphasissemgroups. On the other hand, there
are many settings of physical interest, where dynamicyersible (such as finite-
dimensional Hamiltonian flows), and where the family of exinin mapsf! does
form a group.

For infinitesimal times, flows can be defined byteiential equations. We
write a trajectory as

X(t+71) = f%7(x0) = f(f(X0,1),7) (2.4)
and express the time derivative of a trajectory at pa(t, exercise 2.3
dx .
&l = 0 T(f (%0, 1), 7)lr—g = X(t) . (2.5)
Tlr=0

as the time derivative of the evolution rule, a vector eviddaat the same point.
By considering all possible trajectories, we obtain thetoeg(t) at any point
x € M. Thisvector fieldis a (generalized) velocity field:

X(t) = V(X). (2.6)
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Newton’s laws, Lagrange’s method, or Hamilton’s method atdamiliar pro-
cedures for obtaining a set offfiirential equations for the vector fieldx) that
describes the evolution of a mechanical system. Equatibrmseohanics may ap-
pear diferent in form from (2.6), as they are often involve higherdiderivatives,
but an equation that is second or higher order in time canyalJa rewritten as a
set of first order equations.

We are concerned here with a much larger world of general flavezhanical
or not, all defined by a time-independent vector field (2.6).each point of the
state space a vector indicates the local direction in wHiehttajectory evolves.
The length of the vectaw(x)| is proportional to the speed at the poiqgtand the

direction and length of(x) changes from point to point. When the state space is a

complicated manifold embedded®y, one can no longer think of the vector field
as being embedded in the state space. Instead, we have tinéntlagt each point
x of state space has afidirent tangent plan€ My attached to it. The vector field
lives in the union of all these tangent planes, a space ctilethngent bundle

M.

Example 2.1 A 2-dimensional vector field — v(X): A simple example of a flow is

afforded by the unforced Duffing system

X(t)
y(t)

y(t)
—0.15y(t) + x(t) — x(t)3

2.7)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (X(t), y(t)) of state space M, but they belong to a different space, the

tangent bundle T M.

If V(Xg) =0, (2.8)

Xq is anequilibrium point(also referred to asstationary fixed critical, invariant,
rest stagnationpoint, zeroof the vector fieldv, standing waveor steady state
our usage is ‘equilibrium’ for a flow, ‘fixed point’ for a mapand the trajectory
remains forever stuck a{;. Otherwise the trajectory passing throughat time
t = 0 can be obtained by integrating the equations (2.6):

t
X(t) = ft(xo) = Xo +jo‘ dr v(x(7)), X(0) = Xg. (2.9)

flows - 6dec2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 2. GO WITH THE FLOW 44

50

40

30

20

10

) . ; » 0
Figure 2.5: Lorenz “butterfly” strange attractor. (J. 9% 10 0 10 20

Halcrow) X

We shall consider here ongutonomousdlows, i.e., flows for which the velocity
field v, is stationary not explicitly dependent on time. A non-autonomous system

Y- o). (2.10)
:

can always be converted into a system where time does notapgplicitly.  exercise 2.4
To do so, extend (‘suspend’) state space tode ()-dimensional by definingexercise 2.5
x = {y, 7}, with a stationary vector field

V(X) = [ W({’ 7) ] . (2.11)

The new flowx = v(X) is autonomous, and the trajectosft) can be read 6 x(t)
by ignoring the last component af

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation
X oy—-X)
X = V(X) =[ y |=| px-y-xz (2.12)
z Xy — bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed o = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQy = (0, 0, 0) at the
origin is attractive. At p = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at remark 2.3

Xeqr, = (+ VB(o — D).+ yblo — D.p - 1). (2.13)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQy 1-dimensional unstable manifold closes into a
homoclinic orbit at p = 1356.... Beyond that, an infinity of associated periodic orbits
are generated, until p = 24.74. .., where EQy 2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o =10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 9.3. (continued in example 3.5)
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2(t)

Figure 2.6: A trajectory of the Rdssler flow at time
t =250. (G. Simon)

Example 2.3 Rdssler strange attractor: The Duffing flow of figure 2.4 is bit of
a bore—every trajectory ends up in one of the two attractive equilibrium points. Let's
construct a flow that does not die out, but exhibits a recurrent dynamics. Start with a
harmonic oscillator

X=-y, y = X. (2.14)

The solL_Jtions are ret, re™, and the whole X-y plane rotates with constant angular
velocity 6 = 1, period T = 2r. Now make the system unstable by adding

X=-y, y = X+ay, a>o0, (2.15)

or, in radial coordinates, t = arsir? 6, § = 1+ (a/2) sind. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to oo, kick it into 3rd dimension when X reaches some value ¢
by adding

Zz=b+2zx-c), c>0. (2.16)

As X crosses ¢, z shoots upwards exponentially, z ~ €*-t. In order to bring it back,
start decreasing X by modifying its equation to

X=-y-—2z.

Large z drives the trajectory toward x = O; there the exponential contraction by e
kicks in, and the trajectory drops back toward the X-y plane. This frequently studied
example of an autonomous flow is called the Réssler flow

X+ ay
b+2z(x-c), a=b=02, c=57 (2.17)

N <
1l

(for definitiveness, we fix the parameters a, b, ¢ in what follows). The systemeie@e 2.8
simple as they get-it would be linear, were it not for the sole bilinear term zx Even for
so ‘simple’ a system the nature of long-time solutions is far from obvious.
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There are two repelling equilibrium points (2.8):

(% " % V1 - 4ab/c?)(c, -c/a, c/a)

Xy =
x. =~ (ab/c,-b/c,b/c), X; = (c,—c/a, c/a)
(x.,y-,z) = (0.007Q -0.0351, 0.0351)
(X, Ys,2) = (5.6929 —28.464, 28.464) (2.18)

One is close to the origin by construction. The other, some distance away, exists be-
cause the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical in-
tegration. A typical numerically integrated long-time trajectory is sketched in figure 2.6
(see also figure 11.10). Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor. We say ‘seem’ as there exists no proof thategexcise 3.5
an attractor is asymptotically aperiodic—it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and
similar figures in what follows are examples of ‘strange attractors.’ (continued in
exercise 2.8 and example 3.4) (R. PaSkauskas)

The Rossler flow is the simplest flow which exhibits many & key aspects
of chaotic dynamics; we shall use it and the 3-pinball (sesptdr 8) systems
throughout ChaosBook to motivate introduction of Poirecsgttions, return maps,
symbolic dynamics, cycle expansions, and much else. BoisW is integrated
in exercise 2.7, its equilibria are determined in exercige s Poincaré sections
constructed in exercise 3.1, and the corresponding retoimcBré map computed
in exercise 3.2. Its volume contraction rate is computedkarase 4.3, its topol-
ogy investigated in exercise 4.4, the shortest Rossler @goles are computed
and tabulated in exercise 13.10, and its Lyapunov exporemtiated in exer-
cise 17.4.

W fast track:
chapter 3, p. 54

2.3 Computing trajectories

O3

On two occasions | have been asked [by members of Par-
liament], 'Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ | am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integnamerically
whatever dynamical equations you face. Sooner or later,ngaa to implement
some finite time-step prescription for integration of thea&ipns of motion (2.6).
The simplest is the Euler integrator which advances thedtajy bydr x velocity
at each time step:

X — X + Vi(X) ot (2.19)
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This might stfice to get you started, but as soon as you need higher numecical

curacy, you will need something better. There are many teteference texts

and computer programs that can help you learn how to sofferdntial equations
numerically using sophisticated numerical tools, suchsaesigo-spectral methods

or implicit methods. If a ‘sophisticated’ integration ring takes days and gobexercise 2.6
bles up terabits of memory, you are using brain-damaged Ibigh software. Try

writing a few lines of your own Runge-Kutta code in some muredaveryday
language. While you absolutely need to master the requisiteerical methods, exercise 2.7
this is neither the time nor the place to expound upon thenv;you learn them is

your business. And if you have developed some nice routiresofving problems exercise 2.9
in this text or can point another student to some, let us know. exercise 2.10

Résumé

Chaotic dynamics with a low-dimensional attractor can tmiaiized as a suc-
cession of nearly periodic but unstable motions. In the sspiré, turbulence in
spatially extended systems can be described in terms ofrestispatiotemporal
patterns. Pictorially, dynamics drives a given spatialyeaded system through
a repertoire of unstable patterns; as we watch a turbulestésyevolve, every so
often we catch a glimpse of a familiar pattern. For any finpat&l resolution
and finite time the system follows approximately a pattertoioging to a finite
repertoire of possible patterns, and the long-term dynsmman be thought of as
a walk through the space of such patterns. Recasting thiganmo mathematics
is the subject of this book.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In this text we denote by the terstate
spacethe set of admissible states of a genérair co-dimensional dynamical system, and
reserve the termphase spact® Hamiltonian D-dimensional state spaces, whérés the
number of Hamiltonian degrees of freedom. If the state sp@eecontinuous smooth
manifold much of the literature refers to it as ‘phase spdme,we find the control engi-
neering usage sharper: in the state space (or ‘time-dohdstription of an autonomous
physical system, the state of the system is representedexg@ within the ‘state space,
space whose axes are the state variables, and the set ofastataes is related by first-
order diferential equations. The distinction made here is needetExtavhere one treats
both general dynamical systems and quantum-mechanidahsgsThe term ‘phase’ has
a precise meaning in wave mechanics, quantum mechanicsyaragnits of integrable
systems at the heart of Hamilton’s formulation of Newtoniaachanics, while ‘state
space’ is more descriptive of the way the notion is used irgéreeral theory of dynami-
cal systems. Further confusion arises when prefix spatiim ‘apatiotemporal’ is used in
reference to states extended in the (1, 2, or 3-dimensiphgBical configuration space.
They may exhibit spatial wave-like behaviors, but tretéite spacés co-dimensional.

Much of the literature denotes the vector field in a first ordigferential equation
(2.6) by f(x) or F(x) or evenX(x), and its integral for time by the ‘time1 forward map’
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X(Xo,1) = D(xo,t) Or ¢(Xo) or something else. As we shall treat here maps and flows on
equal footing, and need to save Greek letters for mattenstgoamechanical, we reserve
the notationf (x) for mapssuch as (2.9), and refer to a state space velocity vectordgeld
v(X). We come to regret this choice very far into the text, onltlg time we delve into
Navier-Stokes equations.

Remark 2.2 Rossler and Duffing flows. The Dufing system (2.7) arises in the study
of electronic circuits [2.1]. The Rossler flow (2.17) is thienplest flow which exhibits
many of the key aspects of chaotic dynamics. It was introduceef. [2.2] as a set of
equations describing no particular physical system, bptwing the essence of Lorenz
chaos in a simplest imaginable smooth flow. Otto Rdssleraa af classical education,
was inspired in this quest by that rarely cited grandfatifeclmos, Anaxagoras (456
B.C.). This, and references to earlier work can be found fa.rR.3, 2.4, 2.5]. We
recommend in particular the inimitable Abraham and Shavsitiated classic [2.6] for its
beautiful sketches of the Rossler and many other flows. figndones [2.7] has a number
of interesting simulations on a Drexel website.

Remark 2.3 Lorenz equation.  The Lorenz equation (2.12) is the most celebrated
early illustration of “deterministic chaos” [2.8] (but nthte first - the honor goes to Dame
Cartwright [2.9]). Lorenz’s paper, which can be found inniapcollections refs. [2.10,
2.11], is a pleasure to read, and is still one of the bestdhictions to the physics motivat-
ing such models. For a geophysics derivation, see Rothmaseootes [2.12]. The equa-
tions, a set of ODEs iR, exhibit strange attractors [2.13, 2.14, 2.15]. Fraylahd§]
has a nice brief discussion of Lorenz flow. Frgyland and Afgz17] plot many peri-
odic and heteroclinic orbits of the Lorenz flow; some of thengyetric ones are included
in ref. [2.16]. Guckenheimer-Williams [2.18] and Afraimioti-Bykov-Shilnikov [2.19]
offer in-depth discussion of the Lorenz equation. The mostlddtatudy of the Lorenz
equation was undertaken by Sparrow [2.20]. For a physitalfpnetation op as “Rayleigh
number.” see Jackson [2.21] and Seydel [2.22]. Lorenz &tioe to 3 modes is so drastic
that the model bears no relation to the geophysical hydraahes problem that motivated
it. For a detailed pictures of Lorenz invariant manifoldsisolt Vol 1l of Jackson [2.21].
Lorenz attractor is a very thin fractal — as we saw, stableifolghthickness is of order
104 — whose fractal structure has been accurately resolved Msivanath [2.23, 2.24].
If you wander what analytic function theory has to say aboutelz, check ref. [2.25].
Refs. [2.26, 2.27] might also be of interest. (continuecekimark 9.2)

Remark 2.4 Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its trajectories are locally taide (positive Lyapunov expo-
nent) and globally mixing (positive entropy). In sect. 1w8 shall define Lyapunov
exponents, and discuss their evaluation, but already atpiint it would be handy to
have a few quick numerical methods to diagnose chaotic digzarhaskar'sfrequency
analysismethod [2.28] is useful for extracting quasi-periodic anebakly chaotic regions

of state space in Hamiltonian dynamics with many degreeseeidom. For pointers to
other numerical methods, see ref. [2.29].

Remark 2.5 Dynamical systems software: J.D. Meiss [2.30] has maintained for many
yearsSci.nonlinear FAQwhich is now in part superseded by the SIAM Dynamical Sys-
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tems websitewww . dynamicalsystems.org. The website glossary contains most of
Meiss’s FAQ plus new ones, and a up-to-date software li§1]2 with links to DSTool,
xpp, AUTO, etc.. Springer on-linEncyclopaedia of Mathematicsaintains links to dy-
namical systems software packages on eom.springbyaie30210.htm. Kuznetsov [1.14]
Appendix D.9 gives an exhaustive overview of software adé in 2004. (see also re-
mark 12.1)
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The exercises that you should do hawvelerlined titles . The rest §maller type )
are optional. Dfficult problems are marked by any number of *** stars.

Exercises

2.1.

2.2.

2.3.

2.4,

2.5.

exerFlows - 13jun2008

Trajectories do not intersect. A trajectory in the
state spaceéM is the set of points one gets by evolving
x € M forwards and backwards in time:

=y

Show that if two trajectories intersect, then they are th
same curve.

Cx={ye M: forte R}.

Evolution as a group.  The trajectory evolutiorf! is
a one-parameter semigroup, where (2.3)

ft+s — ft ° fs'

Show that it is a commutative semigroup.

In this case, the commutative character of the (semi-
)group of evolution functions comes from the commuta-

tive character of the time parameter under addition. Can
you think of any other (semi-)group replacing time?

Almost ODE'’s.
(a) Consider the poink on R evolving according
x = €*. Is this an ordinary dferential equation?
(b) Isx = x(x(t)) an ordinary diferential equation?
(c) What abouix= x(t+1)?

All equilibrium points are fixed points.  Show that
a point of a vector fields where the velocity is zero is a
fixed point of the dynamics'.

Gradient systems.  Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential®

X =-V¢(x)

wherex € RY, andg is a function from that space to the
realsR.

(@) Show that the velocity of the particle is in the di- 2

rection of most rapid decrease of the functign

(b) Show that all extrema af are fixed points of the
flow.

e2.6. Runge-Kutta integration.

2.7.

2.8.

9. Can you integrate me?

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

Implement the fourth-
order Runge-Kutta integration formula (see, for exam-
ple, ref. [2.32]) forx = v(X):

N ki ke ks Kk 5
X1l = xn+€+§+§+g+0(6'r)
ki = 6tv(Xn), ko=087V(Xn+Kki/2)
ks = 67V(Xn+ka/2)
ka = 67V(Xn+ks).

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

Rossler flow.  Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rossler flow (2.17). Does the result ook like a ‘strange
attractor'?

Equilibria of the R dssler flow.

(a) Find all equilibrium points Xg,yq,Z;) of the
Rossler system (2.17). How many are there?

(b) Assume thab = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

e=ajc, D=1-4¢, p* = (1+ VD)/2.

Express all the equilibria in terms of,(, D, p*).

Expand equilibria to the first order in Note that
it makes sense because &£ b=0.2,c=5.7in

(2.17),e = 0.03. (continued as exercise 3.1)

(Rytis Paskauskas)

Integrating equations nu-
merically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
differential equations has a solution for all times and
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there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
x=x2, x(0)=1.

(a) Forwhat times do solutions of
X = X(x(t)

exist? Do you need a numerical routine to answer
this question?

(b) Let's test the integrator you wrote in exercise 2.6.
The equationx = —x with initial conditionsx(0) =
2 andx = 0 has as solutior(t) = e '(1+¢€!). Can
your integrator reproduce this solution for the in-
tervalt € [0,10]? Check you solution by plotting
the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

X +0.6X+X—|x+1=0,

which can be checked—numerically—to be chaotic.
As initial conditions we will always use&(0) =
X(0) = x(0) = 0. Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are sig-
nificant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fac-
toris~ 2.4).

(d) Determine the time interval for which the solution
of x = X2, x(0) = 1 exists.

51

shall need to compute classical periodic orbits of the he-
lium system. In this exercise we commence their evalu-
ation for the collinear helium atom (7.6)

1, z z 1

-Pp-———+ .
22 I Iy r{+1r;

1
Hzépi"'

The nuclear charge for helium 5 = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the, ), ri > 0 quad-
rant. In {1, r2)-coordinates the potential is singular for
ri — 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. 6.3. In the transformed coor-
dinates ., X2, p1, p2) the Hamiltonian equations of mo-
tion take the form

. P2 2
P, = 2Q, {2— §2 - Q31+ %)}
. p2 2
Py = 2Q [2— 5 ~ Q-+ %)}

. 1 . 1
QL = ZPng’ Q2=ZP2Q§- (2.20)

whereR = (QF + Q3)*/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A
convenient way to visualize the-3dimensional
state space orbit is by projecting it onto the 2-
dimensional (1(t), ro(t)) plane. (continued as ex-
ercise 3.4)

2.10. Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to quantization of helium we

(Gregor Tanner, Per Rosenqvist)
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