Chapter 19

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it's rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only | don’t exactly know what they are!”

—Lewis Carroll, Through the Looking Glass

diverge atz = e %, respectivelys = s, i.e., precisely where one would

like to use them. While this does not prevent numerical eiion of
some “thermodynamic” averages for iterated mappings, énctse of the Gutz-
willer trace formula this leads to a perplexing observatibat crude estimates
of the radius of convergence seem to put the entire physmatteum out of
reach. We shall now cure this problem by thinking, at no extenputational
cost; while traces and determinants are formally equitadeterminants are the
tool of choice when it comes to computing spectra. DeterniBéend to have chapter 23
larger analyticity domains because ifff(1 - z£) = —diz Indet (1- z£) diverges
at a particular value of, then det (1- z£) might have an isolated zero there, and
a zero of a function is easier to determine numerically titspoles.

THE pROBLEM With the trace formulas (18.10), (18.23) and (18.28) is thay

19.1 Spectral determinants for maps
The eigenvalueg of a linear operator are given by the zeros of the determinant

det(1-zL) = ﬂ(1 -2/7). (19.1)
k

For finite matrices this is the characteristic determindmt;operators this is the
Hadamard representation of tepectral determinant(sparing the reader from
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pondering possible regularization factors). Considet fhis case of maps, for
which the evolution operator advances the densities bygéntsteps in time. In

this case we can use the formal matrix identity exercise 4.1
> 1
Indet(1- M) = tr In(1 - M):—Z—trM”, (19.2)
ril

to relate the spectral determinant of an evolution operfatoa map to its traces
(18.8), and hence to periodic orbits:

det(1-z£) = exp(— Z %tr L"]
n

(19.3)

Going the other way, the trace formula (18.10) can be reealéom the
spectral determinant by taking a derivative

2L d
tr T2~ —zd—zln det(1-zL). (19.4)

fast track:
W sect. 19.2, p. 363
Example 19.1 Spectral determinants of transfer operators:

\

J For a piecewise-linear map (17.17) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (18.11)
into (19.3):

det(1-2£) = ﬁ [1— fo _ t—l) , (19.5)

k k
k=0 AO Al

where ts = z/|Ag|. The eigenvalues are necessarily the same as in (18.12), which we
already determined from the trace formula (18.10).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (19.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.
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19.2 Spectral determinant for flows

.. an analogue of the [Artin-Mazur] zeta function for dif-
feomorphisms seems quite remote for flows. However we
will mention a wild idea in this direction.- [ -] definel(y)
to be the minimal period of [---] then define formally
(another zeta functionZ(s) to be the infinite product

z(s)_]‘[]‘[ [expl)] ™) .

yel' k=0

—Stephen Smal®ifferentiable Dynamical Systems

We write the formula for the spectral determinant for flows dyalogy to
(19.3)

det(s— A) = exp[ D Z e 'dif:p S';p:)d (19.6)

and then check that the trace formula (18.23) is the logaiittderivative of the
spectral determinant

tr

1 d
A" ds Indet(s— A). (19.7)

With zset toz = e °as in (18.24), the spectral determinant (19.6) has the same
form for both maps and flows. We refer to (19.6)smectral determinantas the
spectrum of the operatofl is given by the zeros of

det(s— A) = 0. (19.8)

We now note that the sum in (19.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spatgterminant into an
infinite product over periodic orbits as follows:

Let M, be thep-cycle [dxd] transverse Jacobian matrix, with eigenvalues
Ap1, Ap2, ..., Apd. Expanding the expanding eigenvalue factoffl: 1/Ape)
and the contracting eigenvalue factorg1l- Apc) in (18.4) as geometric series,
substituting back into (19.6), and resumming the logarithwe find that the spec-
tral determinant is formally given by the infinite product

00

1
det(s—-A) =
k=0 l=0 Skl
| | |
At Alz Al
Ydgr, = [ ]|1- S p=2—B2 (19.9)
p Ap,lAp.Z'”AP,e
1
t, = tp(zs,ﬁ):meg'AD’STPz”P. (19.10)
p
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In such formulag, is a weight associated with thecycle (lettert refers to the
“local trace” evaluated along thecycle trajectory), and the indgxruns through
all distinct prime cycles. Why the factaf*? It is associated with the trace for-
mula (18.10) for maps, whereas the factot'» is specific to the continuous time
trace formuls (18.23); according to (18.24) we should utieeeione or the other.
But we have learned in sect. 3.1 that flows can be represeiiteer &y their
continuous-time trajectories, or by their topological ¢ifRoincaré section return
maps. In cases when we have good control over the topologheofidw, it is
often convenient to insert thér factor into cycle weights, as a formal parame-
ter which keeps track of the topological cycle lengths. Ehfestors will assist chapter 20
us in expanding zeta functions and determinants, eveptuadishall sez = 1.
The subscriptg, c indicate that there areexpanding eigenvalues, andontract-
ing eigenvalues. The observable whose average we wish tputensontributes
through theA'(x) term in thep cycle multiplicative weighe?#». By its definition
(17.1), the weight for maps is a product along the periodiatso

S
S
I

s

o= [ | o0

T
)

and the weight for flows is an exponential of the integral §1 along the cycle

o = exp( fo " a(x(‘r))d‘r).

This formula is correct for scalar weighting functions; mgeneral matrix valued
weights require a time-ordering prescription as in the Basomatrix of sect. 4.1.

Example 19.2 Expanding 1-dimensionamap: J For expanding 1-dimensional
mappings the spectral determinant (19.9) takes the form

o HA

det-z0) = [[[[(1-to/AY), o= Wznp . (19.11)
p k=0
Example 19.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of free-

dom Hamiltonian flows the energy conservation eliminates on phase space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
A =1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalue A, |A| > 1, and one contracting transverse eigenvalue
1/A. The weight in (18.4) is expanded as follows:

1 1 1 ok+1
S (19.12)
|det(l— Mr) T IAFI-1/AT )2 AT Zo AY
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The spectral determinant exponent can be resummed,

S 1 @BASTYr o ( & ,,—sTp)
N2 E T N k+1)logli- S,
; " |det(1 - mp)| k;( +1)log IApIAK

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten

as an infinite product over prime cycles

o

det- ) = [ [[](2-to/ak)" . (19.13)
P

k=0

exercise 23.4

Now we are finally poised to deal with the problem posed at gggrining of
chapter 18; how do we actually evaluate the averages intemtlin sect. 17.1? The
eigenvalues of the dynamical averaging evolution opemt@given by the values
of s for which the spectral determinant (19.6) of the evolutigrem@tor (17.23)
vanishes. If we can compute the leading eigenva}{g) and its derivatives, we
are done. Unfortunately, the infinite product formula (399no more than a
shorthand notation for the periodic orbit weights conttibg to the spectral det-
erminant; more work will be needed to bring such formulas mtractable form.
This shall be accomplished in chapter 20, but here it is ahtorintroduce still
another variant of a determinant, the dynamical zeta fancti

19.3 Dynamical zeta functions

It follows from sect. 18.1.1 that if one is interested onlyttie leading eigenvalue
of £, the size of thep cycle neighborhood can be approximated @AL', the
dominant term in theT, = t — co limit, where A, = []cApe is the product of
the expanding eigenvalues of the Jacobian madx With this replacement the
spectral determinant (19.6) is replaced by dyaamical zeta function

1
1/¢ = exp[- Z Z thp] (19.14)
p r=1

that we have already derived heuristically in sect. 1.5.2sunming the loga-
rithms usingy, t,/r = —In(1 - tp) we obtain theEuler product representatioaf
the dynamical zeta function:

Ye=[](1-t). (19.15)

p

In order to simplify the notation, we usually omit the exglidependence of /&,
tp onz, s, whenever the dependence is clear from the context.
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The approximate trace formula (18.28) plays the samevigl@-vis the dyn-
amical zeta function (19.7)

d, Tot
M9 =ginct= 2B L tpp ) (19.16)
p

as the exact trace formula (18.23) plays-a-vis the spectral determinant (19.6).
The heuristically derived dynamical zeta function of séch.2 now re-emerges
as the 1o..0(2) part of theexactspectral determinant; other factors in the infinite
product (19.9) fiect the non-leading eigenvalues £f

In summary, the dynamical zeta function (19.15) associatttthe flow f'(x)
is defined as the product over all prime cycles The quantities,T,, np and
Ap, denote the period, topological length and product of thgaerling Floquet
multipliers of prime cyclep, A, is the integrated observabéx) evaluated on a
single traversal of cyclg (see (17.5))sis a variable dual to the time zis dual
to the discrete “topological” time, andtp(z s, ) denotes the local trace over the
cycle p. We have included the factaf* in the definition of the cycle weight in
order to keep track of the number of times a cycle traversestinface of section.
The dynamical zeta function is useful because the term

1/{(9 =0 (19.17)

whens = s, Here s is the leading eigenvalue oft = €7, which is often all
that is necessary for application of this equation. The almgument completes
our derivation of the trace and determinant formulas fossial chaotic flows.
In chapters that follow we shall make these formulas taegiyl working out a
series of simple examples.

The remainder of this chapteffers examples of zeta functions.
fast track:
@ chapter 20, p. 378
19.3.1 A contour integral formulation

§
J The following observation is sometimes useful, in paréecdor zeta func-
tions with richer analytic structure than just zeros andepplas in the case of
intermittency (chapter 24)f,,, the trace sum (18.26), can be expressed in terms
of the dynamical zeta function (19.15)

Zw
1/(@) = ]] (1— |A_p|) . (19.18)
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Figure 19.1: The survival probabilityl’, can be split
into contributions from poles (x) and zeros (o) between
the small and the large circle and a contribution from
the large circle.

<

as a contour integral

I = % D z’”(dizlogg’l(z)) dz, (19.19) |
exercise 19.7

where a small contouy; encircles the origin in negative (clockwise) direction.

If the contour is small enough, i.e., it lies inside the unitle |7 = 1, we may

write the logarithmic derivative of () as a convergent sum over all periodic

orbits. Integrals and sums can be interchanged, the in¢egaa be solved term

by term, and the trace formula (18.26) is recovered. For thglE maps, cycle chapter 20

expansions or other techniques provide an analytical woation of the dynam-

ical zeta function beyond the leading zero; we may theredieferm the original

contour into a larger circle with radiuR which encircles both poles and zeros of

7Y(2), as depicted in figure 19.1. Residue calculus turns thisargum over the

zerosz, and polesg of the dynamical zeta function, that is

Ih= Zfs = pfsl = é dzzn 3 logs™t (19.20)
n= - ey — b ( N .
SRE gR% Uy dz

where the last term gives a contribution from a large cirgle It would be a
miracle if you still remembered this, but in sect. 1.4.3 weitpreted’, as fraction

of survivors aftem bounces, and defined the escape tates the rate of the find
exponential decay df,,. We now see that this exponential decay is dominated by
the leading zero or pole af(2).

19.3.2 Dynamical zeta functions for transfer operators

,
J Ruelle’s original dynamical zeta function was a generéliraof the topo-

logical zeta function (15.27) to a function that assigriedéent weights to dierent chapter 15
cycles:

00 n-1
§(z>:exp2§[ 3 trﬂg(fi(m)].

n=1 xeFixfn j=0
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exercise 18.2
Here we sum over all periodic poinss of periodn, andg(x) is any (matrix val-
ued) weighting function, where the weight evaluated mlittiively along the
trajectory ofx;.

By the chain rule (4.51) the stability of amycycle of a 1- dimensionamap
is given byAp = 1‘[5‘:1 (%), so the 1- dimensionalmap cycle stability is the
simplest example of a multiplicative cycle weigi{i) = 1/|f’(x)], and indeed -
via the Perron-Frobenius evolution operator (16.9) - thgtdnical motivation for
Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Mavkmartition such as
the map of example 16.1, the dynamical zeta function is dgyea finite polyno-
mial, a straightforward generalization of the topologitrainsition matrix deter-
minant (14.1). As explained in sect. 15.3, for a fini&{N] dimensional matrix
the determinant is given by

N
[Ja-t)=) 7.
p n=1

wherec;, is given by the sum over all non-self-intersecting closethgaf length
n together with products of all non-intersecting closed pathtotal lengthn.

Example 19.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (17.17) factorizes as Ass,.s, = AJAT™,
where mis the total number of times the letter s; = O appears in the p symbol sequence,
so the traces in the sum (18.28) take the particularly simple form

n
trT”:l‘n:(i+i) .
[Aol A4
The dynamical zeta function (19.14) evaluated by resumming the traces, exercise 19.3
1/4(2) = 1-2/IAol - Z/IA4l, (19.21)

is indeed the determinant det(1— zT) of the transfer operator (17.19), which is almost

as simple as the topological zeta function (15.34).
chapter 15

More generally, piecewise-linear approximations to dyitainsystems yield
polynomial or rational polynomial cycle expansions, poed that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dedaoly quantum
chaologians is a bogus anxiety; we are dealing with expéainimany cycles of
increasing length and instability, but all that really neadtin this example are the
stabilities of the two fixed points. Clearly the informatioarried by the infinity
of longer cycles is highly redundant; we shall learn in cka@0 how to exploit
this redundancy systematically.
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19.4 False zeros

Compare (19.21) with the Euler product (19.15). For sinipliconsider two
equal scalegAq| = |A1] = e'. Our task is to determine the leading zere: &
of the Euler product. It is a novice error to assume that tffiaite Euler product
(19.15) vanishes whenever one of its factors vanishesatftiere true, each factor
(1-2"/|Apl) would yield

0=1-¢wo-), (19.22)

so the escape ratewould equal the Floquet exponent of a repulsive cycle, one

eigenvaluey = vy, for each prime cyclep. This is false! The exponentially
growing number of cycles with growing period conspires titghe zeros of the
infinite product. The correct formula follows from (19.21)

0=1-&*"  h=In2 (19.23)

This particular formula for the escape rate is a special cdsegeneral relation
between escape rates, Lyapunov exponents and entropiess that yet included
into this book. Physically this means that the escape irdilogethe repulsion
by each unstable fixed point is diminished by the rate of bzatksr from other
repelling regions, i.e., the entrojhy the positive entropy of orbits shifts the “false
zeros"z = e of the Euler product (19.15) to the true zere: e,

19.5 Spectral determinantsvs. dynamical zeta functions

In sect. 19.3 we derived the dynamical zeta function as anmoajpation to the
spectral determinant. Here we relate dynamical zeta fonstto spectral deter-
minantsexactly by showing that a dynamical zeta function can be expressed a
ratio of products of spectral determinants.

The elementary identity fod-dimensional matrices

— 1 $ K. k
1= mEw é(—l) tr (A“Mm) . (19.24)

inserted into the exponential representation (19.14) efdjnamical zeta func-
tion, relates the dynamical zeta functiorweightedspectral determinants.

Example 19.5 Dynamical zeta function in terms of determinants, 1 - dimensional

maps:  For 1 - dimensionamaps the identity

1 1 1

=TTy Aacom
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substituted into (19.14) yields an expression for the dynamical zeta function for 1 —
dimensionamaps as a ratio of two spectral determinants

det(1-zL)

ve= det(1-zLq)) (19.25)
where the cycle weight in L) is given by replacement t, — ty/Ap. As we shall see
in chapter 23, this establishes that for nice hyperbolic flows 1/{ is meromorphic, with
poles given by the zeros of det (1-zL(1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros
of det (1- zL)) might be cancelled by coincident zeros of det (1- zL1)). Hence even
though we have derived the dynamical zeta function in sect. 19.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 19.6 Dynamical zeta function in terms of determinants, 2 — dimensional
Hamiltonian maps: For 2-dimensional Hamiltonian flows the above identity yields

1 1

A = AA- AR l/A)z(l —2/A +1/A?),

SO

det (1- z£) det (1- zL2)

det(1- L) (19:26)

1¢ =

This establishes that for nice 2 — dimensionahyperbolic flows the dynamical zeta func-
tion is meromorphic.

Example 19.7 Dynamical zeta functions for 2 — dimensionalHamiltonian flows:
The relation (19.26) is not particularly useful for our purposes. Instead we insert the
identity

1 2 1 1 1

L= Aoy A@-uaE T M a-1A?

into the exponential representation (19.14) of 1/, and obtain

det(1- zLy)det (1~ zL:2)

Gt (1- Lgcn)? 927

/4=

Even though we have no guarantee that det (1- zL) are entire, we do know that the
upper bound on the leading zeros of det (1-zL 1)) lies strictly below the leading zeros
of det (1- zL), and therefore we expect that for 2-dimensional Hamiltonian flows the
dynamical zeta function 1/ generically has a double leading pole coinciding with the
leading zero of the det (1- zL.1)) spectral determinant. This might fail if the poles and
leading eigenvalues come in wrong order, but we have not encountered such situations
in our numerical investigations. This result can also be stated as follows: the theorem
establishes that the spectral determinant (19.13) is entire, and also implies that the
poles in 1/ must have the right multiplicities to cancel in the det(1- z£) = [] l/g'k“1
product.
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. - . L
Figure 19.2: A game of pinball consisting of two disks
of equal size in a plane, with its only periodic orbit (A.

Wirzba). <----R----->

Ims

) ) ) ) ) T 6T

o B2 o ° -+ anT

o o o o o T 2T

-4NT -3NT -2NT  -NT
o o o o ) + —2n/T Res

. . o o o o ) + —4nT
Figure 19.3: The classical resonances = {k,n} 03
(19.28) for a 2-disk game of pinball. ot e

19.6 Alltoo many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flowcszaé determinant
(19.13) tell us? Consider one of the simplest conceivabfeetyolic flows: the
game of pinball of figure 19.2 consisting of two disks of egsiak in a plane.
There is only one periodic orbit, with the peridd and expanding eigenvalue
A given by elementary considerations (see exercise 13.7),tlz& resonances
det(s, — A) = 0, @ = {k, n} plotted in figure 19.3:

S =—-(k+1)A+ n? , neZ,keZ,, multplicity k+1, (19.28)

can be readfd the spectral determinant (19.13) for a single unstableecycl

dets-A) = [ [(1-e*T/IaIA¥
k=0

) (19.29)

In the abovel = In|A|/T is the cycle Lyapunov exponent. For an open system,

the real part of the eigenvalug, gives the decay rate efth eigenstate, and the
imaginary part gives the “node number” of the eigenstatee fiégative real part
of s, indicates that the resonance is unstable, and the decajnrties simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negativesRare not a problem, but
as there are eigenvalues arbitrarily far in the imaginargadion, this might seem
like all too many eigenvalues. However, they are necessap/can check this by
explicit computation of the right hand side of (18.23), treee formula for flows:

N St K+ 1)e —(k+1)At+i2ent/T
;Oe 373 e ve

k=0 n=—co

© P AN
(k+ l)(—k) éZ}rnl/T

2w 2
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o k+l <
= g_lAerkr > 6 -y
= r=—co

S(t—rT)
=T _— 19.30
r;m IAI'(1~ 1/A7)? ( )
Hence, the two sides of the trace formula (18.23) are verifié formula is fine
fort > 0; fort — 0., however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that foredestime we
work with the variablez = €%, so an infinite strip along Irmmaps into an annulus
in the complexz plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (18.8). In the case at hand there iz @m time scale
T, and we could just as well replaceby the variablez = 5T, In general, a
continuous time flow has an infinity of irrationally relategcte periods, and the

resonance arrays are more irregutdr, figure 20.1.

Résum é

The eigenvalues of evolution operators are given by theszef@orresponding

determinants, and one way to evaluate determinants is tanexthem in terms

of traces, using the matrix identity log dettr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functiortsirathis way the spectra
of evolution operators are related to periodic orbits. Tpecsral problem is now

recast into a problem of determining zeros of eitherghectral determinant

1 B-Ap=sTp)r
'det (1- Mf)j

det(s—A) = exp[ ZZ

or the leading zeros of thdynamical zeta function

ve=[]0-t), t= ‘ApleaAp STy
p

The spectral determinant is the tool of choice in actualudatons, as it has
superior convergence properties (this will be discussedhiapter 23 and is il-
lustrated, for example, by table 20.2). In practice bothcspédeterminants and
dynamical zeta functions are preferable to trace formutbse they yield the
eigenvalues more readily; the mairffdrence is that while a trace diverges at an
eigenvalue and requires extrapolation methods, detentsneanish ats corre-
sponding to an eigenvalug,, and are analytic irs in an open neighborhood of
Sor-

The critical step in the derivation of the periodic orbitfaulas for spectral
determinants and dynamical zeta functions is the hyperibplssumption (18.5)
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that no cycle stability eigenvalue is margingl,,;| # 1. By dropping the prefac-
tors in (1.5), we have given up on any possibility of recongrihe precise distri-
bution of the initialx (return to the past is rendered moot by the chaotic mixing
and the exponential growth of errors), but in exchange we gai dfective de-
scription of the asymptotic behavior of the system. The sde&a surprise (to be
demonstrated in chapter 20) is that the infinite time belradfian unstable system
turns out to be as easy to determine as its short time behavior

Commentary

Remark 19.1 Piecewise monotone maps. A partial list of cases for which the trans-
fer operator is well defined: the expanding Holder caseghiteid subshifts of finite type,
expanding dferentiable case, see Bowen [1.28]: expanding holomorgise,csee Ru-
elle [23.9]; piecewise monotone maps of the interval, seébleer and Keller [19.13]
and Baladi and Keller [19.16].

Remark 19.2 Smale’s wild idea. ~ Smale’s wild idea quoted on page 363 was tech-
nically wrong because 1) the Selberg zeta function yieléssectrum of a quantum
mechanical Laplacian rather than the classical resonai2}ehe spectral determinant
weights are dferent from what Smale conjectured, as the individual cya@ims also
depend on the stability of the cycle, 3) the formula is notelfwsionally correct, ak is

an integer and represents inverse time. Only for spaces of constant negetirvature
do all cycles have the same Lyapunov exponert In|A,|/Tp. In this case, one can
normalize time so that = 1, and the factore™s™»/A¥ in (19.9) simplify tos ¥, as
intuited in Smale’s quote on page 363 (WhE#g is the cycle period denoted here By).
Nevertheless, Smale’s intuition was remarkably on thedtiarg

Remark 19.3 Is this a generalization of the Fourier analysis?  Fourier analysis is a
theory of the space»> eigenfunction duality for dynamics on a circle. The way inieth
periodic orbit theory generalizes Fourier analysis to imedr flows is discussed in ref. [19.3],
a very readable introduction to the Selberg Zeta function.

Remark 19.4 Zeta functions, antecedents. For a function to be deserving of the ap-
pellation “zeta function,” one expects it to have an Eulerdurct representation (19.15),
and perhaps also satisfy a functional equation. Varioudskiof zeta functions are re-

viewed in refs. [19.6, 19.7, 19.8]. Historical antecedeftthe dynamical zeta function

are the fixed-point counting functions introduced by WeB.[], Lefschetz [19.10] and

Artin and Mazur [19.11], and the determinants of transfegragors of statistical mechan-
ics [1.29].

In his review article Smale [1.27] already intuited, by apl to the Selberg Zeta
function, that the spectral determinant is the right gelimion for continuous time
flows. In dynamical systems theory, dynamical zeta funetiarise naturally only for
piecewise linear mappings; for smooth flows the natural abjer the study of classi-
cal and quantal spectra are the spectral determinantsleRiszived the relation (19.3)
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between spectral determinants and dynamical zeta fursstiun since he was motivated
by the Artin-Mazur zeta function (15.27) and the statidtiveechanics analogy, he did
not consider the spectral determinant to be a more natujetbtnan the dynamical zeta
function. This has been put right in papers on “flat trace4" {8, 23.23].

The nomenclature has not settled down yet; what we call &eolwperators here
is elsewhere called transfer operators [1.32], Perrorbp&nius operators [19.4] ayat
Ruelle-Araki operators.

Here we refer to kernels such as (17.23) as evolution opmraiide follow Ruelle in
usage of the term “dynamical zeta function,” but elsewharthe literature the function
(19.15) is often called the Ruelle zeta function. Ruell@3] points out that the corre-
sponding transfer operat®rwas never considered by either Perron or Frobenius; a more
appropriate designation would be the Ruelle-Araki operatdeterminants similar to
or identical with our spectral determinants are sometinadied Selberg Zetas, Selberg-
Smale zetas [1.8], functional determinants, Fredholmrdetents, or even - to maximize
confusion - dynamical zeta functions [19.12]. A Fredholntediminant is a notion that
applies only to trace class operators - as we consider heoenavghat wider class of
operators, we prefer to refer to their determinants looasl{spectral determinants.”

Exercises

19.1. Escape rate for al — dimensionatepeller, numerically. det(1-z£) =

Consider the quadratic map

f(x) = AXL - X) (19.31)

on the unit interval. The trajectory of a point starting
in the unit interval either stays in the interval forever or
after some iterate leaves the interval and diverges to mi-
nus infinity. Estimate numerically the escape rate (22.8),
the rate of exponential decay of the measure of points

1t
k even

) kl;ild(

z

TAWL T

z
1+ Ak+l1

remaining in the unit interval, for eitheh = 9/2 or 19.3. Dynamical zeta functions. (easy)

A = 6. Remember to compare your numerical estimate
with the solution of the continuation of this exercise, ex-
ercise 20.2.
tion
19.2. Spectrum of the “golden mean” pruned map.
(medium - exercise 15.7 continued)

(a) Determine an expression for4F, the trace of
powers of the Perron-Frobenius operator (16.10)
acting on the space of real analytic functions for
the tent map of exercise 15.7.

(b) Show that the spectral determinant for the Perron-
Frobenius operator is
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1@ =1 | (1 -
P

(19.32

2
2

2

+ A2k+2

).

(a) Evaluate in closed form the dynamical zeta f

% )
[Apl

for the piecewise-linear map (17.17) with the
branch slope\, the right branch slopa;.



19.5. Zeros of infinite products.
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f(x)
f(x)

S01 S11

. Contour integral for survival probability.

Iy
©
o)

. Dynamical zeta function for maps.

X X

(b) What if there are four dierent slopesoo, So1, Sio,
and s1; instead of just two, with the preimages
of the gap adjusted so that junctions of branches
S00, So1 @ndsy1, Sip map in the gap in one iteration?
What would the dynamical zeta function be?

19.4. Dynamical zeta functions from transition graphs.

Extend sect. 15.3 to evaluation of dynamical zeta func-

tions for piecewise linear maps with finite transitior19.9.

graphs. This generalizes the results of exercise 19.3.

Determination of the
quantities of interest by periodic orbits involves work-
ing with infinite product formulas.

(a) Consider the infinite product

F@ = |a+ @)
k=0
where the function$ are “suficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

(b

=

If z* is a root of the functiorr, show that the infi-
nite product diverges when evaluatedzat

(c) How does one compute a root of a function repre-
sented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition ofF(2) to the infinite
product

ald
F@)= 1:[<1— =)
(e) Are the roots of the factors in the above product
the zeros of(2)?

(Per Rosenqyvist)

19.6. Dynamical zeta functions as ratios of spectral determinarg.

19.10.

(medium) Show that the zeta function

1 Z%
14 = exp[— RN
2.2y

375

can be written as the ratio
1/¢(2) = det(1- 2L)/det (1- 2Lq),
where det (& 2£(y) = [Tp [Ti2o(1 - Z%/IApIAK™).

Perform
explicitly the contour integral appearing in (19.19).

In this prob-

lem we will compare the dynamical zeta function and
the spectral determinant. Compute the exact dynamical
zeta function for the skew full tent map (16.45)

1/42) = g (17 li—;) .

What are its roots? Do they agree with those computed
in exercise 16.7?

Dynamical zeta functions for Hamiltonian maps.
Starting from

1/4(9) = exp[— Z i %t’p]

p r=1
for a 2-dimensional Hamiltonian map. Using the equal-
ity

_ _ A
1= (ERETINE l/A)z(l 2/A +1/A?),

show that
1/¢ = det(1- £)det(1- L))/det (1- .C(l))z .

Inthis expression det 4z£)) is the expansion one gets
by replacingt, — tp/A‘fU in the spectral determinant.

Riemann ¢ function.
defined as the sum

The Riemannry function is

> 1
L(9) = Pt seC.

n=1

(a) Use factorization into primes to derive the Euler
product representation

§(S)=Hl_;p,s-
p

The dynamical zeta function exercise 19.15 is
called a “zeta” function because it shares the form
of the Euler product representation with the Rie-
mann zeta function.

(b) (Nottrivial:) For which complex values afis the
Riemann zeta sum convergent?
(c) Are the zeros of the terms in the produst,=

—In p, also the zeros of the Riemagrfunction?
If not, why not?
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19.11. Finite truncations.

REFERENCES

(easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple
multiplicative rule:

Ap = AP°AP", Npo = #0inp, np1=#1inp,
so that, for exampleoo1o1 = A3AZ.

(a) Compute the dynamical zeta function for this sys-
tem; perhaps by creating a transfer matrix analo-
gous to (17.19), with the right weights.

376

(b) Compute the finitep truncations of the cycle
pansion, i.e. take the product only over thap t
given length withn, < N, and expand as a se
inz

D(lﬂi;l)'

Do they agree? If not, how does the disagree
depend on the truncation lengi?
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