Chapter 9

World In a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

YNAMICAL SYSTEMs Often come equipped with symmetries, such as the re-
D flection and rotation symmetries of various potentials. His thapter we
study quotienting of discrete symmetries, and in the neaptér we study
symmetry reduction for continuous symmetries. We look diviidual orbits, and
the ways they are interrelated by symmetries. This setstdge $or a discussion
of how symmetries fiect global densities of trajectories, and the factorizatid
spectral determinants to be undertaken in chapter 21.

As we shall show here and in chapter 21, discrete symmetineglis/ the dy-

namics in a rather beautiful way: If dynamics is invariantdena set of discrete
symmetriesG, the state spaca is tiled by a set of symmetry-related tiles, and

the dynamics can be reduced to dynamics within one suchthigefundamental

domain M/G. In presence of a symmetry the notion of a prime periodictorbi

has to be reexamined: a set of symmetry-related full stateespycles is replaced

by often much shorterelative periodic orbit the shortest segment of the full state

space cycle which tiles the cycle and all of its copies ungeriction of the group.
Furthermore, the group operations that relate distines tilo double duty as letters

of an alphabet which assigns symbolic itineraries to ttajees. section 11.1

Familiarity with basic group-theoretic notions is assumeith details rele-
gated to appendix H.1. The erudite reader might prefer to ti@ lengthy group-
theoretic overture and go directly to,G D; example 9.7, example 9.10, and
Csy = D3 example 9.12, backtrack as needed.

9.1 Discrete symmetries

. : : : %\
Normal is just a setting on a washing machine. A
—Borgette, Borgo’s daughter
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CHAPTER 9. WORLD IN A MIRROR 144

We show that a symmetry equates multiplets of equivaleritomr ‘stratifies’ the
state space into equivalence classes, each class a ‘groitip b¥e start by defin-
ing a finite (discrete) group, its state space represenigtiand what we mean by
asymmetryinvarianceor equivariancg of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A.2.3) way toagnabstract notions
have to be defined before an intelligent conversation campédce. Perhaps best
to skim through this section on the first reading, then retarit later as needed.

Definition: A finite group consists of a set of elements

G={eg,....0n} (9.1)
and a group multiplication rulg; o g; (often abbreviated ag;g;), satisfying

1. Closure: Ifgi,gj € G, thengj o g € G

2. Associativity:gx o (gj © gi) = (gk © gj) © g

3. ldentityee goe=eog=gforallge G

4. Inverseg!: For everyg € G, there exists a unique element

h=g'eGsuchthahog=goh=e

|G| = n, the number of elements, is called thieler of the group.

Example 9.1 Discrete groups of order 2 on R3.  Three types of discrete group of

order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: o(X,y,2) = (XY, -2
rotations: CY Z(X, V.2 = (=X-Y,2)
inversions: P(X,y,2) = (=X, -Y,-2).

(9.2)

o is areflection (or an inversion) through the [x, y] plane. CY/? is[x, y]-plane, constant z
rotation by m about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0,0, 0). Singly, each operation generates a group
of order 2: D1 = {e,0}, C, = {e,CY?}, and D1 = {e, P}. Together, they form the dihedral

group D, = {e, o, CY2, P} of order 4. (continued in example 9.2)

Definition: Coordinate transformations. Consider a ma’ = f(X), x, f(x) €
M. An activelinear coordinate transformatiok x corresponds to a non-singular
[dxd] matrix M that maps the vectox € M onto another vectoMx € M.
The correspondingassivecoordinate transformatiofi(x) — M~1f(x) changes
the coordinate system with respect to which the ved{o) € M is measured.
Together, a passive and active coordinate transformatygeid the map in the
transformed coordinates:

f(x) = M1 (MX). (9.3)
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CHAPTER 9. WORLD IN A MIRROR 145

Definition: Matrix representation.  Linear action of a discrete grofpelement
g on statesx € M is given by a finite non-singuladfx d] matrix g, the matrix
representatiorof elementg € G. We shall denote byg’ both the abstract group
element and its matrix representation.

If the coordinate transformatiog belongs to a linear non-singular represen-
tation of a discrete finite grou, for any elemeng € G there exists a number
m < |G| such that

nggogo___Og:e - |detg|=1 (94)

m times

As the modulus of its determinant is unity, dgs anmth root of 1.

Example 9.2 Discrete operations on R3. (continued from example 9.1) The matrix
representation of reflections, rotations and inversions defined by (9.2) is

10 0 -1 0 0 -1 0 0
(T:[O 1 o], c1/2=[ 0 -1 o), P:[ 0 -1 o], (9.5)
00 -1 0 0 1 0 0 -1

with detCY? = 1, deto = detP = —1; that is why we refer to C'/? as a rotation, and o, P
as inversions. (continued in example 9.4)

Definition: Symmetry of a dynamical system. A groupG is asymmetnpof the
dynamics if for every solutiorf(x) e M andg € G, gf(x) is also a solution.

Another way to state this: A dynamical systerm(f) is invariant (or G-
equivarian) under a symmetry grouf if the time evolutionf : M - M (a
discrete time mag, or the continuous flowf* map from thed-dimensional man-
ifold M into itself) commutes with all actions &,

f(@3 = gf(x), (9.6)

or, in the language of physicists: The ‘law of motion’ is inzat, i.e., retains its
form in any symmetry-group related coordinate frame (9.3),

f() =999, (9.7)

for any statex € M and any finite non-singular ¢ x d] matrix representation

g of elementg € G. Why ‘equivariant?” A functionh(x) is said to beG-
invariant if h(x) = h(gx) for all g € G. The group actions map the solution
f : M — M into different (but equivalent) solutiorgsf(x), hence the invariance
condition f(x) = g~ f(gX) appropriate to vectors (and, more generally, tensors).

discrete - 8nov2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 9. WORLD IN A MIRROR 146

 £(X)
)(o ///
S X, _
X3 § X
A y X2
 £(X)
GXZ R /,/
L pOX,
. ) 0% .7 ;(
Figure 9.1: The bimodal Ulam sawtooth map with the o
D; symmetryf(-x) = —f(x). If the trajectoryx, — DL
X1 — X» — ---iS a solution, so is its reflectiomxg — OX
oX3 — oX — ---. (continued in figure 9.2) o

The full set of such solutions B-invariant, but the flow that generates them is

said to beG-equivariant. It is obvious from the context, but for verleahphasis

applied mathematicians like to distinguish the two casesyeyguivariant. The
distinction is helpful in distinguishing the dynamics weit in the original, equiv-

ariant coordinates from the dynamics rewritten in termgweériant coordinates,

see sects. 9.1.2 and 10.4. exercise 9.7

Example 9.3 A reflection symmetric 1d map.  Consider a 1d map f with reflection
symmetry f(—X) = —f(X), such as the bimodal ‘sawtooth’ map of figure 9.1, piecewise-
linear on the state space M = [-1, 1], a compact 1-dimensional line interval, split into
three regions M = M| U Mc U Mg. Denote the reflection operation by ox = —X. The
2-element group G = {e, o} goes by many names, such as Z, or C,. Here we shall refer
to it as D1, dihedral group generated by a single reflection. The G-equivariance of the
map implies that if {x,} is a trajectory, than also {o-Xn} is a symmetry-equivalenttrajectory
because oxn1 = o f(X,) = f(oxn) (continued in example 9.7)

Example 9.4 Equivariance of the Lorenz flow. (continued from example 9.2) The
vector field in Lorenz equations (2.12) is equivariant under the action of cyclic group
G, = {e,CY?} acting on R® by a  rotation about the z axis,

CY2(x,y,2) = (-%, Y, 2).

(continued in example 9.10)
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Example 9.5 Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: rotation by r in the (streamwise,spanwise) plane, and
rotation by r in the (streamwise,wall-normal) plane. That is why there are some equi-
libria (as opposed to relative equilibria) and some periodic orbit solutions. They belong
to discrete symmetry subspaces. (continued in example 10.4)

9.1.1 Subgroups, orbits, subspaces

A solution tends to exhibit less symmetry than the dynanegalations of motion.
The symmetry of a solution is thus a subgroup of the symmetymgof dynam-
ics. This section makes this statement precise by settinipelgroup-theoretic
notions needed in what follows. The reader might prefer tp tksect. 9.2, back-
track as needed.

Definition: Subgroup, coset. LetH = {e by, bs,..., by} € G be a subgroup of
orderh = |H|. The set ofh elementdc, cby, chg, ..., chy}, c € G but not inH, is
called leftcoset cH For a given subgroupl the group elements are partitioned
into H andm — 1 cosets, wheren = |G|/|H|. The cosets cannot be subgroups,
since they do not include the identity element.

Definition: Class. An elementb € G is conjugateto a if b = cac wherec s

some other group element. bfandc are both conjugate ta, they are conjugate

to each other. Application of all conjugations separatesstt of group elementsxercise 9.3
into mutually not-conjugate subsets calleldsses typesor conjugacy classes

The identitye is always in the clasg&} of its own. This is the only class which isxercise 9.5
a subgroup, all other classes lack the identity element.

Physical importance of classes is clear from (9.7), the waydinate trans-
formations act on mappings: action of elements of a clasg r&ffections, or
rotations) is equivalent up to a redefinition of the coortkenfaame.

Definition: Invariant subgroup. A subgroupH C G is aninvariant subgroup
or normal divisorif it consists of complete classes. Class is complete if mguzo
gation takes an element of the class ouHof

H dividesG into H andm — 1 cosets, each of ordéid|. Think of action of
H within each coset as identifying itsl| elements as equivalent. This leads to
the notion ofG/H as thefactor groupor quotient group GH of G, with respect
to thenormal divisor(or invariant subgroupH. Its order ism = |G|/|H|, and its
multiplication table can be worked out from tki&multiplication table class by
class, with the subgrould playing the role of identityG/H is homeomorphit¢o
G, with |[H| elements in a class @ represented by a single elemenGpH.
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So far we have discussed the structure of a group as an atesttég. Now we
switch gears and describe the action of the group on thespatee of a dynamical
system of interest. This is the key step; if a set of solutinequivalent by
symmetry (a circle, let’s say), we would like to represenbyita single solution
(cut the circle at a point, or rewrite the dynamics in an ‘reel state space,” where
the circle of solutions is represented by a single point).

Definition: Orbit. The subseMy, c M traversed by the infinite-time trajec-
tory of a given pointx is called theorbit (or asolution x(t) = fi(xInit). An
orbit is adynamically invarianinotion: it refers to the set of all states that can be
reached in time fronxg, thus as a set it is invariant under time evolution. The full
state spaca is foliated (stratified) into a union of such orbits. We labeJeneric
orbit My, by any point belonging to ity = x(0) for example.

A generic orbit might be ergodic, unstable and essentialyontrollable. The
ChaosBook strategy is to populate the state space by adfigraf orbits which
are compact invariant setgéequilibria, periodic orbits, invariant tori,..), each
computable in a finite time. They are a set of zero Lebesguesuneabut dense
on the non—wandering set, and are to a generic orbit whatidrecare to normal
numbers on the unit interval. Orbits which are compact iiaversets we label by
whatever alphabet we find convenient in a given context: tgod = xeq = Meqg
for an equilibrium, 1-dimensional loop = M, for a prime periodic orbifp, etc.
(note also discussion on page 190, and the distinction legtivejectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment ofrhit)o

Definition: Group orbit. The set of pointgx generated by all actions of the
groupG on the state space poiris called thegroup orbitor G-orbit My. If Gis

a symmetry, intrinsic properties of an equilibrium (suchstability eigenvalues)
or a cyclep (period, Floquet multipliers) evaluated anywhere alos@iorbit are
the same.

A symmetry thus reduces the number of inequivalent solstibty,. So we
also need to describe the symmetry ofaution as opposed to (9.7), the sym-
metry of thesystem We start by defining the notions céduced state spacef
isotropyof a state space point, and sthbilizerof an orbit.

Definition: Reduced state space. The action of groupgs partitions the state
spaceM into a union of group orbits. This set of group orbits, dedotd/G, has
many namesreduced state spacguotient spacer any of the names listed on
page 181.

Reduction of the dynamical state space is discussed in%dctor discrete
symmetries, and in sect. 10.4 for continuous symmetries.
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Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space poimtinto itself,

Gx=1{ge G:gx=x}, (9.8)

is called thasotropy groupor little group of x.

We also need a notion dfet-wiseinvariance, as opposed to tipeint-wise
invariance unde6y. exercise 9.2

Definition: Stabilizer. We shall sometimes refer to the subset of nontrivial
group actionsG, € G on state space points within a compact ¢g, which
leave no point fixed but leave the set invariant, asstiagilizer G, of M,

Gp=1{0€eGp:gxe Mp, gx# xforg # ¢}, (9.9)

and reserve the notion of ‘isotropy’ of a s&,, for the subgroufs, that leaves
each point in it fixed.

Saying thaiG is the symmetry of the solutiop, or that the orbitM, is ‘G-
invariant,” accomplishes as much without confusing youhwit these names (see
remark 9.1). In what follows we shall speak freely and saggdhilike “the sym-
metry of the periodic orbip is C, = {e, R},” rather than bandy about ‘stabilizers’
and such.

The splitting of a groug into an stabilizeiG, andm - 1 cosetG,, relates
an orbit Mp to m — 1 other distinct orbitcM,,. All of them have equivalentexercise 9.4
stabilizers, or, more precisely, the points on the sameuarbit haveconjugate
stabilizers

Gep=CGpct. (9.10)
If Gy is the stabilizer of orbitM,,, elements of the coset spagec G/G,

generate then, — 1 distinct copies ofM,,, so for discrete groups the multiplicity
of orbit pis mp = |G|/IGp|.

Definition: Fixed-point subspace My of a subgroup or a ‘centralizeH c G,
G a symmetry of dynamics, is the set of all state space poiftt$iidixed point-
wiseinvariant under subgroup action

My =Fix(H) = {xe M:hx=xforallheH}. (9.11)

Points in state space subspaef, which are fixed points of the full group action
are callednvariant points

Mg =Fix(G) ={xe M:gx=xforallgeG}. (9.12)
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Definition: Flow invariant subspace. A typical point in My moves with time,
but, due to equivariance (9.6), its trajectorf) = f(x) remains withinf(My) C
My for all times,

hft(x) = fi(hX) = fi(x), heH, (9.13)

i.e., belong to dlow invariant subspace This suggests a systematic approach
to seeking compact invariant solutions. The larger the sgtrynsubgroup, the
smaller My, easing the numerical searches, so start with the largbgraupsH
first.

We can often decompose the state space into smaller sulkspette group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. M, c M s aninvariant subspace if
{M, :gxe M, forallge Gandxe M,}. (9.14)

{0} and M are always invariant subspaces. So is any(Hixwhich is point-wise
invariant under action db.

Definition: Irreducible subspace. A spaceM, whose only invariant subspaces
are{0} and M, is calledirreducible

9.1.2 Invariant bases

Physical laws should have the same form in symmetry-eqeméaloordinate frames,
so they are often formulated in terms of functions (Hamikos, Lagrangians,
-++) invariant under a given set of symmetries.

Example 9.6 Polynomials invariant under discrete operations on R3. (continued
from example 9.1) o is a reflection through the [X,y] plane. Any {e, o}-invariant

function can be expressed in the polynomial basis {u1, Uz, Uz} = {X,V, 2.

CY2 is a[x,y]-plane rotation by = about the z-axis. Any {e, C'/?}-invariant func-
tion can be expressed in the polynomial basis {Uy, Uy, Us, Us} = {X?, Xy, y2 z}, with one

syzygy between the basis polynomials, (x?)(y?) — (xy)® = 0.

P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function can be
expressed in the polynomial basis {uy,---,Us} = {X2,¥°, 72, Xy, X2, yZ}, with three syzy-

gies between the basis polynomials, (x?)(y?) — (xy)? = 0, and its 2 permutations.

For the D, dihedral group G = {e, o, C'/2, P} the G-invariant polynomial basis
is {ug, Up, U, Ug} = {X2,¥?, 22, xy}, with one syzygy, (x*)(y?) — (xy)> = 0. (continued in

example 10.13)

The key result of the representation theory of invariantcfioms is:
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Hilbert-Weyl theorem. For a compact grouf® there exists a finit&-invariant
homogenous polynomial badis;, up, ..., Uy}, m > d, such that anys-invariant
polynomial can be written as a multinomial

h(xX) = p(up(X), u2(X), ..., Uum(X)), Xe M. (9.15)

These polynomials are linearly independent, but can betifumadly dependent
through nonlinear relations calleyzygies

In practice, explicit construction dB-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few deripw-dimensional
cases, such as the 5-dimensional example of sect. 10.5. &fé&r po apply the
symmetry to the system as given, rather than undertake @ssafrinonlinear co-
ordinate transformations that the theorem suggests. (Wiapact’ in the above
refers to will become clearer after we have discussed cootis symmetries. For
now, it sufices to know that any finite discrete group is ‘compact’.) exercise 9.1

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all oktstem’s symmetries,

a proper subgroup of them, or have no symmetry at all. For @rnierrgodic
orbit f'(x) the trajectory and any of its images under actiomef G are distinct
with probability one,f{(x) N gf'(x) = 0 for all t, t’. For example, a typical turbu-
lent trajectory of plane Couette flow has no symmetry beydredidentity, so its
symmetry group is the trivigle}. For compact invariant sets, such as fixed points
and periodic orbits the situation is veryfidirent. For example, the symmetry of
the laminar solution of the plane Couette flow is the full syetimy of its Navier-
Stokes equations. In between we find solutions whose syri@seire subgroups
of the full symmetry of the defining equations.

The key concept in the classification of dynamical orbitshis toncept of
their symmetry isotropyor stabilizer). We note three types of solutions: (i) fully
asymmetrica, (i) Gp set-wise invariant cyclesbuilt by repeats of relative cycle
segmentss,”and (iii) isotropy subgroufsgQ-invariant equilibria or point-wise
Gp-fixed cyclesn.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {xq} N {gXy} = 0 for anyg € G, where{xy} is the set of periodic points
belonging to the cycla. Thusg € G generatdG| distinct orbits with the same
number of points and the same stability properties.

A string of unmotivated definitions (no less than an unmadgadefinition of
strings) has a way of making trite mysterious, so let’s swgears again: develop
afeeling for why they are needed by first working out the sespltdimensional
example with a single reflection symmetry.
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f(x) f(x) f(x)
R —
CR
fL fC fR V -
Figure 9.2: The D;-equivariant bimodal sawtooth = %
map of figure 9.1 has three types of periodic or- C X R X
bits: (a) D;-fixed fixed pointC, asymmetric fixed U? P
points pair{L,R}. (b) Di-symmetric (setwise in- + ’ [ LC
variant) 2-cycleLR. (c) Asymmetric 2-cycles pair
{LC,CR. (continued in figure 9.8) (Y. Lan) (a) (b) (c)
Example 9.7 Group D; - a reflection symmetric  1d map: Consider the bimodal

‘sawtooth’ map of example 9.3, with the state space M = [-1, 1] split into three regions
M = {My, Mc, Mg} which we label with a 3-letter alphabet L (eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C, R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D;-equivariance of the map,
D1 = {e, o}, implies that if {Xn} is a trajectory, so is {oXn}.

Asymmetric cycles.o- maps a cycle a into the reflected cycle oa, with the same period

and the same stability properties, see figure 9.2 (c).

Definition: Gp-symmetric cycles. A cycle p is Gp-symmetric(set-wise sym-
metrig self-dua) if the action of elements db,, on the set of periodic pointd1,
reproduces the set. The set of group elements with this psofim the stabi-
lizer G, of the cycles. g € Gy, acts as a shift in time, mapping the periodic point

X € Mpinto fTe/Crl(x).

Example 9.8 D;-symmetric cycles:

For D1 the period of a set-wise symmetric cycle
is even (ns = 2ng), and the mirror image of the X periodic point is reached by traversing
the relative periodic orbit segment § of length ns, T™(xs) = o-Xs, see figure 9.2 (b).

Definition: Gp-fixed orbits:  An equilibrium xy or a compact solutiop is point-
wise or G-fixed if it lies in the invariant points subspace Ki@p), g% = Xq
for all g € Gp. A solution that isG-invariant under all grous operations has
multiplicity 1. Stability of such solutions will have to be<amined with care,
as they lie on the boundaries of domains related by the acfidthe symmetry

group.

Example 9.9 Group Di-invariant cycles:
G-invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.2 (a).
We shall continue analysis of this system in example 9.13, and work out the symbolic
dynamics of such reflection symmetric systems in example 12.5.

In the example at hand there is only one

As reflection symmetry is the only discrete symmetry that @ ofahe interval
can have, this example completes the group-theoretic sisaby 1-dimensional
maps. Consider next a 3-dimensional flow with a symmetry. exercise 9.7
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Figure 9.3: Lorenz attractor of figure 3.7, the full sta
space coordinatesy, 7], with the unstable manifol
orbitsWY(EQ). (Green) is a continuation of the uns
ble &V of EQy, and (brown) is itsr-rotated symmetris
partner. Compare with figure 9.4. (E. Siminc

Example 9.10 Desymmetrization of Lorenz flow: (continuation of example 9.4)
Lorenz equation (2.12) is invariant under the action of order-2 group C, = {e, C'/?},
where C/2 s [x, y]-plane, constant z half-cycle rotation by = about the z-axis:

(X’ y’ Z) - Cl/z(x’ y’ Z) = (_X’ _yv Z) . (916)

(CY¥?)?2 = 1 condition decomposes the state space into two linearly irreducible sub-
spaces M = M*& M-, the z-axis M* and the [X, y] plane M~, with projection operators
onto the two subspaces given by (see sect. 4.2.2)

1 0 00 1 1 00
Pr=Z(1+CY%=| 0 0 0|, P=Z-@1-CY=|l0 1 0. (9.17)
2 001 2 000

As the flow is Cy-invariant, so is its linearization X = Ax. Evaluated at EQy, A com-
mutes with CY?, and, as we have already seen in example 4.7, the EQq stability matrix
decomposes into [X,y] and z blocks.

The 1-dimensional M* subspace is the fixed-point subspace of C,, with the
z-axis points left fixed (i.e., point-wise invariant) under the group action

M =Fix(G) = {xe M:gx=xforge {e C?)}. (9.18)

A C,-fixed point x(t) in Fix (C;) moves with time, but according to (9.13) remains within
X(t) € Fix (&) for all times; the subspace M* = Fix (C,) is flow invariant. In case at
hand this jargon is a bit of an overkill: clearly for (x,y,2) = (0,0, 2) the full state space
Lorenz equation (2.12) is reduced to the exponential contraction to the E Q, equilibrium,

7= bz (9.19)

However, for flows in higher-dimensional state spaces the flow-invariant M, subspaces
can each be high-dimensional, with interesting dynamics of its own. Even in this sim-
ple case this subspace plays an important role as a topological obstruction, with the
number of windings of a trajectory around it providing a natural symbolic dynamics.

The M~ subspace is, however, not flow-invariant, as the nonlinear terms z =
xy—bzin the Lorenz equation (2.12) send all initial conditions within M~ = (x(0), y(0), 0)
into the full, z(t) # O state space M/M*. The CY? symmetry is nevertheless very
useful.

By taking as a Poincaré section any CY?-invariant, infinite-extent, non-self-
intersecting surface that contains the z axis, the state space is divided into a half-space
fundamental domain M = M/C, and its 18 rotation CY/> M. An example is afforded
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Figure 9.4. (a) Lorenz attractor plotted in
[X,y,Z], the doubled-polar angle coordinates
(9.20), with points related byr-rotation in the
[x, y] plane identified. Stable eigenvectorsEfy:

e® ande®, along thez axis (9.19). Unstable man-
ifold orbit W(EQy) (green) is a continuation of
the unstable® of EQ,. (b) Blow-up of the region
nearEQ;: The unstable eigenplane Bf), defined
by Ree® and Ime®, the stable eigenvecta®).
The descent of thEQ, unstable manifold (green)
defines the innermost edge of the strange attractor.
As it is clear from (a), it also defines its outermost
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edge.

P (b) Im e

(E. Siminos) (a)

by the P plane section of the Lorenz flow in figure 3.7. Take the fundamental domain M
to be the half-space between the viewer and P. Then the full Lorenz flow is captured
by re-injecting back into M any trajectory that exits it, by a rotation of = around the z
axis.

As any such CY2-invariant section does the job, a choice of a ‘fundamental
domain’ is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M explicit, through any
State space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (X,y) in polar
coordinates (X,y) = (rcosh,rsind), and then plotting the flow in the ‘doubled-polar
angle representation:’

(X,y) = (rcos@,rsin2) = (62— y?)/r,2xy/r), (9.20)

as in figure 9.4 (a). In contrast to the original G-equivariant coordinates [X,Y, Z], the
Lorenz flow expressed in the new coordinates [X',Y', Z] is G-invariant, see example 9.6.
In this representation the M = M/ C, fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [X',y'] plane. (continued in example 11.4)

(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as thélddpolar angle

representation (9.20) aneot required to implement the symmetry quotienting

M/G. Here they are deployed only as a visualization aid that tighp the reader
disentangle 2-dimensional projections of higher-dimemai flows. All numerical
calculations can still be carried in the initial, full stafgace formulation of a flow,
with symmetry-related points identified timear symmetry transformations.

The next example is a non-Abelian symmetry group, with eleméhat do
not commute, illustrated by the 3-disk game of pinball, egba®.12 and exam-
ple 9.14.

in depth:
Q appendix H, p. 804
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, 012
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Figure 9.5: The symmetries of three disks on an equi
lateral triangle. The fundamental domain is indicate
by the shaded wedge.

9.3 Relative periodic orbits =

N

l\
We show that a symmetry reduces computation of periodictibi repeats of
shorter, ‘relative periodic orbit’ segments.

Invariance of a flow under a symmetry means that the groupraatmage of
a cycle is again a cycle, with the same period and stabilitye few orbit may be
topologically distinct (in which case it contributes to tmeiltiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetriaunder symmetry operation € Gy, if the operation
acts on it as a shift in time, advancing a cycle point to a cpdiat on the sym-
metry related segment. The cygbecan thus be subdivided intm, repeats of a
relative periodic orbit segmentprime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry tht@n of a periodic
orbit is replaced by the notion of the shortest segment ofutatate space cycle
which tiles the cycle under the action of the group. In whibfes we refer to this
segment as eelative periodic orbitsegment (in the literature sometime referred
to as ashort periodic orbi}.

Relative periodic orbits (oequivariant periodic orbitsare orbitsx(t) in state
spaceM which exactly recur

X(t) = gx(t+T) (9.21)

for the shortest fixedelative period Tand a fixed group actiog € Gp. This
group action is referred to as a ‘phase,’ or a ‘shift.” For scdéte group by (9.4)
g™ = efor some finitem, so the corresponding full state space orbit is periodic
with periodmT.

The period of the full orbit is given by tha, x (period of the relative periodic
orbit), ns = np/IGyl, and theith Floquet multiplierA,; is given byArr:? of the
relative periodic orbit. The elements of the quotient sgaeeG/G,, generate the
copiesbp, so the multiplicity of the full state space cyghas m, = |G|/|Gp|.
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Figure 9.6: The 3-disk pinball cycles: (a)2,13,

23, 123; the clockwis€el32 not drawn. (b) Cy-
cle1232; the symmetry relatet?13 andL323 not
drawn. (c)12323;12123,12132,12313,13131

and 13232 not drawn. (d) The fundamental do-
main, i.e., the B6th wedge indicated in (a), con- a)
sisting of a section of a disk, two segments of sym-
metry axes acting as straight mirror walls, and the
escape gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and re-
coded in binary reduce to the two fixed poifts

1, 2-cyclel0, and 5-cycl®0111 (not drawn). See
figure 9.9 for thedO1 cycle. (d)

Example 9.11 Relative periodic orbits of Lorenz flow: (continuation of exam-
ple 9.10) The relation between the full state space periodic orbits, and the fundamental
domain (9.20) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rp maps into a single cycle p in the fundamental domain, and
any self-dual cycle p = Rp= PR is a repeat of a relative periodic orbit p.

Next illustration of these ideas brings in the noncommugatjroup structure:
the example of sect. 1.3, symmetries of a 3-disk game of pinba exercise 9.5

Example 9.12 Cs, = D3 invariance - 3-disk game of pinball: As the three disks
in figure 9.5 are equidistantly spaced, our game of pinball has a sixfold symmetry. The
symmetry group of relabeling the 3 disks is the permutation group S3; however, it is
more instructive to think of this group geometrically, as Cs, (dihedral group D3), the
group of order |G| = 6 consisting of the identity element e, three reflections across
axes {012, 003, 0713}, and two rotations by 2r/3 and 4r/3 denoted {CY2, C?/3). Applying
an element (identity, rotation by +2r/3, or one of the three possible reflections) of this
symmetry group to a trajectory yields another trajectory. For instance, o3, the flip
across the symmetry axis going through disk 1 interchanges the symbols 2 and 3; it
maps the cycle 12123into 13132 figure 9.6 (c). Cycles 12, 23, and 13 in figure 9.6 (a)
are related to each other by rotation by +2r/3, or, equivalently, by a relabeling of the
disks.

The nontrivial subgroups of D3 are D1 = {e, o}, consisting of the identity and
any one of the reflections, of order 2, and C; = {e, CY/3,C?/3}, of order 3, so possible
cycle multiplicities are |G|/|Gy| = 1, 2, 3 or 6. Only the fixed point at the origin has full
symmetry G, = G. Such equilibria exist for smooth potentials, but not for the 3-disk
billiard.

The C; subgroup Gy, = {e, C*/3,C?3} invariance is exemplified by 2 cycles 123
and 132 which are invariant under rotations by 2rx/3 and 4rn/3, but are mapped into
each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gy| = 2.

The C, type of a subgroup is exemplified by the invariances of p = 1213 This
cycle is invariant under reflection 0,3{1213 = 1312= 1213 so the invariant subgroup
is Gp = {€, 023}, with multiplicity is mp = |G|/|Gp| = 3; the cycles in this class, 1213 1232
and 1323 are related by 2r/3 rotations, figure 9.7 (b).
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121212313
Figure 9.7: Cycle 121212313 has multiplicity 6;

shown here i421313132= 0,3121212313. How-
ever,121231313 which has the same stability an
period is related td21313132 by time reversal,
but not by any G, symmetry.

121313132

157

121231313

A cycle of no symmetry, such as 12123 has G, = {€} and contributes in all six

copies (the remaining cycles in the class are 12132 12313 12323 13132and 13232,
figure 9.7 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and

313212121= 121213132vhich have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.14)

9.4 Dynamics reduced to fundamental domain

| submit my total lack of apprehension of fundament QQ\

concepts.
—John F. Gibson

So far we have used symmetry tfiext a reduction in the number of independent
cycles, by separating them into equivalence classes. Ttiestep achieves much
more: it replaces each class by a single (typically shopgeme cycle segment.

1. Discrete symmetry tessellates the state space intoopia fundamen-
tal domain, and thus induces a natural partition of stateespdhe state
space is completely tiled by fandamental domaimand its symmetry im-
ages: If the dynamics is invariant under a discrete symmeiwy state
spaceM can be completely tiled by the fundamental domaihand its
imagesAZ(a = aM, My = bM, ... under the action of the symmetry group
G={eab,...},

M=MUMaUMp---UMg =MuaMuUbM--- . (9.22)

2. Discrete symmetries can be used to restrict all commutatio aflundamen-
tal domainM = M/G, i.e., the reduced state space quotient of the full state
spaceM by the group actions d&.

Now we can use the invariance condition (9.6) to move thdisgapoint
x into the fundamental domair = a%, and then use the relaticaarib =
h™! to also relate the endpoimt e M to its image in the fundamental
domain M. While the global trajectory runs over the full spadd, the
restricted trajectory is brought back into the fundamenitaiain M any
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Figure 9.8: The bimodal Ulam sawtooth map of f()()
figure 9.2 with theD; symmetry f(—x) = —f(x)

restricted to the fundamental domain(x) is in-
dicated by the thin line, and fundamental domain
map (%) by the thick line. (a) Boundary fixed
pointC is the fixed poinD. The asymmetric fixed
point pair {L,R} is reduced to the fixed poirg, C
and the full state space symmetric 2-cytlR is En
reduced to the fixed poirit. (b) The asymmetric LR

2-cycle pair{LC,CR is reduced to 2-cycl®1. (c)
All fundamental domain fixed points and 2-cycles.

(Y. Lan) P g (a) (b)

time it exits into an adjoining tile; the two trajectoriesearlated by the
symmetry operatio which maps the global endpoint into its fundamental
domain image.

3. Cycle multiplicities induced by the symmetry are remokigdesymmetriza-
tion, reduction of the full dynamics to the dynamics ofuadamental do-
main Each symmetry-related set of global cyclesorresponds to pre-
cisely one fundamental domain (or relative) cypleConversely, each fun-
damental domain cycle ffaces out a segment of the global cyplewith
the end point of the cycle fmapped into the irreducible segmentmith
the group elemerttz. The relative periodic orbits in the full space, folded
back into the fundamental domain, are periodic orbits.

4. The group elements = {e gy,..., g} which map the fundamental do-
main M into its copiesgM, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symetsee sect. 10.4.

exercise 9.6
Example 9.13 Group D and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f(-x) = —f(X) of exam-

ple 9.7, with symmetry group D; = {g,o}. The state space M = [-1,1] can be tiled by
half-line M = [0, 1], and o M = [-1, 0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain % € M = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using o.

In figure 9.8 the fundamental domain map f (X) is obtained by reflecting x < 0
segments of the global map f(x) into the upper right quadrant. f is also bimodal and
piecewise-linear, with M = [0, 1] split into three regions M = { Moy, M1, Mz} which we
label with a 3-letter alphabet A = {0,1,2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0. In this case the set
of points invariant under group action of D1, M N oM, is just this fixed point x = 0, the
reflection symmetry point.
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Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwisel21232313 and the clockwise
131323212 correspond to (b) one fundamental do-
main 3-cycle001. (b)

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR! is reduced to the 2-cycle O1. Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c).

Example 9.14 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk— disk
increments g;, where g; is the discrete group element that maps disk i—1 into diski. For
3-disk system g; is either reflection o back to initial disk (symbol ‘0’) or 2r/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N—1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.6(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13 and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples of
such orbits are shown in figures 9.7 and 9.9. (continued in example 12.7)
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Résum é

If a dynamical systemAX(1, f) has a symmetnG, the symmetry should be de-
ployed to ‘quotient’ the state spaceAd/G, i.e., identify all symmetry-equivalent
X € Mon a group orbit. The main result of this chapter can be stasedllows:

In presence of a discrete symmetBy associated with each full state space
cycle p is the group of its symmetrieG, C G of order 1< |G| < |G|, whose
elements leave the s@tl, invariant. The elements @, act onp as time shifts,
tiling it with |Gp| copies of its shortest invariant segment, the relativeogiziorbit
. The elements of the cosete G/G, generatan, = |G|/|Gp| equivalent copies
of p.

Once you grasp the relation between the full state spdcand the desym-
metrized,G-quotiented reduced state spakt/G, you will find the life as a fun-
damentalist so much simpler that you will never return toryfull state space
confused ways of yesteryear. The reduction to the fundaahelmain M =
M/G simplifies symbolic dynamics and eliminates symmetry-cetlidegenera-
cies. For the short orbits the labor saving is dramatic. Kan®le, for the 3-disk
game of pinball there are 256 periodic points of length 8, redluction to the
fundamental domain non-degenerate prime cycles reducesadmber to 30. In
the next chapter continuous symmetries will induce redaperiodic orbits that
never close a periodic orbit, and in the chapter 25 they vidithe infinite peri-
odic state space, and reduce calculation fitidion constant in an infinite domain
to a calculation on a compact torus.
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Commentary

Remark 9.1 Literature. We found Tinkham [9.1] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic conceptst &summary of the theory of
discrete groups see, for example, ref. [9.2]. Chapter 3 dfeiRea Hoyle [9.3] is a very
student-friendly overview of the group theory a nonlinegnamicist might need, with
exception of the quotienting, reduction of dynamics to adfamental domain, which is
not discussed at all. We found sites such as en.wikipedjaviki/Quotientgroup help-

ful. Curiously, we have not read any of the group theory bablas Hoyle recommends

as background reading, which just confirms that there are twaymany group theory
books out there. For example, one that you will not find usefudll is ref. [9.4]. The
reason is presumably that in the 20th century physics (wiictivated much of the work

on the modern group theory) the focus is on the linear reptasiens used in quantumaeppendix A.2.3
mechanics, crystallography and quantum field theory. W# skad these techniques in
Chapter 21, where we reduce the linear action of evoluticeratprs to irreducible sub-
spaces. However, here we are looking at nonlinear dynamcsthe emphasis is on the
symmetries of orbits, their reduced state space sistedstrenisotypic decomposition of
their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt theryhafbifurcations, the
landscape between the boredom of regular motions and this thfrchaos. Chapter 4
of Rebecca Hoyle [9.3] is a student-friendly introductiorthie treatment of bifurcations
in presence of symmetries, worked out in full detail and gality in monographs by
Golubitsky, Stewart and Scher [9.5], Golubitsky and Stewart [9.6] and Chossat and
Lauterbach [9.7]. Term ‘stabilizer’ is used, for examplg,Broeret al.[9.8] to refer to a
periodic orbit withZ, symmetry; they say that the relative or pre-periodic sedrigeim
this case called a ‘short periodic orbit.” In EfstathiougPa subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropsogp or stabilizer.’ (continued
in remark 10.1)

Remark 9.2 Symmetries of the Lorenz equation: (continued from remark 2.3) Af-
ter having studied example 9.10 you will appreciate WhyosBook . org starts out with
the symmetry-less Rossler flow (2.17), instead of the b&ttewn Lorenz flow (2.12).
Indeed, getting rid of symmetry was one of Rossler's maitwes. He threw the baby out
with the water; for Lorenz flow dimensionalities of staliestable manifolds make pos-
sible a robust heteroclinic connection absent from Rogke, with unstable manifold
of an equilibrium flowing into the stable manifold of anotleguilibrium. How such con-
nections are forced upon us is best grasped by perusing #merhl3 ‘Heteroclinic tan-
gles’ of the inimitable Abraham and Shaw illustrated cla$3i10]. Their beautiful hand-
drawn sketches elucidate the origin of heteroclinic cotinas in the Lorenz flow (and
its high-dimensional Navier-Stokes relatives) bettemtaay computer simulation. Mi-
randa and Stone [9.11] were first to quotient thes@mmetry and explicitly construct the
desymmetrized, ‘proto-Lorenz system,” by a nonlinear dawate transformation into the
Hilbert-Weyl polynomial basis invariant under the actidittoe symmetry group [9.12].
For in-depth discussion of symmetry-reduced (‘imagest) aymmetry-extended (‘cov-
ers’) topology, symbolic dynamics, periodic orbits, ineeat polynomial bases etc., of
Lorenz, Rossler and many other low-dimensional systeraeetis no better reference
than the Gilmore and Letellier monograph [9.13]. They iptet [9.14] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the ams of ‘amplitudes,’ and call
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quotiented flows such as (Lorep@) ‘images.” Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, irdégthe flow and construct
Poincaré sections and return maps in the original Loreng ] coordinates, without any
nonlinear coordinate transformations. The Poincar&mnatuap figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paped the one plotted in a
radial coordinate by Gilmore and Letellier. Neverthelgsss profoundly diferent: our
return maps are from unstable manifelditself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [9.15]. This constructiomiscessary for high-dimensional
flows in order to avoid problems such as double-valuednesst@fn map projections on
arbitrary 1-dimensional coordinates encountered alréadiie Rossler example of fig-
ure 3.6. More importantly, as we know the embedding of theabis manifold into the
full state space, a periodic point of our return nisipregardless of the length of the cycle
- the periodic point in the full state space, so no additidw&lton searches are needed.
In homage to Lorenz, we note that his return map was alreaayrstry-reduced: as
belongs to the symmetry invariant Hi@) subspace, one can replace dynamics in the full
space by, 7, - - -. That isG-invariant by construction [9.13].

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow of
interest is symmetric in some way or other: the list of exaesp$ endless, we list here
a handful that we found interesting. One hasasgmmetry in the Lorenz system (re-
mark 2.3), the Ising model, and in the 3-dimensional anigutr Kepler potential [9.16,
9.17,9.18], @4 = C4 Symmetry in quartic oscillators [9.19, 9.20], in the pufg? poten-
tial [9.21, 9.22] and in hydrogen in a magnetic field [9.23|d@D, = Cy, = V4 = CoxC;
symmetry in the stadium billiard [9.24]. A very nice nontal/desymmetrization is car-
ried out in ref. [9.25]. An example of a system wiily = C3, symmetry is provided by
the motion of a particle in the Hénon-Heiles potential .2.27, 9.28, 9.29]

V(r, 6) = %rz + %re’ sin() .

Our 3-disk coding is insflicient for this system because of the existence of elliplanigs
and because the three orbits that run along the symmetrycarisot be labeled in our
code. As these orbits run along the boundary of the fundaahdomain, they require
the special treatment. A partial classification of the 67sfide symmetries of solutions
of the plane Couette flow of example 9.5, and their reductioarfugate classes is given
in ref. [9.30].
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Exercises

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

exerDiscrete - 6sep2008

Polynomials invariant under discrete operations on
R3. Prove that the{e o}, {e CY2}, {e, P} and
{e, o, CY2, P}-invariant polynomial basis and syzygies
are those listed in example 9.6.

Gx c G. Prove that the seéby as defined in (9.8) is a
9

subgroup ofG.

Transitivity of conjugation. Assume thag;, g», g3 €
G and bothg; andg, are conjugate tgs. Prove thaig;
is conjugate tap.

Isotropy subgroup of gx. Prove that foig € G, x and
gxhave conjugate isotropy subgroups:

Ggx = g Gx g_l

D3: symmetries of an equilateral triangle. Consider
group Dy = Cg, the symmetry group of an equilateral
triangle:

9.8.

2 3

(a) Listthe group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group.D

(c) Find the classes of{and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups ef D

Reduction of 3-disk symbolic dynamics to binary.
(continued from exercise 1.1)

(a) Verify that the 3-disk cycles
{12,13,23},{123,132, {1213+ 2 perms},
{121232 313+ 5 perms}, {121 323 2 perms},

correspond to the fundamental domain cy€les,

01,001,011, - - respectively.

(b) Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.

7. Cy-equivariance of Lorenz system.

(c) Optional: Can you see how the group elements
listed in table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 12.6)

Verify that the
vector field in Lorenz equations (2.12)

[ x oy - %) }
X=V(X)=|Y |=| pX-y—XZ (9.23)
z Xy — bz

is equivariant under the action of cyclic group G
{e, C¥?} acting onR?® by ax rotation about the axis,

Cl/z(x’ yv Z) = (_X’ _yv Z) )

as claimed in example 9.4. (continued in exercise 9.8)

Lorenz system in polar coordinates: group the-
ory. Use (6.7), (6.8) to rewrite the Lorenz equa-
tion (9.23) in polar coordinates,@, 2), where K y) =

(r cosd, r sind).

1. Show that in the polar coordinates Lorentz flow

takes form
o= %(—0'—1+(0'+p—z)sin29

+(1-0)cosd)

0 = %(—0'+p—2+(0'—1)sin29
+(o+p—2)cos D)
2
7 = —bz+%sin29. (9.24)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Lorend}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation in the k, y] plane.

4. Rewrite (9.23) in the invariant polynomial basis of
example 9.6 and exercise 9.24.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (9.24) is either a periodic or-
bit or a relative periodic orbit (9.21) of the Lorenz
flow in the (x,y, 2) representation.
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By going to polar coordinates we have quotiented out the
n-rotation &, y, 2) — (—X, -y, 2) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.9. Proto-Lorenz system.  Here we quotient out the C
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.11].

1. Rewrite the Lorenz equation (2.12) in terms of
variables

(u,v,2) = (¢ - y2,2xy,2), (9.25)

show that it takes form

v/2-bz
Vu? + V2,

P
I

2. Show that this is the (Loren&4}, quotient map for
the Lorenz flow, i.e., that it identifies points related
by thern rotation (9.16).

3. Show that (9.25) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.26)
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45;
40}
351 |7
30
=2 25;
20
15;
10}

for the Lorenz parameter values= 10,b = 8/3,

p = 28. Topologically, does it resemble more the
Lorenz, or the Rossler attractor, or neither? (plot
by J. Halcrow)

—(c+Lu+ (o -r)v+(1-o)N +vz 7.|Show that a periodic orbit of the proto-Lorenz is
(r—o)u—(o+1)Vv+(r+0)N—-uz-uN |ejther a periodic orbit or a relative periodic orbit

of the Lorenz flow.

(9&6Bhow that if a periodic orbit of the proto-Lorenz

10.

11.

is also periodic orbit of the Lorenz flow, their Flo-
guet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

What does the volume contraction formula (4.48)
look like now? Interpret.

Show that the coordinate change (9.25) is the same
as rewriting (9.24) in variables

(u,v) = (r>cosd,r?sin ),

i.e., squaring a complex numbee x + iy, 22 =
u+iv.

How is (9.26) related to the invariant polynomial
basis of example 9.6 and exercise 9.247?
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