Chapter 13

Fixed points, and how to get them

piece of numerics in this subject; search for the solutiond), x € R,

I I AVING et Uup the dynamical context, now we turn to the key and unavoidable
T € R of the periodic orbit condition

T = f{(x), T>0 (13.1)

for a given flow or mapping.

In chapters 18 and 19 we will establish that spectra of eimiudperators can
be extracted from periodic orbit sums:

Z (spectral eigenvaluesy Z (periodic orbits).

Hence, periodic orbits are the necessary ingredient foluatian of spectra of
evolution operators. We need to know what periodic orbits eaist, and the
symbolic dynamics developed so far is an invaluable toobtavthis end.

Sadly, searching for periodic orbits will never become apypar as a week
on Cote d'Azur, or publishing yet another log-log plotRys. Rev. Letters his
chapter is intended as a hands-on guide to extraction afglierorbits, and should
be skipped on first reading - you can return to it whenever gwdrfor finding
actual cycles arises. A serious cyclist will want to alsareabout the variational
methods to find cycles, chapter 29. They are particularlffulsghen little is
understood about the topology of a flow, such as in high-dsieeral periodic
orbit searches. chapter 29

fast track:
W chapter 15, p. 284
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A primecycle p of period T, is a single traversal of the periodic orbit, so our
task will be to find a periodic poink € M; and the shortest time, for which
(13.1) has a solution. A periodic point of a flof¥ which crosses a Poincaré
sectionn times is a fixed point of th€" iterate ofP, the return map (3.1), hence
we shall refer to all cycles as “fixed points” in this chapt®y. cyclic invariance, section 5.2
Floquet multipliers and the period of the cycle are indepenaf the choice of
the initial point, so it will siffice to solve (13.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basfrattraction, it can
be found by integrating the flow for fiiciently long time. If the cycle is unstable,
simple integration forward in time will not reveal it, and theds to be described
here need to be deployed. In essence, any method for findipdeis based on
devising a new dynamical system which possesses the saree loytfor which
this cycle is attractive. Beyond that, there is a great foeeéh constructing such
systems, and manyftierent methods are used in practice.

Due to the exponential divergence of nearby trajectoriehaotic dynamical
systems, fixed point searches based on direct solution dixe-point condition
(13.1) as an initial value problem can be numerically vergtahle. Methods thatchapter 29
start with initial guesses for a number of points along theleysuch as the mul-
tipoint shooting method described here in sect. 13.3, aadidhiational methods
of chapter 29, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good nstateding of the
topology of the flow: a preliminary step to any serious peigaztbit calculation
is preparation of a list of all distinct admissible primeipéic symbol sequences,
such as the list given in table 15.1. The relations betweertemporal symbol
sequences and the spatial layout of the topologicallyrdistiegions of the state
space discussed in chapters 11 and 12 should enable us sdogeg#on of a series
of periodic points along a cycle. Armed with such informeaegsiwe proceed to
improve it by methods such as the Newton-Raphson iterati@show how this
works by applying the Newton method to 1- addiimensional maps. But first,
where are the cycles?

13.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

—T.D. Lee

The simplest and conceptually easiest setting for guesgirgye the cycles are is
the case of planar billiards. The Maupertuis principle afsteaction here dictates
that the physical trajectories extremize the length of apr@gdmate orbit that
visits a desired sequence of boundary bounces.

Example 13.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 12.5. . Label the three disks by 1, 2 and 3, and associate to sxion 12.5
section 1.4
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trajectory an itinerary, a sequence of labels indicating the order in which the disks are
visited, as in figure 3.2. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake
the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions s.
The computational problem is to find the extremum values of cycle length L(s) where
s=(S.,...,S), a task that we postpone to sect. 29.3. As an example, the shortpauise 29.2

ods and stabilities of 3-disk cycles computed this way are listed table 29.3, and ednese 13.13

examples are plotted in figure 3.2. It's a no brainer, and millions of such cycles have
been computed.

If we were only so lucky. Real life finds us staring at someghiike Yang-
Mills or Navier-Stokes equations, utterly clueless. Wioedio?

One, there is always mindless computation. In practice cigbtrbe satisfied
with any rampaging robot that finds “the most important” egcl Ergodic explo-
ration of recurrences that we turn to next sometimes perfmimirably well.

13.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanovic)

The equilibria and periodic orbits (with the exception afkd and stable limit remark 13.1
cycles) are never seen in simulations and experiments bedhgy are unstable.
Nevertheless, one does observe close passes to the letilerequilibria and

periodic orbits, as in figure 13.1. Ergodic exploration bydetime trajectories (or
long-lived transients, in case of strange repellers) cawer state space regions

of low velocity, or finite time recurrences. In addition, &utajectories preferen-section 16.1
tially sample the natural measure of the ‘turbulent’ flond &y initiating searches

within the state space concentrations of natural measasethé search toward the
dynamically important invariant solutions.

The search consists of following a long trajectory in stagace, and looking
for close returns of the trajectory to itself, see figure 13Vhenever the trajectory
almost closes in a loop (within a given tolerance), anotteéntof this near miss
of a cycle can be taken as an initial condition. Supplemebyeal Newton routine
described below, a sequence of improved initial conditiore indeed rapidly
lead to closing a cycle. The method preferentially finds &#st unstable orbits,
while missing the more unstable ones that contribute littkhe cycle expansions.

This blind search is seriously flawed: in contrast to the skaixample 13.1,
it is not systematic, it gives no insight into organizatidntite ergodic sets, and
can easily miss very important cycles. Foundations to aesyatic exploration
of ergodic state space are laid in chapters 11 and 12, but biecd work to
implement.
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x(0)

Figure 13.1: An ergodic trajectory can shadow an un»X(t)
stable periodic orbip for a finite time.

13.1.2 Cycles found by thinking

Thinking is extra price.
—Dicho Colombiano

A systematic charting out of state space starts out by a leaegjuilibrium points.
If the equations of motion are a finite set of ODES, settingviilecity field v(x)
in (2.6) to zero reduces search for equilibria to a searctzéoos of a set of al-
gebraic equations. We should be able, in principle, to emateeand determine
all real and complex zeros in such cases, e.g. the Lorenz@ga®? and the
Rossler example 2.3. If the equations of motion and the thagnconditions are
invariant under some symmetry, some equilibria can be oeted by symmetry
considerations: if a function is e.g. antisymmetric, it tmwesnish at origin, e.g.
the LorenzEQy = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, createatesspace grid,
about 50x acrossM in each dimension, and compute the velocity figle= v(x)
at each grid point; a few milliowy values are easily stored. Plgt for which
V2 < €, € << |vmax? but suficiently large that a few thousand are plotted.
If the velocity field varies smoothly across the state sp#ue regiongvl? < e
isolate the (candidate) equilibria. Start a Newton iterativith the smallesv|?
point within each region. Barring exceptionally fast véioas inv(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of ¢éiquna, but steady
states of PDEs such as the Navier-Stokes flow are themseiitgoas of ODEs
or PDEs, and much harder to determine.

Equilibria—by definition—do not move, so they cannot be Btient.” What
makes them dynamically important are their stalohstable manifolds. A chaotic
trajectory can be thought of as a sequence of near visimtbrequilibria. Typi-
cally such neighborhoods have many stable, contractiregtiims and a handful
of unstable directions. Our strategy will be to generaltehilliard Poincaré sec-
tion mapsPs,, s, of example 3.2 to maps from a section of the unstable manifold
of equilibrium s, to the section of unstable manifold of equilibritsi 1, and thus
reduce the continuous time flow to a sequence of maps. TheseaP® section
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Figure 13.2: (@) y — Pi(y.2) return map for
x = 0,y > 0 Poincaré section of the Rossler flow ) . _ 0.4 1
figure 2.6. (b) Thel-cycle found by taking the ) Figure 13.3: The inverse time path to th&l-cycle of
fixed pointyi.n = vk together with the fixed point (@) * ~ «  (b) the logistic mapf (x) = 4x(1 — X) from an initial guess 02 Y
of the z — z return map (not shown) an initial of x = 0.2. At each inverse iteration we chose the 0, . . .
guess (0y©, 2%)) for the Newton-Raphson search. respectively 1 branch. 0 02 04 06 08 1
(©) Yz = P¥(Yi. ), the third iterate of Poincaré ’
return map (3.1) together with the corresponding
plot for z.3 = Pg(yk,z(), is used to pick starting As an example of a search for longer cycles, we use Yi.3 = Pf(yk,zk), the third
guesses for the Newton-Raphson searches for the Mo iterate of Poincaré return map (3.1) plotted in figure 13.2(c), together with a corre-
two 3-cycles: (d) théd01 cycle, and (e) the1l Lo o oo ] N sponding plot for z3 = f3(yk, %), to pick starting guesses for the Newton-Raphson
cycle. (G. Simon) (O ()] (e)

searches for the two 3-cycles plotted in figure 13.2 (d), (e). For a listing of the short
cycles of the Réssler flow, consult exercise 13.10.

The numerical evidence suggests (but a proof is lacking) that all cycles that
comprise the strange attractor of the Réssler flow are hyperbolic, each with an expand-
ing eigenvalue |A¢| > 1, a contracting eigenvalue |A¢| < 1, and a marginal eigenvalue
|Aml = 1 corresponding to displacements along the direction of the flow.

maps do double duty, providing us both with an exact reptesen of dynamics
in terms of maps, and with a covering symbolic dynamics.

We showed in the Lorenz flow example 11.4 how to reduce ther@dsional
Lorenz flow to a 1-dimensional return map. In the Rossler ffxample 2.3 we
sketched the attractor by running a long chaotic trajectangl noted that the at-
tractor is very thin, but otherwise the return maps that vegtpti were disquieting
— figure 3.6 did not appear to be a 1-to-1 map. In the next examwel show
how to use such information to approximately locate cyclaghe remainder of
this chapter and in chapter 29 we shall learn how to turn suesges into highly
accurate cycles.

For the Réssler flow the contracting eigenvalues turn out to be insanely con-
tracting, a factor of €32 per one par-course of the attractor, so their numerical deter-
mination is quite difficult. Fortunately, they are irrelevant; for all practical purposes
the strange attractor of the Réssler flow is 1-dimensional, a very good realization of a
horseshoe template. (G. Simon and P. Cvitanovic¢)

13.2 One-dimensional mappings
Example 13.2 Rdssler attractor. Run a long simulation of the Réssler flow f, plot
a Poincaré section, as in figure 3.5, and extract the corresponding Poincaré return map
P, as in figure 3.6. Luck is with us; figure 13.2 (a) return map 'y — P1(Y, 2) looks much (F. Christiansen)
like a parabola, so we take the unimodal map symbolic dynamics, sect. 11.3, as our
guess for the covering dynamics. Strictly speaking, the attractor is “fractal,” but for all
practical purposes the return map is 1-dimensional; your printer will need a resolution i .
better than 10 dots per inch to start resolving its structure. 13.2.1 Inverse iteration

Periodic points of a prime cycle p of cycle length n,, for the x = 0, y > O Poincaré
section of the Réssler flow figure 2.6 are fixed points (y, 2) = P"(y, 2) of the nth Poincaré Let us first consider a very simple method to find unstablessyof a 1-dimensional
return map. map such as the logistic map. Unstable cycles efdimensionalmaps are at-

Using the fixed point yix.1 = Yk in figure 13.2 (a) together with the simultaneous
fixed point of the z — Pi(y.2) return map (not shown) as a starting guess (0, y©, 2%)
for the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find

tracting cycles of the inverse map. The inverse map is na@lesinalued, so at
each backward iteration we have a choice of branch to makehBgsing branch
according to the symbolic dynamics of the cycle we are tntmdind, we will

the cycle figure 13.2 (b) with the Poincaré section point (0,Yp, z,), period Tp, expand-
ing, marginal, contracting Floquet multipliers (Ap.e, Apm, Apc), and Lyapunov exponents
(Apes Apms Apc): exercise 13.10

automatically converge to the desired cycle. The rate ofemence is given by
the stability of the cycle, i.e., the convergence is exptinty fast. Figure 13.3
shows such path to thE -cycle of the logistic map. exercise 13.13
T-cycle: (XY.2) (0,6.091768321.2997319)
T1 = 5.88108845586
(Are Atm A1e) = (-2.403953531+ 10714 -1.29x 101
(Ares A1m A1) = (0.14914155610714 ~5.44). (13.2)

The method of inverse iteration is fine for finding cycles fed naps and
some 2- dimensionalsystems such as the repeller of exercise 13.13. It is not
particularly fast, especially if the inverse map is not kmoawnalytically. However,
it completely fails for higher dimensional systems wherehaee both stable and

The Newton-Raphson method that we used is described in sect. 13.4. unstable directions. Inverse iteration will exchange ¢héxit we will still be left
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Figure 13.4: Convergence of Newton method)( 0 SR

vs. inverse iteration). The error aftern itera- Sr ““MM ]
tions searching for th@1-cycle of the logistic map A0 T
f(X) = 4x(1 — x) with an initial starting guess of A5 1
x1 = 0.2, %, = 0.8. y-axis is log,, of the error. The dif- 20 1
ference between the exponential convergence of the in- 25 |- T
verse iteration method and the super-exponential con- 20" L ]

-35

] ) L%y .
vergence of Newton method is dramatic. 0 2 4 6 8 10 12 14 16 18 20

with both stable and unstable directions. The best stragegydirectly attack the
problem of finding solutions of T(x) = x.

13.2.2 Newton method

Newton method for determining a zexod of a functionF(x) of one variable is
based on a linearization around a starting gu@ss

F(X) =~ F(x0) + F'(X0)(X = Xo)- (13.3)
An approximate solutiorx; of F(x) = 0 is

X1 = Xo — F(x0)/F’(X0). (13.4)
The approximate solution can then be used as a new startegs g an iterative
process. A fixed point of a map is a solution toF(x) = x— f(x) = 0. We

determinex by iterating

Xm

g(%m-1) = Xm-1 — F(Xm-1)/F’(Xm-1)

= Xm1 (Xm-1 = f(xm-1)). (13.5)

ot
1-f(Xm-1)

Provided that the fixed point is not marginally stabl&(x) # 1 at the fixed point

X, a fixed point off is a super-stable fixed point of the Newton-Raphson map

g'(X) = 0, and with a sfficiently good initial guess, the Newton-Raphson iteration

will converge super-exponentially fast.

To illustrate the &iciency of the Newton method we compare it to the inverse
iteration method in figure 13.4. Newton method wins handsrddie number of
significant digits of the accuracy ofestimate doubles with each iteration.

In order to avoid jumping too far from the desired (see figure 13.5), one
often initiates the search by tldlamped Newton methpd

F(Xm)
F’(Xm)

AXm = Xmi1 — Xm = — At, O0<Ar<1,

takes smallAr steps at the beginning, reinstating to the fl = 1 jumps only
when stficiently close to the desirex'.
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F(x)

Figure 13.5: Newton method: bad initial guesé? LFO)

leads to the Newton estimai*V) far away from the
desired zero ofF(x). Sequence--, x™, x(™D) ..., \ /\/‘

starting with a good guess converges super-_\ e

.
X X x®

exponentially tox". The method diverges if it iterates X""’V x
into the basin of attraction of a local minimuxf.

13.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengtm are fixed points off" so in principle we could use
the simple Newton method described above to find them. Hawthis is not an
optimal strategy. f" will be a highly oscillating function with perhaps as many
as 2 or more closely spaced fixed points, and finding a specificoparipoint,
for example one with a given symbolic sequence, requirgerggood starting
guess. For binary symbolic dynamics we must expect to ingtbe accuracy of
our initial guesses by at least a factor ¢ft® find orbits of lengthn. A better
alternative is themultipoint shooting methodWhile it might very hard to give a
precise initial point guess for a long periodic orbit, if @wesses are informed by a
good state space partition, a rough guess for each poirg éherdesired trajectory
might sufice, as for the individual short trajectory segments thersrimve no
time to explode exponentially. And, indeed, in chapter 11lhaee developed a
qualitative theory of how these cycle points are laid oubtogically.

A cycle of lengthn is a zero of then-dimensional vector functiof:

X1 X1 = f(xn)
F(x) = F X [_| X- f(x1)
n % = f(Xn-1)

The relations between the temporal symbol sequences arspétil layout of
the topologically distinct regions of the state space dised in chapter 11 enable
us to guess location of a series of periodic points along Ecyamed with such
informed initial guesses we can initiate a Newton-Raphgemation. The iteration
in the Newton method now takes the form of

d , B
SFOIX =% = =F () (13.6)
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where 2 F(x) is an j x n] matrix:

1 = (%)

) 1
SE) = ot L - 13D

—F'(%1) 1
This matrix can easily be inverted numerically by first elating the elements

below the diagonal. This creates non-zero elements imttheolumn. We elimi-
nate these and are done.

Example 13.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:

1 0 —f'(xs) AXy F1
[ *f’(Xl) 1 0 ][ AXp ] = —[ F2 ],
0 —'(%2) 1 AX3 Fs

where Ax; = X — X is the correction to our initial guess x;, and Fi = x; — f(X_1) is the
error at ith periodic point. Eliminate the sub-diagonal elements by adding f’(x) times
the first row to the second row, then adding f’(x;) times the second row to the third

row:
0 —F/(xa) Axg
1 —F(x0) P (%) ][ A% ]:
0 1- f’(Xz)f’(Xllzf’(Xs) AXg

1
_( Fa+ f/(x)F1 ] .
Fa+ f'(x2)F2 + f'(x2) " (x1)F1

—_——
oo

The next step is to invert the last element in the diagonal, i.e., divide the third row
by 1 — f'(x2) f'(x1) f’(xg). If this element is zero at the periodic orbit this step cannot
work. As f’(x2) f'(x1) f'(x3) is the stability of the cycle (when the Newton iteration has
converged), this is not a good method to find marginally stable cycles. We now have

10 —f7(x3) Axy
[ 0 1 -f(x)f'(xs) J[ Axp J =
00 1 Axs
F1
[ F2+ f/(Xl)Fl ]
Fat ' (xp)Fo+ 1" () " (x1)F1
T (o) P () )

Finally we add f’(x3) times the third row to the first row and f'(x,)f’(xs) times the third
row to the second row. The left hand side matrix is now the unit matrix, the right hand
side is an explicit formula for the corrections to our initial guess. We have gone through
one Newton iteration.

When one sets up the Newton iteration on the computer it imaoessary
to write the left hand side as a matrix. All one needs is a vemboitaining the
f/(x)'s, a vector containing the'th column, i.e., the cumulative product of the
f’(x)’s, and a vector containing the right hand side. After tleeation the vector
containing the right hand side should be the correction édrifiial guess. exercise 13.1
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13.3.1 d-dimensional mappings

¢

Armed with clever initial guesses, informed by symbolic dygmics, we can easily
extend the Newton-Raphson iteration method-fimensional mappings. In this
casef’(x) is a [d x d] matrix, andd%F(x) is an |nd x nd] matrix. In each of the
steps that we went through above we are then manipuldtingss of the left hand
side matrix. (Remember that matrices do not commute - alwaysply from the
left.) In the inversion of theith element of the diagonal we are invertingda{d]
matrix (1- [T f’(x)) which can be done if none of the eigenvalueq pff’(x;)
equals 1, i.e., if the cycle has no marginally stable eigegetions.

Example 13.4 Newton method for time delay maps. Some d-dimensional map-
pings (such as the Hénon map (3.19)) can be written as 1-dimensional time delay
mappings of the form

f(x) = f(Xi1. Xi2. ... Xi-a)- (13.8)

In this case %F(x) is an [n x n] matrix as in the case of usual 1-dimensional maps
but with non-zero matrix elements on d off-diagonals. In the elimination of these off-
diagonal elements the last d columns of the matrix will become non-zero and in the final
cleaning of the diagonal we will need to invert a [d x d] matrix. In this respect, nothing
is gained numerically by looking at such maps as 1-dimensional time delay maps.

13.4 Flows

(R. PaSkauskas and P. Cvitanovi¢)

For a continuous time flow the periodic orbit Floquet mulgpl(5.16) along the
flow direction of necessity equals unity; the separation rof o points along
a cycle remains unchanged after a completion of the cyclereMait Floquet section 5.2.1
multipliers arise if the flow satisfies conservation lawstsas the symplectic in-
variance for Hamiltonian flows, or the dynamics is equivatriander a continuous
symmetry transformation. section 10.3

Let us apply the Newton method of (13.4) to search for peciaabits with
unit Floquet multipliers, starting with the case of@ntinuous time flowAssume
that the periodic orbit condition (13.1) holds for Ax andT + At, with the initial
guessex andT close to the desired solution, i.e., wjtkix|, At small. The Newton
setup (13.4)

0 = x+Ax— fTx+ AX)
x—fT(x) + (1 - J(X) - Ax— v(fT(x)At (13.9)

2

sufers from two shortcomings. First, we now need to solve noy émi the pe-
riodic point x, but for the periodT as well. Second, the marginal, unit Floquet
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multiplier (5.16) along the flow direction (arising from ttimme-translation invari-
ance of a periodic orbit) renders the factor{1)) in (13.5) non-invertible: ifx
is close to the solutionfT(x) ~ x, thenJ(x) - v(x) = V(fT(x)) ~ v(X). If Axis
parallel to the velocity vector, the derivative term«1) - Ax ~ 0, and it becomes
harder to invert (- J) as the iterations approach the solution.

As a periodic orbipis a 1-dimensional set of points invariant under dynamics,
Newton guess is not improved by pickidg such that the new point lies on the
orbit of the initial one, so we need to constrain the variatitox to directions
transverse to the flow, by requiring, for example, that

V(X)-Ax=0. (13.10)

Combining this constraint with the variational conditidt8(9) we obtain a New-
ton setup for flows, best displayed in the matrix form:

( 1\—/(;]()(x) v((;<) )( i?): _( X—Of(X) ) (13.11)

This illustrates the general strategy for determining qdid orbits in presence
of continuous symmetries - for each symmetry, break theriamae by a con-
straint, and compute the value of the corresponding coatisiparameter (here
the periodT) by iterating the enlarged set of Newton equations. Coimstig the
variations to transverse ones thus fixes both of Newton’stsbimings: it breaks
the time-translation invariance, and the peribdan be read f once the fixed
point has been found (hence we omit the superscridt'ifior the remainder of
this discussion).

More generally, the Poincaré surface of section technimfugect. 3.1 turns
the periodic orbit search into a fixed point search on a shyitdéfined surface of
section, with a neighboring point variatiagrx with respect to a reference poirt
constrained tastayon the surface manifold (3.2),

U(x+Ax) =U(x) =0. (13.12)

The price to pay are constraints imposed by the section: derdo stayon the
surface, arbitrary variationx is not allowed.

Example 13.5 A hyperplane Poincar é section. Let us for the sake of simplicity
assume that the Poincaré surface of section is a (hyper)-plane, i.e., it is given by the

linear condition (3.6)

(X—x0)-a=0, (13.13)

where a is a vector normal to the Poincaré section and Xo is any point in the Poincaré

section. The Newton setup is then (derived as (13.11))

( 1;J v(ox) )( X'A—tx ):( —FO(X) ) (13.14)
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The last row in this equation ensures that X will be in the surface of section, and the
addition of v(X)At, a small vector along the direction of the flow, ensures that such an x
can be found, at least if X is sufficiently close to a fixed point of f.

To illustrate how addition of the extra constraint resolves the problem of (1 — J)
non-invertability, let us take a particularly simple example; consider a 3-d flow with the
(%Y, 0)-plane as Poincaré section, a = (0,0, 1). Let all trajectories cross the Poincaré
section perpendicularly, i.e., with v = (0, 0, Vv;), which means that the marginally stable
direction is also perpendicular to the Poincaré section. Furthermore, let the unstable
direction be parallel to the x-axis and the stable direction be parallel to the y-axis. The
Newton setup is now

1-Ay 0 0 0 Oy —Fy
0 1-A¢ 0 0l s | |-F
0 o ovil el - (13.15)
0 o 1 oler 0

If you consider only the upper-left [3 x 3] matrix (which we started out with, prior to
adding the constraint (13.13)) then this matrix is not invertible and the equation does
not have a unique solution. However, the full [4x4] matrix is invertible, as det() =

—vdet(1- M,), where M, is the [2x2] monodromy matrix for a surface of section
transverse to the orbit, see sect. 5.3. (F. Christiansen)

13.4.1 Cost function

It pays to think in terms of aost(or error) function| (AX) = (x+Ax—f (x+AX))?/2.
Periodic orbit condition (13.1) corresponds both to a zdérb(4x), and of its first
Ax variation. Expand (Ax) to the second order inx, i ~ A~x2/2 +(x-f(x) -
Ax + (x - f(x))2/2, whereAx = (1 - J(X))Ax. To find an extremum, we set the
derivative with respect tax to zero. As the termx— f(x))2/2 is a constant under
AXx variation, let us define an unconstraineabt function

lo(AX) = %Ex- Ax+ (x— f(X) - AX, (13.16)

Setting the derivative of this function

8lo(AX)

= Ax+x— f(X) = (1 - I(X) - AX+ X — f(X) (13.17)
AAX

to zero recovers the Newton setup (13.4)

Next, we need to enforce the constraint that curbs the direxin whichAx
can point. Lagrange multipliers come to help.

A local surface of sectioman be constructed whefi(x) is “near” the initial

point x. A natural choice is a hyperplane perpendicular to the vigleectorv(x).
The reference poinkg in (13.13) isx itself, and the surface of section condition
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is U(x+ Ax) = V(x) - Ax = 0. Introduce a Lagrange multipliel; and assembled a
cost function with the constraint:

11(AX, 2) = %&x CAX+ [X = F(X)] - AX + AV(X) - AX. (13.18)

Now we diferentiatel;(AX, 1) with respect to each argument and set the deriva-
tives to zero. We recover the Newton setup (13.11), with thgrange multiplier

A = At interpreted as the time increment needed to plBee onto the section,
f(x) = f(X) + v(f(xX)At.

A global surface of sectiois a fixed surfac&) (x + Ax) — U(Xg) ~ dU (X)AX+
U(X) — U(xo) that hopefully transects all or a significant portion ofugent parts
of the flow. It is not as ‘natural’ as the local section (13,1@)t hard to avoid in
practice, and one is interested not only in the fixed poimfitbut in the global

reach of its unstable manifold as well. The simplest chaeehyperplane (13.13)example 13.5

The cost function and the variational equations are then

Io(AX,2) = %Ax[l = J(X)]AX + (x— (X)) Ax

+ A(OUX)AX+ U(X) — U(X0)) , (13.19)
1-J(x) aU(x) AX x— f(x)
( U 0 )( B )= ‘( U - U(x) ) (13.20)

Furthercontinuous symmetriesan be handled in the same fashion. Suppose,
for example, that we are searching for periodic orbits of anittanian flow.
There, periodic orbits not only have the time-translatigmmetry, but energy-
translation symmetry as well. What is energy-translatipmmetry? If there ex-
ists a periodic orbit ax with energyH(x) = E, and periodr, itis very likely that it
belongs to a family of orbitsx+ eAX(E), T +€eAt(E)) continuous under variation of
E. As with the time-translation symmetry, this implies a urlibquet multiplier:
indeed, we know from sect. 7.3 that symplectic eigenvaleesecin pairs, so unit
multiplier in the time direction implies a unit multiplieniits dual, the energy
direction, (i, Ag,---) = (1,1, - --). But extending the number of constraints is no
longer a problem: add more Lagrange multipliers. Considerfollowing system

13(AX, 21, 42) = AX[1—JI(X)]AX/2 + (x— f(X)) AX
+ A (UX+AX) — U(x0)) + 22 (H(x+ AX) — Eg) (13.21)

UK 0 0 A

1-J(x) dU(X) dH(X)\( Ax
AH(X) 0 0 ][ A2 ]

x— f(x)
= —{ U(x) - U(x) ] (13.22)
H(x) - Eo

This is the Newton iteration setup for how to search for agzéd orbit of a Hamil-
tonian flow with a global surface of sectidh(x) = U(xp) and fixed energyEo.
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Note that these instructions do not put every iteration oaréaseU(x) = U(Xp)
and energyH(x) = Ep, unless the surface is a plabéx) = a- (x— Xp), but instead
assure that the iterations will gradually approach (preulithey converge) to the
surfaces.

For periodic orbits multi-point shooting generalizes ie ame way as (13.7),
but with n additional equations — one for each point on a PoincaréosecThe
Newton setup looks like this

1 =Jn AX -F
1 1
- 1 V1 AXo -F>
o1 Vi . )
g 1 A |7 F,
a Aty 0
a 0 Aty 0

Solving this equation resembles the corresponding taské&ps. However, in the
process we will need to invert ard[¢ 1)n x (d + 1)n] matrix rather than ad x d]
matrix.

13.4.2 How good is my orbit?

Provided we understand the topology of the flow, multi-sh@pimethods and
their variational cousins of chapter 29 enable us to compet@dic orbits of

arbitrary length. A notion that errors somehow grow expdiadly with the cycle

length at Lyapunov exponent rate cannot be right. So how dohaeacterize the
accuracy of an orbit of arbitrary length?

The numerical round{® errors along a trajectory are uncorrelated and act
as noise, so the error(f + At) — fA{(x(t))2 are expected to accumulate as the
sum of squares of uncorrelated steps, linearly with timendéehe accumulated
numerical noise along an orbit sliced BY intermediate sections separated by
Aty = te1 — te ~ Tp/N can be characterized by affective difusion constant

N
_ 1 i _ Al 2
D, = —Z(de+l)k; A Kot = 12007 (13.23)

For hyperbolic flows errors are exponentially amplified @amstable and con-
tracted along stable eigen-directions,dser 1 stands for the number of unstable
directions of the flow together with the single marginal diren along the flow.
An honest calculation requires an honest error estimatgoufare computing a
large set of periodic orbitg, list D, along withT,, and other properties of cycles.
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Résum é

There is no general computational algorithm that is guaehto find all solutions
(up to a given period'may) to the periodic orbit condition

¥ T = f'(x), T>0

for a general flow or mapping. Due to the exponential divecgesf nearby trajec-
tories in chaotic dynamical systems, direct solution ofglegodic orbit condition
can be numerically very unstable.

A prerequisite for a systematic and complete cycle searahgisod (but hard
to come by) understanding of the topology of the flow. Usualhe starts by -
possibly analytic - determination of the equilibria of thewil Their locations,
stabilities, stability eigenvectors and invariant mahigoofer skeletal informa-
tion about the topology of the flow. Next step is numericabgidime evolution of
“typical” trajectories of the dynamical system under imigation. Such numeri-
cal experiments build up the “natural measure,” and re\agibns most frequently
visited. The periodic orbit searches can then be initializg taking nearly recur- section 16.4.1
ring orbit segments and deforming them into a closed oriWéh a suficiently
good initial guess the Newton-Raphson formula

ERTEEES

yields improved estimate’ = x+6x, T = T +6T. Iteration then yields the period
T and the location of a periodic point, in the Poincaré surfacexf — xp) -a =0,
wherea is a vector normal to the Poincaré sectiorxat

The problem one faces with high-dimensional flows is thair ttegology is
hard to visualize, and that even with a decent starting gisess point on a peri-
odic orbit, methods like the Newton-Raphson method aréylitefail. Methods chapter 29
that start with initial guesses for a number of points aldmg ¢ycle, such as the
multipoint shooting method of sect. 13.3, are more robuse Telaxation (or
variational) methods take this strategy to its logical exte, and start by a guess
of not a few points along a periodic orbit, but a guess of thérerrbit. As
these methods are intimately related to variational ppilesi and path integrals,
we postpone their introduction to chapter 29.

Commentary

Remark 13.1 Close recurrence searches. For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial @sses for periodic orbits from
close recurrences of a long ergodic trajectory seems likebsipus idea. Nevertheless,
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ref. [13.1] is frequently cited. Such methods have beenajegul by many, among them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. iBelvack [25.2, 20.14,

20.15, 13.10, 13.11] (see also sect. 20.5). Sometimes anelet@rmine most of the
admissible itineraries and their weights without working hard, but method comes with
no guarantee.

Remark 13.2 Piecewise linear maps. The Lozi map (3.21) is linear, and 100,000's
of cycles can be easily computed byq2] matrix multiplication and inversion.

Remark 13.3 Cycles, searches, and symmetries. A few comments about the role of
symmetries in actual extraction of cycles. In tRedisk billiard example, a fundamen-
tal domain is a sliver of th&l-disk configuration space delineated by a pair of adjoining
symmetry axes. The flow may further be reduced to a return mag Boincaré surface
of section. While in principle any Poincaré surface of setwill do, a natural choice in
the present context are crossings of symmetry axes, seepdx@rb. In actual numerical
integrations only the last crossing of a symmetry line needi® determined. The cycle is
run in global coordinates and the group elements assoaidthdhe crossings of symme-
try lines are recorded; integration is terminated when tht @loses in the fundamental
domain. Periodic orbits with non-trivial symmetry subgpsiare particularly easy to find
since their points lie on crossings of symmetry lines, searle 7.6.

Remark 13.4 Newton gone wild. ~ Skowronek and Gora [13.23]ffer an interesting
discussion of Newton iterations gone wild while searchiagrbots of polynomials as
simple as + 1= 0.

cycles - 7nov2009 ChaosBook.org version13, Dec 31 2009



EXERCISES

265

Exercises

13.1. Cycles of the Ulam map. Test your cycle-searching 13.7. Fundamental domain fixed points.

13.2.

13.3.

13.4.

13.5.

13.6.

exerCycles - 13jun2008

routines by computing a bunch of short cycles and their
stabilities for the Ulam mapf (x) = 4x(1 - X) .

Cycles stabilities for the Ulam map, exact. In exer-
cise 13.1 you should have observed that the numerical
results for the cycle Floguet multipliers (4.51) are ex-
ceptionally simple: the Floquet multiplier of thg = 0
fixed point is 4, while the eigenvalue of any other
cycle is+2". Prove this. (Hint: the Ulam map can be
conjugated to the tent map (11.4). This problem is per-
haps too hard, but give it a try - the answer is in many
introductory books on nonlinear dynamics.)

Stability of billiard cycles.
simple cycles.

Compute stabilities of few

(a) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one centered at
the origin and another disk of unit radius located at
L + 2. Find all periodic orbits for this system and
compute their stabilities. (You might have done
this already in exercise 1.2; at least now you will
be able to see where you went wrong when you
knew nothing about cycles and their extraction.)

(b

-

Find all periodic orbits and stabilities for a billiard
ball bouncing between the diagorya+ x and one
of the hyperbola branchegs= —1/x.

13.10.

Cycle stability.  Add to the pinball simulator of ex-
ercise 8.1 a routine that evaluates the expanding eigen-
value for a given cycle.

Pinball cycles. Determine the stability and length of
all fundamental domain prime cycles of the binary sym-
bol string lengths up to 5of longer) for R : a = 6 3-disk
pinball.

Newton-Raphson method. Implement the Newton-
Raphson method in 2 dimensionabnd apply it to de-
termination of pinball cycles.

13.8.

. A test of your pinball simulator: 10-cycle.

Use the for-
mula (8.11) for billiard Jacobian matrix to compute the
periodsT, and the expanding eigenvalugs of the fun-
damental domail (the 2-cycle of the complete 3-disk
space) and. (the 3-cycle of the complete 3-disk space)
fixed points:

| T Ap
0:| R-2 R-1+RVI-2/R (1324
7 2R 2R
1. | R- V3 —7§+1—%,/1— V3/R

We have set the disk radius#o= 1.
Fundamental domain 2-cycle.  Verify that for the

10-cycle the cycle length and the trace of the Jacobian
matrix are given by

2yYR2- V3R+1-2,

Lo =
trdio = Aw+1/Aw (13.25)
2
- 2Le+24 s baollor2F
2 \3r/2-1

The 10-cycle is drawn in figure 12.12. The unstable
eigenvalue\ o follows from (7.22).

Test
your exercise 8.3 pinball simulator stability evaluation
by checking numerically the exact analy1i@-cycle sta-
bility formula (13.25).

Rossler flow cycles.  (continuation of exercise 4.4)
Determine all cycles for the Rossler flow (2.17), as well
as their stabilities, up to

(a) 3 Poincaré sections returns

(b) (optional) 5 Poincaré sections returns (Hint: im-
plement (13.14), the multipoint shooting methods
for flows; you can cross-check your shortest cy-
cles against the ones listed in the table.)

Table: The Rossler flow (2.17): The itinerary p, a peri-
odic point % = (0,Yp, z,) and the expanding eigenvalue
A for all cycles up to the topological length 7.

(J. Mathiesen, G. Simon, A. Basu)
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n p Y Ae 3
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923
011 2.932877 5.670806  5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958
01111 3.278914 4.890452  36.88633
6 001011 2.122094 7.886173 -6.857665
010111  4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255
7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284
13.11. Cycle stability, helium.  Add to the helium integrator

13.12.

13.13.

13.14.

exerCycles - 1piqnpe0g )

of exercise 2.10 a routine that evaluates the expanding
eigenvalue for a given cycle.

Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up
to symbol sequence length 5 or longer for collinear he-
lium of figure 7.2.

Uniqueness of unstable cycles'. Prove that there
exists only one 3-disk prime cycle for a given finite ad-
missible prime cycle symbol string. Hints: look at the

Poincaré section mappings; can you show that therg3s)s.

exponential contraction to a unique periodic point with
a given itinerary? Exercise 29.1 might be helpful in this
effort.

Inverse iteration method for a Hamiltonian repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Henon mapping (13.26) witha 6. Listed are
the cycle itinerary, its expanding eigenvaltg, and its
“center of mass” The “center of mass” is listed be-
cause it turns out the “center of mass” is often a simple
rational or a quadratic irrational.

P Ap 2 Xpi
0 0.71516&10° -0.607625
1 -0.29528%10"  0.274292
10 -0.98989810"  0.333333
100 -0.13190%10° -0.206011
110 0.558970107 0.539345
1000 -0.10443010° -0.816497
1100 0.57799810*  0.000000
1110 -0.10368810°  0.816497
10000 -0.76065810" -1.426032
11000  0.44455210° -0.606654
10100  0.77020210° 0.151375
11100 -0.71068810° 0.248463
11010 -0.58949910° 0.870695
11110  0.39099410° 1.095485
100000 -0.54574610° -2.034134
110000 0.32222210° -1.215250
101000 0.51376210° -0.450662
111000 -0.47846210" -0.366025
110100 -0.63940010° 0.333333
101100 -0.63940010* 0.333333
111100 0.39019410° 0.548583
111010 0.10949410° 1.151463

-0.10433810"  1.366025

13.17. “Center of mass” puzzle™.
mass,” tabulated in exercise 13.14, often a rational
ber?

266

Consider the Hénon map (3.19) for area-prese
(“Hamiltonian”) parameter valub = —1. The coord
nates of a periodic orbit of length, satisfy the equati

Xpiri+ Xpicr =1-ax,;, i=1..,np, (13.26

with the periodic boundary conditiox,o = Xpn,. Ver
ify that the itineraries and the stabilities of the shor
riodic orbits for the Hénon repeller (13.26)at= 6 ar
as listed above.

Hint: you can use any cycle-searching routine you\
but for the complete repeller case (all binary seque
are realized), the cycles can be evaluated simply |
verse iteration, using the inverse of (13.26)

’ ’
1- Xp.i+1 - Xp,i—l

X5i = Soi .

=10

Here Sy,; are the signs of the corresponding peri
point coordinatesSp; = Xp;i/|Xp;il- (G. Vattay

Ulam map periodic points.
cise 11.8)

(continued from exe

(a) compute the five periodic points of cycl®01
for the Ulam map (11.55(X) = 4x(1 — X) . usin
your Newton or other routine.

(b) compute the five periodic points of cyd®000

(c) plotthe above two cycles on the graph of the L
map, verify that their topological ordering is a
the ‘canonical’ full tent map exercise 11.8.

(d) (optional) This works only for the Ulam m
compute periodic points by conjugating the
tent map periodic points of exercise 11.8 usin(
ercise 6.4.

13.16. Newton setups for flows.

(a) We have formulated three Newton setups
flows: the ‘local’ setup (13.11), the ‘hyperpla
setup (13.14), and the ‘global’ setup (13.20).
rive (13.20) and verify that if the surface of <
tion is a hyperplane, it reduces to (13.14). (t
it is not inconceivable that (13.14) is wrong &
stands.)

(b) (optional) Derive (13.22), the Newton setup
Hamiltonian flows.

Why is the “center
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