Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...]e Th
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanovit and E.A. Spiegel)

periodic, and aperiodic, refine the ‘aperiodic’ into waridgrand non-

wandering sets, decompose the non-wandering into chainvent sets,
and illustrate various cases with concrete examples, teslBf'and Lorenz sys-
tems.

WE perINE @ dynamical systeniM, f), classify its solutions as equilibria,

fast track:
W chapter 16, p. 309
2.1 Dynamical systems

In a dynamical system we observe the world as it evolves \itk.t We express
our observations as numbers and record how they change) gifiéciently de-
tailed information and understanding of the underlyingureltlaws, we see the

firmament provides an example. Against the daily motion efgstars from East
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future in the present as in a mirror. The motion of the plaagginst the celestialsection 1.3
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Figure 2.1: A trajectory traced out by the evolution
rule f'. Starting from the state space pointafter a 4
timet, the point is atf'(x).

to West, the planets distinguish themselves by moving anttemdjixed stars. An-
cients discovered that by knowing a sequence of planetgigos-latitudes and
longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longituddéncelestial sphere
sufices to completely specify the planet’s apparent motionpsdisible values for
positions and velocities of the planets form fhtease spacef the system. More
generally, a state of a physical system, at a given instaimhi can be represented
by a single point in an abstract space caieate spaceV (mnemonic: curly M’
for a ‘manifold’). As the system changes, so doesrémesentative poirih state
space. We refer to the evolution of such pointsigsamics and the functionft

which specifies where the representative point is at tiaetheevolution rule  remark 2.1

If there is a definite ruld that tells us how this representative point moves in
M, the system is said to be deterministic. For a determinititamical system,
the evolution rule takes one point of the state space and ihage exactly one
point. However, this is not always possible. For exampl@wking the tempera-
ture today is not enough to predict the temperature tomgrkmowing the value
of a stock today will not determine its value tomorrow. Thegstspace can be en-
larged, in the hope that in aficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state ofatineosphere, mea-
sured over many points over the entire planet should Hecgnt to determine the
temperature tomorrow. Even that is not quite true, and weemshopeful when
it comes to stocks.

For a deterministic system almost every point has a uniqueduso trajecto-
ries cannot intersect. We say ‘almost’ because there might a set of measure

zero (tips of wedges, cusps, etc.) for which a trajectoryosdefined. \We may chapter 12

think such sets a nuisance, but it is quite the contrary—ttiyenable us to parti-
tion state space, so that the dynamics can be better understo

Locally, the state spac# looks like RY, meaning that a dynamical evolu-
tion is an initial value problem, witid numbers sfiicient to determine what will
happen time later. Globally, it may be a more complicated manifold fodhi®y
patching together several pieceskSt, forming a torus, a cylinder, or some other
geometric object. When we need to stress that the dimemsainM is greater
than one, we may refer to the poirte M asx wherei = 1,2,3,...,d. If the
dynamics is described by a set of PDEs (partifiledential equations), the state
space is the infinite dimensional function space. The ewiutle f' : M — M
tells us where a pointis in M after a time intervat.

The pair (M, f) constitute alynamical system
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Figure 2.2: The evolution rulef'can be used to map
region M; of the state space into the regidt{M;).

The dynamical systems we will be studying are smooth. Thexfgessed
mathematically by saying that the evolution rifecan be diferentiated as many
times as needed. Its action on a pairis sometimes indicated bf/(x, t) to re-
mind us thatf is really a function of two variables: the time and a point tats
space. Note that time is relative rather than absolute, Botba time interval is
necessary. This follows from the fact that a point in statecepcompletely de-
termines all future evolution, and it is not necessary tovkamything else. The
time parameter can be a real varialile R), in which case the evolution is called
aflow, or an integert( € Z), in which case the evolution advances in discrete
steps in time, given biteration of amap The evolution parameter need not be
the physical time; for example, a time-stationary solutdéra partial diterential
equation is parameterized by spatial variables. In suclatiins one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systemsy Tienifest them-
selves through their trajectories: given an initial potgtthe evolution rule traces
out a sequence of poinigt) = f!(xo), thetrajectorythrough the poinky = x(0).
A trajectory is parameterized by the timand thus belongs tdf{(xo), t) € MXR. exercise 2.1
By extension, we can also talk of the evolution of a regidnof the state space:
just apply f! to every point inM; to obtain a new regiori'(M;), as in figure 2.2.

Becausef! is a single-valued function, any point of the trajectory berused
to label the trajectory.

If we mark the trajectory by its initial poinky, we are describing it in the
Lagrangian coordinates

The subset of points\y, ¢ M that belong to the infinite-time trajectory
of a given pointxg is called theorbit of xo; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbiaismooth continuous
curve; for a map, it is a sequence of points. An orbit dyaamically invariant
notion. While “trajectory” refers to a statgt) at time instant, “orbit” refers to
the totality of states that can be reached fregnwith state spacé foliated into
a union of such orbits (each,, labeled by a single point belonging to the set,
Xo = X(0) for example).

2.1.1 Aclassification of possible motions?

What are the possible trajectories? This is a grand questioth there are many
answers, the chapters to follovifering some. Here is the first attempt to classify
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Figure 2.3: A periodic point returns to the initial point
after a finite timex = fT(x). Periodic orbitp is the
set of periodic pointg = M, = {X1, Xz, - - -} swept out
by the trajectory of any one of them in the finite time
Tp.

1

all possible trajectories:

stationary: fY(x) = x for all t
periodic:  f'(x) = f*Te(x) for a given minimum period,
aperiodic: f(x) # f'(x)  forallt#t .

A periodic orbit (or acyclg p is the set of points\, ¢ M swept out by a
trajectory that returns to the initial point in a finite timé/e refer to a point on a
periodic orbit as geriodic point see figure 2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rationberaiare a set of zero
measure on the unit interval. chapter 5

Periodic orbits and equilibrium points are the simplestregkes of ‘non-
wandering’ invariant sets preserved by dynamics. Dynaro@s also preserve
higher-dimensional smooth compact invariant manifoldgstncommonly en-
countered are thé1-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the supsitipm of M incommen-
surate frequencies) motion on a smooth torus, and famifisslations related by
a continuous symmetry.

The ancients tried to make sense of all dynamics in termsrafgtie motions,
epicycles, integrable systems. The embarrassing truttatfor a generic dynam-
ical systems almost all motions are aperiodic. So we refirectassification by
dividing aperiodic motions into two subtypes: those thahder df, and those
that keep coming back.

A point x € M is called awandering pointif there exists an open neighbor-
hood My of x to which the trajectory never returns

') ¢ Mo forall t>tyin- (2.1)

In physics literature, the dynamics of such state is oftéerred to agransient
Wandering points do not take part in the long-time dynansosyour first task

is to prune them fromM as well as you can. What remains envelops the set of the
long-time trajectories, or theon-wandering set
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For times much longer than a typical ‘turnover’ time, it malsense to relax
the notion of exact periodicity, and replace it by the notidmecurrence A point
is recurrentor non-wanderingf for any open neighborhood, of x and any time
tmin there exists a later timi such that

f{(x) € Mo. (2.2)

In other words, the trajectory of a non-wandering point teesithe neighborhood
M infinitely often. We shall denote b@ the non—-wandering setf f, i.e., the
union of all the non-wandering points ¢fl. The setQ, the non-wandering set of
f, is the key to understanding the long-time behavior of a dyinal system; all
calculations undertaken here will be carried out on non-desang sets.

So much about individual trajectories. What about cloudsitiil points? If
there exists a connected state space volume that mapssdetbunder forward
evolution (and you can prove that by the method of Lyapunawtionals, or
several other methods available in the literature), the floglobally contracting
onto a subset oM which we shall refer to as thattractor. The attractor may
be unique, or there can coexist any number of distinct ditrgcsets, each with
its own basin of attraction the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point, a pdmrbit, aperiodic,
or any combination of the above. The most interesting cai&tof an aperiodic
recurrent attractor, to which we shall refer loosely agrange attractor We say example 2.3
‘loosely’, as will soon become apparent that diagnosing @msting existence of
a genuine, card-carrying strange attractor is a highly moat undertaking.

Conversely, if we can enclose the non—-wanderingsby a connected state
space volumeMp and then show that almost all points withivip, but not in
Q, eventually exitMo, we refer to the non—-wandering s@tas arepeller. An
example of a repeller is not hard to come by-the pinball gafreect. 1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are s@ptkanal that
almost all non-wandering points are aperiodic, that we lggven up the ancients’
fixation on periodic motions. Nothing could be further fromath. As longer and
longer cycles approximate more and more accurately findensats of aperiodic
trajectories, we shall establish control over non—wamdesets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non—wandering set and better

grip on what chaotic motion might look like, we need to ponflews in a little
more depth.
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2.2 Flows

Knowing the equations and knowing the solution are
different things. Far, far away.

—T.D. Lee

A flowis a continuous-time dynamical system. The evolution fiiles a family
of mappings ofM — M parameterized by € R. Becausd represents a time
interval, any family of mappings that forms an evolutiorerahust satisfy: exercise 2.2

(@) f9%x) =x (in Otime there is no motion)
(b) fYFY(X) = f*'(x) (the evolution law is the same at all times)

(c) the mappingX, t) = f{(x) from M x R into M is continuous.

We shall often find it convenient to represent functional position by o : appendix H.1

£ = flo £5 = fi(f9). (2.3)

The family of mappingsf!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-"group? It may fail to form a group if the dynamicsnot reversible,
and the rulef!(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inverge'(f{(x)) = fo(x) =

X, in which case the family of mapping&(x) does not form a group. In ex-
ceedingly many situations of interest—for times beyond Liy@punov time, for
asymptotic attractors, for dissipative partiaffdrential equations, for systems
with noise, for non-invertible maps—the dynamics cannote backwards in
time, hence, the circumspect emphasissemgroups. On the other hand, there
are many settings of physical interest, where dynamicwerséle (such as finite-
dimensional Hamiltonian flows), and where the family of exioin mapsf! does
form a group.

For infinitesimal times, flows can be defined byfeliential equations. We
write a trajectory as

X(t+71) = f97(x0) = f(f(%0.1),7) (2.4)
and express the time derivative of a trajectory at pa{ty, exercise 2.3
dx .
e 8- F(f(X0,t), T)l;=0 = X(t) . (2.5)
Tlr=0

as the time derivative of the evolution rule, a vector evidaat the same point.
By considering all possible trajectories, we obtain thetee&(t) at any point
x € M. Thisvector fieldis a (generalized) velocity field:

X(t) = v(X). (2.6)

flows - 6dec2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 2. GO WITH THE FLOW 43

Figure 2.4: (a) The 2-dimensional vector field for

the Dufing system (2.7), together with a short tra-
jectory segment. (b) The flow lines. Each ‘comet’
represents the same time interval of a trajectory,
starting at the tail and ending at the head. The

(b)

longer the comet, the faster the flow in that region(@)

Newton’s laws, Lagrange’s method, or Hamilton’s method atdamiliar pro-
cedures for obtaining a set offtérential equations for the vector fielgx) that
describes the evolution of a mechanical system. Equatibrreeohanics may ap-
pear diferent in form from (2.6), as they are often involve higherdiderivatives,
but an equation that is second or higher order in time canya\sa rewritten as a
set of first order equations.

We are concerned here with a much larger world of general floveshanical
or not, all defined by a time-independent vector field (2.6).eAch point of the
state space a vector indicates the local direction in whiehttajectory evolves.
The length of the vectdwr(X)| is proportional to the speed at the poigtand the
direction and length of(x) changes from point to point. When the state space is a
complicated manifold embeddedit¥, one can no longer think of the vector field
as being embedded in the state space. Instead, we have tioéntlagt each point
x of state space has affdirent tangent plan€ My attached to it. The vector field
lives in the union of all these tangent planes, a space cilethngent bundle
™.

Example 2.1 A 2-dimensional vector field — v(X): A simple example of a flow is

afforded by the unforced Duffing system

X(t) y(®)

YO = —0.15y(t) + x(t) - x(¥)° 2.7)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (X(t), y(t)) of state space M, but they belong to a different space, the

tangent bundle T M.

If V(Xq) =0, (2.8)

Xq is anequilibrium point(also referred to asstationary fixed critical, invariant,
rest, stagnationpoint, zeroof the vector fieldv, standing waver steady state
our usage is ‘equilibrium’ for a flow, ‘fixed point’ for a mapand the trajectory
remains forever stuck af;. Otherwise the trajectory passing throughat time
t = 0 can be obtained by integrating the equations (2.6):

t
X(t) = f'(x0) = %o +j; drv(x(@),  X0)=X. (2.9)
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Figure 2.5 Lorenz “butterfly” strange attractor. (J. 95— 20
Halcrow)

X o

We shall consider here ongutonomousdlows, i.e., flows for which the velocity
field v; is stationary not explicitly dependent on time. A non-autonomous system

g—y =w(y, 1), (2.10)
-

can always be converted into a system where time does notapgplicitly. exercise 2.4
To do so, extend (‘suspend’) state space tode ()-dimensional by definingexercise 2.5
x = {y, 7}, with a stationary vector field

v(X) = l W({’ R J . (2.11)

The new flowx = v(x) is autonomous, and the trajectorft) can be read o x(t)
by ignoring the last component af

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation
X o(y-x
X=v(X)=| Yy |=]| pX-y—-Xxz (2.12)
z xy— bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed o = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQ, = (0,0, 0) at the
origin is attractive. Atp = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at remark 2.3

Xequ, = (£ Vb(o - 1), = vblo - 1).p - 1), (2.13)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQy 1-dimensional unstable manifold closes into a
homoclinic orbit at p = 1356. ... Beyond that, an infinity of associated periodic orbits
are generated, until p = 24.74. . ., where EQy 2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o = 10,b = 8/3, p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 9.3. (continued in example 3.5)
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CHAPTER 2. GO WITH THE FLOW 47

This might siifice to get you started, but as soon as you need higher numacical

curacy, you will need something better. There are many &deteference texts

and computer programs that can help you learn how to softerential equations
numerically using sophisticated numerical tools, suchsasido-spectral methods

or implicit methods. If a ‘sophisticated’ integration rine takes days and gobexercise 2.6
bles up terabits of memory, you are using brain-damaged Ikigh software. Try

writing a few lines of your own Runge-Kutta code in some muredaveryday
language. While you absolutely need to master the requisiteerical methods, exercise 2.7
this is neither the time nor the place to expound upon themv;,yuu learn them is

your business. And if you have developed some nice routmresolving problems exercise 2.9
in this text or can point another student to some, let us know. exercise 2.10

Résumé

Chaotic dynamics with a low-dimensional attractor can Isuaiized as a suc-
cession of nearly periodic but unstable motions. In the sspid, turbulence in
spatially extended systems can be described in terms ofrestispatiotemporal
patterns. Pictorially, dynamics drives a given spatiaktyeaded system through
a repertoire of unstable patterns; as we watch a turbulestesyevolve, every so
often we catch a glimpse of a familiar pattern. For any finjtat&l resolution
and finite time the system follows approximately a pattertohging to a finite
repertoire of possible patterns, and the long-term dynarmén be thought of as
a walk through the space of such patterns. Recasting thigdrimio mathematics
is the subject of this book.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In this text we denote by the terstate
spacethe set of admissible states of a genérair co-dimensional dynamical system, and
reserve the terrphase spact Hamiltonian D-dimensional state spaces, whérés the
number of Hamiltonian degrees of freedom. If the state spmeecontinuous smooth
manifold much of the literature refers to it as ‘phase spdme,we find the control engi-
neering usage sharper: in the state space (or ‘time-dojstription of an autonomous
physical system, the state of the system is representedexgta within the ‘state space,
space whose axes are the state variables, and the set ofatatales is related by first-
order diferential equations. The distinction made here is needeteixtavhere one treats
both general dynamical systems and quantum-mechanidahsgsThe term ‘phase’ has
a precise meaning in wave mechanics, quantum mechanicsyaanits of integrable
systems at the heart of Hamilton’s formulation of Newtoniaachanics, while ‘state
space’ is more descriptive of the way the notion is used irgreeral theory of dynami-
cal systems. Further confusion arises when prefix spatim ‘apatiotemporal’ is used in
reference to states extended in the (1, 2, or 3-dimensiphgBical configuration space.
They may exhibit spatial wave-like behaviors, but tretate spacés co-dimensional.

Much of the literature denotes the vector field in a first ordigferential equation
(2.6) by f(x) or F(x) or evenX(x), and its integral for time by the ‘time1 forward map’
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X(Xo,t) = @(xo, 1) Or ¢i(Xo) or something else. As we shall treat here maps and flows on
equal footing, and need to save Greek letters for mattenstqoamechanical, we reserve
the notationf (x) for mapssuch as (2.9), and refer to a state space velocity vectordield
V(x). We come to regret this choice very far into the text, onlytiny time we delve into
Navier-Stokes equations.

Remark 2.2 Réssler and Duffing flows. The Dufing system (2.7) arises in the study
of electronic circuits [2.1]. The Rossler flow (2.17) is thienplest flow which exhibits
many of the key aspects of chaotic dynamics. It was introduceef. [2.2] as a set of
equations describing no particular physical system, bptwang the essence of Lorenz
chaos in a simplest imaginable smooth flow. Otto Réssleraa af classical education,
was inspired in this quest by that rarely cited grandfattfectmos, Anaxagoras (456
B.C.). This, and references to earlier work can be found fa.rR.3, 2.4, 2.5]. We
recommend in particular the inimitable Abraham and Shawsitiated classic [2.6] for its
beautiful sketches of the Rossler and many other flows. figndones [2.7] has a number
of interesting simulations on a Drexel website.

Remark 2.3 Lorenz equation.  The Lorenz equation (2.12) is the most celebrated
early illustration of “deterministic chaos” [2.8] (but ntite first - the honor goes to Dame
Cartwright [2.9]). Lorenz’s paper, which can be found inniapcollections refs. [2.10,
2.11], is a pleasure to read, and is still one of the bestditctions to the physics motivat-
ing such models. For a geophysics derivation, see Rothmaseaotes [2.12]. The equa-
tions, a set of ODEs i3, exhibit strange attractors [2.13, 2.14, 2.15]. Fraylahd§]
has a nice brief discussion of Lorenz flow. Frgyland and Alfg217] plot many peri-
odic and heteroclinic orbits of the Lorenz flow; some of thensyetric ones are included
in ref. [2.16]. Guckenheimer-Williams [2.18] and Afraimiot-Bykov-Shilnikov [2.19]
offer in-depth discussion of the Lorenz equation. The mostlddtatudy of the Lorenz
equation was undertaken by Sparrow [2.20]. For a physitalpnetation op as “Rayleigh
number.” see Jackson [2.21] and Seydel [2.22]. Lorenz @tioc to 3 modes is so drastic
that the model bears no relation to the geophysical hydrauyos problem that motivated
it. For a detailed pictures of Lorenz invariant manifoldsisolt Vol Il of Jackson [2.21].
Lorenz attractor is a very thin fractal — as we saw, stableifolghthickness is of order
10~* — whose fractal structure has been accurately resolved bsianath [2.23, 2.24].
If you wander what analytic function theory has to say abaurehz, check ref. [2.25].
Refs. [2.26, 2.27] might also be of interest. (continueceimark 9.2)

Remark 2.4 Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its trajectories are locally taige (positive Lyapunov expo-
nent) and globally mixing (positive entropy). In sect. 1w8 shall define Lyapunov
exponents, and discuss their evaluation, but already sitpihint it would be handy to
have a few quick numerical methods to diagnose chaotic digsarhaskar'sfrequency
analysismethod [2.28] is useful for extracting quasi-periodic anekkly chaotic regions

of state space in Hamiltonian dynamics with many degreeseefdom. For pointers to
other numerical methods, see ref. [2.29].

Remark 2.5 Dynamical systems software: J.D. Meiss [2.30] has maintained for many
yearsSci.nonlinear FAQwhich is now in part superseded by the SIAM Dynamical Sys-
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tems websitemww.dynamicalsystems.org. The website glossary contains most of
Meiss’s FAQ plus new ones, and a up-to-date software li8t2 with links to DSTool,
xpp, AUTO, etc.. Springer on-linEncyclopaedia of Mathematiecsaintains links to dy-
namical systems software packages on eom.springbyaiE30210.htm. Kuznetsov [1.14]
Appendix D.9 gives an exhaustive overview of software a#é in 2004. (see also re-
mark 12.1)
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The exercises that you should do hawvelerlined titles . The rest §maller type )
are optional. Dfficult problems are marked by any number of *** stars.

Exercises

2.1

2.2.

2.3.

2.4.

2.5.

exerFlows - 13jun2008

Trajectories do not intersect. A trajectory in the
state spacé\ is the set of points one gets by evolving
x € M forwards and backwards in time:

Cx={yeM: f'(x=y forteR}.

Show that if two trajectories intersect, then they are the2'6'

same curve.

Evolution as a group.  The trajectory evolutiorf' is
a one-parameter semigroup, where (2.3)

f1s = flo 5,

Show that it is a commutative semigroup.

In this case, the commutative character of the (semi-
)group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other (semi-)group replacing time?

Almost ODE’s. 2.7.

(@) Consider the poink on R evolving according
X = €. Is this an ordinary dferential equation?

(b) Isx = x(x(t)) an ordinary diferential equation? 28

(c) What abouk'= x(t + 1) ?

All equilibrium points are fixed points. Show that
a point of a vector fieldr where the velocity is zero is a
fixed point of the dynamics!.

Gradient systems.  Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potentialp

X= ~V6(x)

wherex € RY, andg is a function from that space to the
realsR.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the function

(b) Show that all extrema af are fixed points of the
flow.

(c) Show that it takes an infinite amount of time
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in grax
systems.

Runge-Kutta integration. Implement the fourt
order Runge-Kutta integration formula (see, for e
ple, ref. [2.32]) forx = v(x):
ki =k
Xni1 = xn+€1+§2+%+%+0(615)

ki = 6tv(Xn), ko=d6TVv(Xy+Kk1/2)

ks = 6TV(X) +k2/2)

Ky ST V(%0 + ks) .
If you already know your Runge-Kutta, program v

you believe to be a better numerical integration rot
and explain what is better about it.

Rossler flow.  Use the result of exercise 2.6 or st
other integration routine to integrate numerically
Rossler flow (2.17). Does the result ook like a ‘stre
attractor'?

. Equilibria of the R dssler flow.

(a) Find all equilibrium points Xg,Yq.Z;) of the
Rossler system (2.17). How many are there?

(b) Assume thab = a. As we shall see, some surf
ingly large, and surprisingly small numbers &
in this system. In order to understand their -
introduce parameters

e=a/c, D=1-4, p* = (1+ VD)/2.

Express all the equilibria in terms of,(, D, p*)
Expand equilibria to the first order in Note the
it makes sense because o b=0.2,c=5.7ir
(2.17),e ~ 0.03. (continued as exercise 3.1)

(Rytis Paskausk:

. Can you integrate me? Integrating equations r

merically is not for the faint of heart. It is not alw:
possible to establish that a set of nonlinear ord
differential equations has a solution for all times
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there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
x=x2, x(0)=1.

(a) For what times do solutions of
X = X(X(1)

exist? Do you need a numerical routine to answer
this question?

(b

=

Let's test the integrator you wrote in exercise 2.6.
The equationx = —x with initial conditionsx(0) =

2 andx = 0 has as solutior(t) = e"{(1+€?!). Can
your integrator reproduce this solution for the in-
tervalt € [0, 10]? Check you solution by plotting
the error as compared to the exact result.

(c

NS

Now we will try something a little harder. The
equation is going to be third order

X +0.6X+X—|x+1=0,

which can be checked—numerically—to be chaotic.
As initial conditions we will always use(0) =
X(0) = x(0) = 0. Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are sig-
nificant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fac-
toris~ 2.4).

Determine the time interval for which the solution
of x = x2, x(0) = 1 exists.

(d

=

2.10. Classical collinear helium dynamics. In order to ap-

ply periodic orbit theory to quantization of helium we

References
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shall need to compute classical periodic orbits of the he-
lium system. In this exercise we commence their evalu-
ation for the collinear helium atom (7.6)

1, z z 1

2P2 rL fp rp4rp”

1
H:§p§+

The nuclear charge for helium B = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in thre,¢2), r; > 0 quad-
rant. In 1, rz)-coordinates the potential is singular for
ri — 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. 6.3. In the transformed coor-
dinates £, X2, p1, p2) the Hamiltonian equations of mo-
tion take the form

. p2 Q2
Py = 2Q1[2— gz - Q3L+ a?)l

P2

PZ QZ
20a[- - s )

Q

1 - 1
ZPng’ Q= ZPfo (2.20)

whereR = (Q3 + Q3)*/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A
convenient way to visualize the-3dimensional
state space orbit is by projecting it onto the 2-
dimensional (1 (t), ro(t)) plane. (continued as ex-
ercise 3.4)

(Gregor Tanner, Per Rosenqvist)
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