Chapter 15

Counting

I’'m gonna close my eyes

And count to ten

I’'m gonna close my eyes

And when | open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

the easiest problem in theory of chaotic systems: cycle taoyin This

is the simplest illustration of the raison d’etre of periodirbit theory;
we derive a duality transformation that relatesal information - in this case the
next admissible symbol in a symbol sequence glabal averages, in this case
the mean rate of growth of the number of cycles with increasiycle period. In
chapter 14 we have transformed, by means of the transitidriaes/ graphs, the
topological dynamics of chapter 11 into a multiplicativeecgtion. Here we show
that thenth power of a transition matrix counts all itineraries of dggimn. The
asymptotic growth rate of the number of admissible itineisis therefore given
by the leading eigenvalue of the transition matrix; the iege@igenvalue is in turn
given by the leading zero of the characteristic determinattie transition matrix,
which is - in this context - called th®pological zeta function

WE ARE Now in a position to apply the periodic orbit theory to the firstlan

For flows with finite transition graphs this determinant israté topological
polynomialwhich can be readfdthe graph. However, (a) even something as
humble as the quadratic map generically requires an infoatétion (sect. 15.5),
but (b) the finite partition approximants converge expoiadigtfast.

The method goes well beyond the problem at hand, and formsottecof the
entire treatise, making tangible the abstract notion oét$mal determinants” yet
to come.
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CHAPTER 15. COUNTING 285

15.1 How many ways to get there from here?

In the 3-disk system of example 11.1 the number of admissibjectories dou-
bles with every iterate: there akg, = 3- 2" distinct itineraries of length. If disks

are too close and a subset of trajectories is pruned, thidysam upper bound and
explicit formulas might be hard to discover, but we still idpe able to establish

a lower exponential bound of the foriy, > Ce™. Bounded exponentially by
3¢""2 > K, > Cé&™M, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by ttepological entropy

h= lim }In Kn . (15.1)

n—oo N

We shall now relate this quantity to the spectrum of the items matrix, with
the growth rate of the number of topologically distinct éefpries given by the
leading eigenvalue of the transition matrix.

The transition matrix elemeft; € {0, 1} in (14.1) indicates whether the tran-
sition from the starting partition into partitioni in one step is allowed or not, and

the (, j) element of the transition matrix iteratedimes exercise 15.1
(i = Z Tiks Thako - - - Thaj (15.2)
ki.Kz,....Kn-1

receives a contribution 1 from every admissible sequendsansitions, soT");;
is the number of admissiblesymbol itineraries starting witlhand ending with.

Example 15.1 3-disk itinerary counting. The (T?)13 = T12T23 = 1 element of T? for
the 3-disk transition matrix (14.8)

01 1% (211

[1 0 1] =[1 2 1]. (15.3)
110 11 2

corresponds to path3 — 2 — 1, the only 2-step path from 3 to 1, while (T?)z3 = T31T13+

Ts2To3 = 2 counts the two returning, periodic paths 31 and 32. Note that the trace
tr72 = (T2)11 + (T2)22 + (T?)33 = 2T13Ta1 + 2T21T1z + 2T3,T23 has a contribution from

each 2-cycle 12, 13, 23 twice, one contribution from each periodic point.

The total number of admissible itinerariesrofymbols is

Kn=Z(T”)ij=(l,1,...,l)T” e (15.4)
ij .
1
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CHAPTER 15. COUNTING 286

We can also count the number of prime cycles and pruned pepadihts, but
in order not to break up the flow of the argument, we relegatedtpretty results
to sect. 15.7. Recommended reading if you ever have to canipist of cycles.

A finite [N x N] matrix T has eigenvaluesly, 11, - - -, Am_1} and (right) eigen-
vectors{eg, ¢1, - - -, em-1} satisfyingTe, = 1,¢.. EXpressing the initial vector in
(15.4) in this basis (which might be incomplete, with< N eigenvectors),

1
. 1 . m-1 m-1 .
T | = T Z basoa = Z ba/lasoaf s
i a=0 a=0

and contracting witt{1,1,...,1), we obtain

m-1
Kn = Z Ca/lg .
a=0

The constantg, depend on the choice of initial and final partitions: In this e
ample we are sandwiching" between the vectqrl, 1,...,1) and its transpose,
but any other pair of vectors would do, as long as they are nihbgonal to the

leading eigenvectopg. In an experiment the vectdrd, 1,...,1) would be re-

placed by a description of the initial state, and the rigltt@ewould describe the
measurement time later.

exercise 15.3

Perron theoremstates that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvaluky > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefora Exreases, the sum
is dominated by the leading eigenvalue of the transitionrimatly > |Red,l,
a=12---,m-1, and the topological entropy (15.1) is given by

n
c
Co \ 1o
. [In 1cy (A1)"
In Ao + lim [—CO+——1(_1) +]
n—oo n Nncoy /10

Ino. (15.5)

>
Il

.1
lim - Incodg

n—oo

What have we learned? The transition mafriis a one-stepshort timeoperator,
advancing the trajectory from one partition to the next aghible partition. Its
eigenvalues describe the rate of growth of the total numbéragectories at the
asymptotic timesinstead of painstakingly countiri€y, Ko, Ks, . .. and estimating
(15.1) from a slope of a log-linear plot, we have #ecttopological entropy if
we can compute the leading eigenvalue of the transitionixn@trThis is reminis-
cent of the way free energy is computed from transfer magrioe 1-dimensional
lattice models with finite range interactions. Historigalk is this analogy with
statistical mechanics that led to introduction of evolatmperator methods into
the theory of chaotic systems.
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CHAPTER 15. COUNTING 287

15.2 Topological trace formula

There are two standard ways of computing eigenvalues of exndity evaluating
the trace tT" = ) A}, or by evaluating the determinant det{XT). We start by
evaluating the trace of transition matrices. The main lessil be that the trace
receives contributions only from itineraries that retunrthie initial partition, i.e.,
periodic orbits.

Consider arM-step memory transition matrix, like the 1-step memory exam
ple (14.10). The trace of the transition matrix counts thebar of partitions that
map into themselves. More generally, each closed walk girouconcatenated
entries ofT contributes to tT" the product (15.2) of the matrix entries along the
walk. Each step in such a walk shifts the symbolic string by symbol; the trace
ensures that the walk closes on a periodic stanBefinet. to be thelocal trace
the product of matrix elements along a cycleesach term being multiplied by a
book keeping variable In chapters that follow, the ‘local tracg’ will take a con-
tinuum of values, so for the remainder of this chapter wekdtiche t.’ notation
rather than to the 0 & values specific to the counting problem.

The quantityZ'tr T" is then the sum of; for all cycles of periodn. Thet,
= (product of matrix elements along cycteis manifestly cyclically invariant,
t100 = to10 = too1, SO a prime cyclep of periodn, contributesn, times, once for
each periodic point along its orbit. For the purposes ofquic orbit counting,
the local trace takes values

¢ _{ Z"% if pis an admissible cycle
p

0 otherwise, (15.6)

i.e., (settingz = 1) the local trace i$p = 1 if the cycle is admissible, arg = 0
otherwise.

Example 15.2 Traces for binary symbolic dynamics. For example, for the [8x8]
transition matrix Ts,s,s,.s,5,5, VErsion of (14.10), or any refined partition [2"x2"] transition
matrix, n arbitrarily large, the periodic point 100 contributes tiop = mememem
to Z2tr T3. This product is manifestly cyclically invariant, tioo0 = to10 = too1, SO a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its
orbit. exercise 11.7

For the binary labeled non—wandering set the first few traces are given by (con-
sult tables 15.1 and 15.2)

ztrT = to+1tg,
27?2 = 5+t + 2y,
ZrT? = 5+t + 3tio0+ 3tion,
2T = tg + t‘ll + ZtEO + 4t1000 + 4t1001 + 4t1011 (15.7)

In the binary case the trace picks up only two contributions on the diagonal, To..00.-.0 +
T1..11..1, N0 matter how much memory we assume. We can even take infinite memory

count - 29jan2009 ChaosBook.org version13, Dec 31 2009



Table 15.1: Prime cycles for the binary symbolic dynamics up to lengtfTBe numbers
of prime cycles are given in table 15.3.

Np p | nmp p Np p Np p Np p
1 0] 7 0001001| 8 00001111} 9 000001101 9 001001111
1 0000111 00010111 000010011 001010111
2 01 0001011 00011011 000010101 001011011
3 001 0001101 00011101 000011001 001011101
011 0010011 00100111 000100011 001100111
4 0001 0010101 00101011 000100101 001101011
0011 0001111 00101101 000101001 001101101
0111 0010111 00110101 000001111 001110101
5 00001 0011011 00011111 000010111 010101011
00011 0011101 00101111 000011011 000111111
00101 0101011 00110111 000011101 001011111
00111 0011111 00111011 000100111 001101111
01011 0101111 00111101 000101011 001110111
01111 0110111 01010111 000101101 001111011
6 000001 0111111 01011011 000110011 001111101
000011 8 00000001 00111111 000110101 010101111
000101 00000011 01011111 000111001 010110111
000111 00000101 01101111 001001011 010111011
001011 00001001 01111111 001001101 001111111
001101 00000111 9 000000001 001010011 010111111
001111 00001011 000000011 001010101 011011111
010111 00001101 000000101 000011111 011101111
011111 00010011 000001001 000101111 011111111
7 0000001 00010101 000010001 000110111
0000011 00011001 000000111 000111011
0000101 00100101 000001011 000111101

Table 15.2: The total number$\, of periodic points of periodh for binary symbolic dy-
namics. The numbers of contributing prime cycles illugtsathe preponderance of long
prime cycles of periodh over the repeats of shorter cycles of periogswheren = rnp,.
Further enumerations of binary prime cycles are given ite®tt5.1 and 15.3. (L. Ron-
doni)

N, # of prime cycles of period,
2 3 45 6 7 8 9 10
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CHAPTER 15. COUNTING 289

M — oo, in which case the contributing partitions are shrunk to the fixed points, tr T =
Tss+ T57.
00" '11

If there are no restrictions on symbols, the symbolic dynamics is complete, and
all binary sequences are admissible (or allowable) itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in table 15.dxercise 11.2

Hence tiT" = N, counts the number aidmissible periodic pointsf period
n. The nth order trace (15.7) picks up contributions from all regeat prime
cycles, with each cycle contributing, periodic points, siN,, the total number of
periodic points of perioah is given by

PNy =20 T" = > gty ™ = > np Y St (15.8)
r=1

Npin p

Heremn means thainis a divisor ofn. An example is the periodic orbit counting
in table 15.2.

In order to get rid of the awkward divisibility constraint= npr in the above
sum, we introduce the generating function for numbers abger points

O zT
2Nn = t . 15.9
; s (15.9)

The right hand side is the geometric series sulp tr T". Substituting (15.8)
into the left hand side, and replacing the right hand sidehgyeigenvalue sum
trT" = 3 A7, we obtain our first example of a trace formula, tbhpological trace

formula

z1, Npt

> = i (15.10)
1-2z1, 1-t,

a=0 p

A trace formula relates the spectrum of eigenvalues of anadpe- here the tran-
sition matrix - to the spectrum of periodic orbits of a dynaatisystem. Itis a
statement of duality between the short-time, local infdrara- in this case the
next admissible symbol in a symbol sequence - to long-tifahal averages, in
this case the mean rate of growth of the number of cycles witheasing cycle
period.

TheZz"sumin (15.9) is a discrete version of the Laplace transf@®e cect. 18.1.2),
and the resolvent on the left hand side is the antecedeneahtre sophisticated
trace formulas (18.10) and (18.23).We shall now use thigltrés compute the
spectral determinant of the transition matrix.
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CHAPTER 15. COUNTING 290

15.3 Determinant of a graph

Our next task is to determine the zeros of #pectral determinandf an [mxm]|
transition matrix

m-1
det (1-zT) = ]_[ 1-2z1,) . (15.11)
a=0

We could now proceed to diagonaliZeon a computer, and get this over with. It
pays, however, to dissect det{2T) with some care; understanding this computa-
tion in detail will be the key to understanding the cycle exgian computations of
chapter 20 for arbitrary dynamical averages. Fax finite matrix, (15.11) is just
the characteristic polynomial far. However, we shall be able to compute this ob-
ject even when the dimension ©fand other such operators becomes infinite, and
for that reason we prefer to refer to (15.11) loosely as tipettral determinant.”

There are various definitions of the determinant of a mawie;will view the
determinant as a sum over all possible permutation cyclegposed of the traces
tr T, in the spirit of the determinant—trace relation (1.16): exercise 4.1

det(1- zT)

exp(tr In(1-zT)) = exp{— Z %trT”)

n=1

Z
1-ztrT - E((trT)Z—trTZ)—... (15.12)

This is sometimes called eumulantexpansion. Formally, the right hand is a
Taylor series irzaboutz = 0. If T is an jmxm] finite matrix, then the characteristic
polynomial is at most of ordem. In that case the cdigécients ofz" must vanish
exactlyfor n > m.

We now proceed to relate the determinant in (15.12) to theesponding
transition graph of chapter 14: toward this end, we starhwhe usual textbook
expression for a determinant as the sum of products of athpttions

detM = > (=1)"M1, M2y, -+ Mrn, (15.13)
{m}

whereM = 1 - zT is a [mxm| matrix, {z} denotes the set of permutationsrof
symbols,rrx is the permutationr applied tok, and ¢1)" = +1 is the parity of
permutationr. The right hand side of (15.13) yields a polynomiallirof orderm
in z a contribution of orden in z picks upm — n unit factors along the diagonal,
the remaining matrix elements yielding

(-2"(~1)V Teprs, - - Teurs, (15.14)
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CHAPTER 15. COUNTING 291

wherer is the permutation of the subsetmflistinct symbolss; - - - s, indexingT
matrix elements. Asin (15.7), we refer to any combinatiof Ts;s Ts;s, - - Tsysys

for a given itineranc = 1S, - - - &, as thdocal traceassociated with a closed loop
c on the transition graph. Each term of the form (15.14) maydotofed in terms

of local tracest,t, - - - t, that is loops on the transition graph. These loops
are non-intersecting, as each node may only be reacheddlink, and they are
indeed loops, as if a node is reached by a link, it has to bettrérg point of
anothersingle link, as eachs; must appear exactlgnceas a row and column
index.

So the general structure is clear, a little more thinkingris/aequired to get
the sign of a generic contribution. We consider only the a#deops of length
1 and 2, and leave to the reader the task of generalizing st ey induction.
Consider first a term in which only loops of unit length appea(15.14), i.e.,
only the diagonal elements @fare picked up. We have= mloops and an even
permutationr so the sign is given by<(1)¥, wherek is the number of loops. Now
take the case in which we havesingle loops and loops of lengthn = 2j + i.
The parity of the permutation gives—{)! and the first factor in (15.14) gives
(-1)" = (-1)%*'. So once again these terms combine-th)f, wherek = i + j is
the number of loops. Let be the maximal number of non-intersecting loops. Wercise 15.4
may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions m of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace tp carrying a minus sign:

f
det(1-2T) = 3 37 (-1)tp, -ty (15.15)
k=0 &

Any self-intersecting loop ishadoweddy a product of two loops that share the
intersection point. As both the long lodg and its shadowvigty, in the case at hand
carry the same weight™=*™, the cancelation is exact, and the loop expansion
(15.15) is finite. In the case that the local traces count @iiycles (15.6)t, = 0

or 2", we refer to det (1 zT) as thetopological polynomial

We refer to the set of all non-self-intersecting logRs, tp,, - - - tp, } as thefun-
damental cycleffor an explicit example, see the loop expansion of examplé)1
This is not a very good definition, as transition graphs atain@ue —the most we
know is that for a given finite-grammar language, there axastsition graph(s)
with the minimal number of loops. Regardless of how cleverlyansition graph
is constructed, it is always true that for any finite tramsitgraph the number of
fundamental cycle$ is finite. If the graph has nodes, no fundamental cycle is
of period longer tham, as any longer cycle is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traxesoist easily
grasped by working through a few examples. The completepohamamics tran-
sition graph of figure 14.4 is a little bit too simple, but let start humbly and
consider it anyway.
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Example 15.3 Topological polynomial for complete binary dynamics: (continu-
ation of example 14.2) There are only two non-intersecting loops, yielding

det(1- zT)

1-tg—t; - (t()]_ - totl) =1-2z (1516)

1 o= (o o= o).

Due to the symmetry under O < 1 interchange, this is a redundant graph (the 2-cycle
to1 is exactly shadowed by the 1-cycles). Another way to see is that itineraries are
labeled by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-links
and 2 out-links, they can be identified, and a more economical presentation is in terms
of the [1x 1] adjacency matrix (14.12)

det(1- zA

e = 1 o=

1-to-tp=1-2z (15.17)

The leading (and only) zero of this characteristic polynomial yields the topological en-
tropy € = 2. As there are K, = 2" binary strings of length N, this comes as no
surprise.

Similarly, for the complete symbolic dynamics Nfsymbols the transition graph
has one node and links, yielding

det(1-2zT) =1- Nz, (15.18)
which gives the topological entrogy= In N.

Example 15.4 Golden mean pruning: The “golden mean” pruning of example 14.5

has one grammar rule: the substring _11_is forbidden. The corresponding trarsiaise 15.5
graph non-intersecting loops are of length 1 and 2, so the topological polynomial is
given by

det(1-zT) = 1-to—-tp=1-z-7 (15.19)

(o o= 1 e W

Sy

The leading root of this polynomial is the golden mean, so the entropy (15.5) is the
logarithm of the golden mean, h = In 1+T‘/§

fast track:
W sect. 15.4, p. 294
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>
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Figure 15.1: (a) The region labels in the nodes
of transition graph figure 14.3 can be omitted, as
the links alone keep track of the symbolic dynam-

>

ics. (b)-(j) The fundamental cycles (15.23) for the el
transition graph (a), i.e., the set of its non-self- 0010111
intersecting loops. Each loop represents a local
tracet,, as in (14.5). (@ e
Example 15.5 Nontrivial pruning: The non-self-intersecting loops of the transition

graph of figure 14.6 (d) are indicated in figure 14.6 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:
det(1-2zT) = 1-to—too11— tooo1— tooo11
+totoo11 + too11tooos - (15.20)

With tp = Z", where Ny is the period of the p-cycle, the smallest root of
0=1-z-27+7 (15.21)

yields the topological entropy h = —Inz z= 0.658779... h =0.417367.. ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
with topological entropyh =1In2 = 0.693... exercise 15.9

Example 15.6 Loop expansion of a transition graph. (continued from exam-
ple 14.7) Consider a state space covered by 7 neighborhoods (14.11), with the topo-
logical time evolution given by the transition graph of figure 14.3.

count - 29jan2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 15. COUNTING 294

The determinant det (1— zT) of the transition graph in figure 14.3 can be read
off the graph, and expanded as a polynomial in z, with coefficients given by products of
non-intersecting loops (traces of powers of T) of the transition graph figure 15.1:

det (1— ZT) =1- (to + tl)Z - (t()]_ — totl) 22 - (t001 + t()]_l - t()]_to — t01t1) Z3
— (too11 + to111 — toorts — torato — torats + tostots) Z*
— (toor11— to111to — toorats + toratots) 22 (15.22)

— (too1011+ too1101— toottor — tooatorr) 22
7
— (too10111+ too11101— too101d1 — toor10ds — too11dtor + tooritorts + tooatorats) Z° .

Twelve cycles up to period 7 are fundamental cycles:

out of the total of 41 prime cycles (listed in table 15.1) up to cycle period 7. The
topological polynomial t, — z%

1étop@ =1-22+7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological
entropy is only a bit smaller than the binary h = In2. Not exactly obvious from the
partition (14.11).

15.4 Topological zeta function

What happens if there is no finite-memory transition matfithe transition graph
is infinite? If we are never sure that looking further into theure will reveal no
further forbidden blocks? There is still a way to define theedwminant, and this
idea is central to the whole treatise: the determinant is tfedined by itcumulant

expansion (15.12) exercise 4.1
det(1-zT) = 1- Z &2 (15.24)
n=1
Example 15.7 Complete binary det(1- zT) expansion. (continuation of exam-
ple 14.6) consider the loop expansion of the binary 1-step memory transition graph
(14.10)

= 1-{ =D~ 2-O1 0)

= 1-1to—t; —[(tos — tsto)] — [(too1 — to1to) + (to11 — toats)]
—[(tooo1 — totoo) + (tor11 — to1ats)
+(too11 — tooits — totor1 + totoits)]

= 1—th—26n=1—22. (15.25)
f n
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For finite dimensional matrices the expansion is a finite poiyial, and (15.24)
is an identity; however, for infinite dimensional operattivte cumulant expansion
codlicientsc, definethe determinant.

Let us now evaluate the determinant in terms of traces forhitrary transi-
tion matrix. In order to obtain an expression for the spédeterminant (15.11)
in terms of cycles, substitute (15.8) into (15.24) and susr tive repeats of prime
cycles using In(+ x) = -3, X'/r,

exp[— > i %] = exp[; In(1 - tp)}

p r=1

[Ta-t. (15.26)
p

det (1- zT)

where for the topological entropy the weight assigned taraercyclep of period
np istp = Z™ if the cycle is admissible, dy, = 0 if it is pruned. This determinant
is called theopologicalor the Artin-Mazur zeta function, conventionally denoted
by

1/Ztop(2) = l_[(l — %) =1- Z &2 . (15.27)
p n=1

Counting cycles amounts to giving each admissible priméeqyeveightt, = z

and expanding the Euler product (15.27) as a power serigs is the precise
expression for the cdicientsc; in terms of local traces, is more general than
the current application to counting, we shall postponeétivdtion to chapter 20.

The topological entropy can now be determined from the leading zere
e of the topological zeta function. For a finitenk m] transition matrix, the
number of terms in the characteristic equation (15.15) i¢efirand we refer to
this expansion as thepological polynomiabf order< m. The utility of defining
the determinant by its cumulant expansion is that it worlenevhen the partition
is infinite, m — co; an example is given in sect. 15.5, and many more later on.

fast track:
W sect. 15.5, p. 296
15.4.1 Topological zeta function for flows

,
J We now apply the method that we shall use in deriving (18.23the
problem of deriving the topological zeta functions for flovilghe time-weighted
density of prime cycles of periotis

T = > > Tpolt—rTp). (15.28)

p r=1

count - 29jan2009 ChaosBook.org version13, Dec 31 2009



CHAPTER 15. COUNTING 296

The Laplace transform smooths the sum over Dirac delta sfgee (18.22))
and yields theaopological trace formula

Z Z Tp fo " dt eSto(t —1Tp) = Z T i g STl (15.29)
p r=1 + p r=1

and thetopological zeta functioffor flows:

Yaop(s) = | |(1-€), (15.30)

p

related to the trace formula by

DTy e = _aﬁ In 1/Ztop(9) -
p r=1 S

This is the continuous time version of the discrete time logical zeta function
(15.27) for maps; its leading zeso>= —hyields the topological entropy for a flow.

15.5 Topological zeta function for an infinite partition
(K.T. Hansen and P. Cvitanovit)

,
J To understand the need for topological zeta function (15.24 turn a
dynamical system with (as far as we know - there is no proofhfinite partition,
or an infinity of ever-longer pruning rules. Consider thedimensionaljuadratic
map (11.3)

f(X)=Ax(1-Xx), A=38.

Numerically the kneading sequence (the itinerary of th&écali point x = 1/2
(11.13)) is

K =1011011110110111101011110111110

where the symbolic dynamics is defined by the partition ofregll.12. How this
kneading sequence is converted into a series of pruning sl dark art.For the
moment it siices to state the result, to give you a feeling for what a “t@gpic
infinite partition topological zeta function looks like. Fexample, approximating
the dynamics by a transition graph corresponding to a repefi the period 29
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Figure 15.2: The logarithm Iz — z| of the dif- whoe |
ference between the leading zero of tih polyno- %’oo
mial approximation to topological zeta function anc -20 §

o
our best estimate (15.33), as a function of order of tt  _,, | % o, 4
polynomialn (the topological zeta function evaluatec °%%o
for the closest value oA to A = 3.8 for which the o , ) =)
quadratic map has a stable cycle of perigd (from 0 200 40 60 80

K.T. Hansen [12.20])

attractive cycle close to thi = 3.8 strange attractor yields a transition graph with
29 nodes and the characteristic polynomial

1/{88) = 1-2-2+2-2-2+P-7+2-2-7°
+2 A2 AR A AL AC AT A8 A9, 20

el oo e AR S A T AT (15.31)
The smallest real root of this approximate topological Zetetion is exercise 15.20
z=0.62616120.. (15.32)

Constructing finite transition graphs of increasing lengtiresponding t&A —
3.8 we find polynomials with better and better estimates forttpological en-
tropy. For the closest stable period 90 orbit we obtain owt lestimate of the
topological entropy of the repeller:

h=-1In0.62616130424685 . = 0.46814726655867. . . (15.33)

Figure 15.2 illustrates the convergence of the truncatippr@imations to the
topological zeta function as a plot of the logarithm of th&etence between the
zero of a polynomial and our best estimate (15.33), ploteed &inction of the
period of the stable periodic orbit. The error of the estienglt5.32) is expected
to be of order?® ~ e because going from period 28 to a longer truncation
typically yields combinations of loops with 29 and more nede/ing terms+z2°
and of higher order in the polynomial. Hence the convergdaaexponential,
with an exponent 0f0.47 = —h, the topological entropy itself. In figure 15.3
we plot the zeroes of the polynomial approximation to theotogical zeta func-
tion obtained by accounting for all forbidden strings ofdém 90 or less. The
leading zero giving the topological entropy is the poinisést to the origin. Most
of the other zeroes are close to the unit circle; we concladefor infinite state
space partitions the topological zeta function has a undecias the radius of
convergence. The convergence is controlled by the ratidefléading to the
next-to-leading eigenvalues, which is in this case indegdg = 1/€" = e M.
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Figure 15.3: The 90 zeroes of the topological zet: A

function for the quadratic map foh = 3.8 approxi- -5 ———t—t
mated by the nearest topological zeta function with 1.5 -1 'O'SRe?Z)O'S s
stable cycle of length 90. (from K.T. Hansen [12.20])

15.6 Shadowing

The topological zeta function is a pretty function, but thiriite product (15.26)
should make you pause. For finite transition matrices thébaid side is a deter-
minant of a finite matrix, therefore a finite polynomial; soyik the right hand
side an infinite product over the infinitely many prime peitodrbits of all peri-
ods?

The way in which this infinite product rearranges itself iatfinite polynomial
is instructive, and crucial for all that follows. You canedidy take a peek at the
full cycle expansion (20.7) of chapter 20; all cycles beydimel fundamentaty
andt; appear in the shadowing combinations such as

ls155 ~ tsyspsnlsmnsy -

For subshifts of finite type such shadowing combinationsekexactly if we are
counting cycles as we do in (15.16) and (15.25), or if the dyina is piecewise
linear, as in exercise 19.3. As we argue in sect. 1.5.4, foe hiyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shéilg combina-
tionsalmostcancel, and the spectral determinant is dominated by thaafuental
cycles from (15.15), with longer cycles contributing ontyal “curvature” cor-
rections.

These exact or nearly exact cancelations depend on the fiog dmooth and
the symbolic dynamics being a subshift of finite type. If ty@amics requires
an infinite state space patrtition, with pruning rules fordi® of increasing length,
most of the shadowing combinations still cancel, but thedemwesponding to new
forbidden blocks do not, leading to a finite radius of coneeice for the spectral
determinant, as depicted in figure 15.3.

One striking aspect of the pruned cycle expansion (15.3f)pewed to the
trace formulas such as (15.9) is that fimxéents are not growing exponentially -
indeed they all remain of order 1, so instead having a radioemvergences™", in
the example at hand the topological zeta function has thecirnle as the radius
of convergence. In other words, exponentiating the splgatodlem from a trace
formula to a spectral determinant as in (15.24) increasesuthlyticity domain
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the pole in the trace (15.10) at e " is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

This sensitive dependence of spectral determinants orhehet not the sym-
bolic dynamics is a subshift of finite type is bad news. If thetem is generic and
not structurally stable (see sect. 12.2), a smooth paramatiation is in no sense
a smooth variation of topological dynamics - infinities ofipdic orbits are cre-
ated or destroyed, and transition graphs go from being ftoitafinite and back.
That will imply that the global averages that we intend to poite are generi-
cally nowhere dterentiable functions of the system parameters, and avegagi
over families of dynamical systems can be a highly nontrierderprise; a simple
illustration is the parameter dependence of théudion constant computed in a
remark in chapter 25.

You might well ask: What is wrong with computing the entropgrh (15.1)7?
Does all this theory buy us anything? An answer: If we cdGnlevel by level, we
ignore the self-similarity of the pruned tree - examine feample figure 14.5, or
the cycle expansion of (15.35) - and the finite estimatds, of In K,,/n converge
nonuniformly toh, and on top of that with a slow rate of convergenite; h,| ~
O(1/n) as in (15.5). The determinant (15.11) is much smarter, asobgtruction
it encodes the self-similarity of the dynamics, and yielis asymptotic value of
h with no need for any finite extrapolations.

fast track:
W sect. 16, p. 309
15.7 Counting cycles

,
J In what follows, we shall occasionally need to compute atlley up to
topological periodh, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the gfraad probably best
skipped on the first reading.

15.7.1 Counting periodic points

The number of periodic points of periads denotedN,. It can be computed from
(15.24) and (15.9) as a logarithmic derivative of the togalal zeta function

nZ:; N,Z' = tr (—zdgzln(l - ZT)) = _ngzln det(1-zT)

—Zd%(l/ Ctop)
= — - 15.34
1/&op ( )
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Table 15.3: Number of prime cycles for various alphabets and grammarsuperiod
10. The first column gives the cycle period, the second givesdrmula (15.37) for the
number of prime cycles for complelé-symbol dynamics, and columns three through five
give the numbers of prime cycles for= 2,3 and 4.

n Mn(N) Mn(2) Mn(3)  Mn(4)
i N 2 3 Z
2 N(N - 1)/2 1 3 6
3 N(N2 - 1)/3 2 8 20
4 N2(N2 - 1)/4 3 18 60
5 (NS - N)/5 6 48 204
6 (N®—N3—N2+N)/6 9 116 670
7 (N7 - N)/7 18 312 2340
8 N4(N* - 1)/8 30 810 8160
9 N3(NS - 1)/9 56 2184 29120
10 (N°— N5 - N2+ N)/10 99 5880 104754

Observe that the trace formula (15.10) diverges at e ", because the denomi-
nator has a simple zero there.

Example 15.8 Complete N-ary dynamics: To check formula (15.34) for the finite-
grammar situation, consider the complete N-ary dynamics (14.7) for which the number
of periodic points of period n is simply tr T{ = N". Substituting

i %trTQ = Z (ZN" =-In(1-2zN),

n=1 n=1

into (15.24) we verify (15.18). The logarithmic derivative formula (15.34) in this case
does not buy us much either, it simply recovers

ZN“ZH: 1_NZ
n=1

Example 15.9 Nontrivial pruned dynamics: Consider the pruning of figure 14.6 (e).
Substituting (15.34) we obtain

z+ 872 -878
Zan“— T A (15.35)

The topological zeta function is not merely a tool for extracting the asymptotic growth
of N it actually yields the exact numbers of periodic points. In case at hand it yields
a nontrivial recursive formulaN, = N, = N3 =1, N, =2n+1forn=4,5,6,7,8, and
Nn = Np—1 + 2Nn—s4 — Np—g forn > 8.
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15.7.2 Counting prime cycles

Having calculated the number of periodic points, our nejective is to evaluate
the number oprimecyclesM,, for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findiniyl, is classical in combinatorics
(counting necklaces made outrobeads oN different kinds) and is easily solved.
There areN" possible distinct strings of lengtihcomposed o letters. These
N" strings include alMy prime d-cycles whose period equals or divides. A
prime cycle is a non-repeating symbol string: for exammples 011 = 101 =
110 = ...011011 .. is prime, but0101 = 010101 .. = 01 is not. A primed-
cycle contributed strings to the sum of all possible strings, one for each cycli
permutation. The total number of possible periodic symegugnces of period

is therefore related to the number of prime cycles by

No = > dMg, (15.36)

whereN, equals tiT". The number of prime cycles can be computed recursively

1 d<n
Mn = E[Nn—z de],

dn
or by theMobius inversion formula exercise 15.10
n
M, = n? (—) Ng. 15.37
n dzmﬂ d d ( )

where the Mobius functiom(1) = 1, u(n) = 0 if n has a squared factor, and
w(p1pz ... pe) = (1)K if all prime factors are dferent.

We list the number of prime cycles up to period 10 for 2-, 3- dnlketter
complete symbolic dynamics in table 15.3, obtained by M#élmversion (15.37).
exercise 15.11

3

Example 15.10 Counting N-disk periodic points: J A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by N, = tr T".
The pruning of self-bounces eliminates the diagonal entries, Tn-disk = Tc — 1, so the
number of the N-disk periodic points is

Np=trT0 g = (N= 1)+ (=1)(N = 1). (15.38)

Here T; is the complete symbolic dynamics transition matrix (14.7). For the N-disk
pruned case (15.38), Mébius inversion (15.37) yields

R LIRS TR

din din
= MND for n>2. (15.39)
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Table 15.4: List of 3-disk prime cycles up to period 10. Hamés the cycle period\M, is

the number of prime cycle$\, is the number of periodic points, a8} the number of
distinct prime cycles unddb; symmetry (see chapter 21 for further details). Column 3
also indicates the splitting dfi, into contributions from orbits of periods that divide
The prefactors in the fifth column indicate the degeneragyf the cycle; for example,
3.12 stands for the three prime cycl&g, 13 and23 related by 2/3 rotations. Among
symmetry-related cycles, a representafiwehich is lexically lowest is listed. The cycles
of period 9 grouped with parentheses are related by timesal/eymmetry, but not by
any D3 transformation.

n M, N Shn my-p

1 0 O 0

2 3 6232 1 312

3 2 6223 1 2123

4 3 1832+34 1 31213

5 6 3065 1 612123

6 9 66=32+23+9-6 2 6121213+ 3121323

7 18 126187 3 61212123+ 6-1212313+ 6-:1213123

8 30 25832+34+308 6 612121213+ 3-12121313+6-12121323
+ 612123123+ 6:12123213+ 3-12132123

9 56 516-23+569 10 6121212123+ 6-(121212313+ 121212323)
+6-(121213123+ 121213213} 6-:121231323
+6-(121231213- 121232123} 2-:121232313
+ 6121321323

10 99 1022 18

There are no fixed points, so MN-91k = 0. The number of periodic points of period 2
is N2 — N, hence there are Mg“ isk = N(N — 1)/2 prime cycles of period 2; for periods
n > 2, the number of prime cycles is the same as for the complete (N — 1)-ary dynamics
of table 15.3.

.

Example 15.11 Pruning individual cycles: J Consider the 3-disk game

of pinball. The prohibition of repeating a symbol affects counting only for the fixed

points and the 2-cycles. Everything else is the same as counting for a complete binary

dynamics (15.39). To obtain the topological zeta function, just divide out the binary 1-

and 2-cycles (1 - ztp)(1 — zt,)(1 — Zto1) and multiply with the correct 3-disk 2-cycles

1- Zztlz)(l - 22t13)(1 - 22t23).' exercise 15.14
exercise 15.15

3
1/fzdisk = (1- 22)#(25)_22)

1-29(1+2%=1-32-27. (15.40)

The factorization reflects the underlying 3-disk symmetry; we shall rederive itin (21.25).
As we shall see in chapter 21, symmetries lead to factorizations of topological polyno-
mials and topological zeta functions.

Example 15.12 Alphabet {a,cb’; b}:  (continuation of exercise 15.16) In the cycle
counting case, the dynamics in terms ofa — z, cb » z+ 2+ 2 +---=z/(1-2 isa
complete binary dynamics with the explicit fixed point factor (1 —t,) = (1—2):  exercise 15.19
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Table 15.5: The 4-disk prime cycles up to period 8. The symbols is the sasnghown
in table 15.4. Orbits related by time reversal symmetry (buC,, symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have beetteamni

n My, N Sh my-p
T 0 0 0
2 6 1262 2 4124213
3 8 2483 1 8123
4 18 8462+184 4 81213+ 41214+ 21234+ 41243
5 48 24(3-485 6 8(12123+ 12124)+ 812313
+ 8(12134+ 12143)+ 812413
6 116 73262+83+1166 17 8121213+ 8121214+ 8121234
+ 8121243+ 8121313+ 8121314
+ 4121323+ 8.(121324+ 121423)
+ 4121343+ 8121424+ 4121434
+ 8123124+ 8123134+ 4123143
+ 4124213+ 8124243
7 312 2184 39
8 810 6564 108
1 1-7(1-2- 2 )=1-32+ 2
/Ztop = ( ) ( 1- Z) +Z.
Résum é

The main result of this chapter is the cycle expansion ()502The topological
zeta function (i.e., the spectral determinant of the tt@rsimatrix):

Ydiop@ = 1= ) &
k=1

For subshifts of finite type, the transition matrix is finigmd the topological zeta
function is a finite polynomial evaluated by the loop expangil5.15) of det (+
ZT). For infinite grammars the topological zeta function is wedi by its cycle
expansion. The topological entropyis given by the leading zemm= e™". This
expression for the entropy exact in contrast to the initial definition (15.1), no
n — oo extrapolations of I, /n are required.

What have we accomplished? We have related the number obtppally
distinct paths from one state space region to another regitime leading eigen-
value of the transition matriX. The spectrum of is given by topological zeta
function, a certain sum over tracedItt, and in this way the periodic orbit theory
has entered the arena through the trace formula (15.1@gdfrat the level of the
topological dynamics.

The main lesson of learning how to count well, a lesson thhbeiconstantly
redfirmed, is that while trace formulas are a conceptually egdestep in deriving
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and understanding periodic orbit theory, the spectralrd@tent is the right object
to use in actual computations. Instead of summing all of ¥p@eentially many
periodic points required by trace formulas at each levetwidation, spectral det-
erminants incorporate only the small incremental corogito what is already
known - and that makes them a more powerful tool for compornati

Contrary to claims one all too often encounters in the It “exponential
proliferation of trajectories” is nothe problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rutasthe “algorithmic
complexity,” as illustrated by sect. 15.5, and figure 15.pamticular. Nice, finite
grammar leads to nice, discrete spectrum; infinite grammaad to analyticity
walls in the complex spectral plane.

Historically, these topological zeta functions were thepination for applying
the transfer matrix methods of statistical mechanics t@thblem of computation
of dynamical averages for chaotic flows. The key result wasdynamical zeta
function to be derived in chapter 18, a weighted generatimadf the topological
zeta function.

Commentary

Remark 15.1 Artin-Mazur zeta functions. Motivated by A. Weil's zeta function for
the Frobenius map [15.8], Artin and Mazur [19.11] introddi¢ke zeta function (15.27)
that counts periodic points for fileomorphisms (see also ref. [15.9] for their evaluation
for maps of the interval). Smale [15.10] conjectured ragiity of the zeta functions for
Axiom A diffeomorphisms, later proved by Guckenheimer [15.11] and NMenii5.12].
See remark 19.4 on page 374 for more zeta function history.

Remark 15.2 “Entropy” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead tovamiant characterization of the
dynamics, as the choice of symbolic dynamics is largelyteatyi: the same caveat ap-
plies to other entropies.In order to obtain invariant chseezations we will have to work
harder. Mathematicians like to define the (impossible tdumata) supremum over all pos-
sible partitions. The key point that eliminates the needstarh searches is the existence
of generatorsi.e., partitions that under the dynamics are able to prblkenthole state
space on arbitrarily small scales. A generator is a finitéifiam M = {M; ... My} with

the following property: consider the partition built upohossible intersections of sets
f"(M;), wheref is dynamical evolution and takes all possible integer values (positive
as well as negative), then the closure of such a partitiomeddés with the ‘algebra of all
measurable sets.” For a thorough (and readable) discus$igenerators and how they
allow a computation of the Kolmogorov entropy, see ref. [15.

Remark 15.3 Perron-Frobenius matrices. For a proof of the Perron theorem on the
leading eigenvalue see ref. [1.26]. Appendix A4.1 of re&.pPl offers a clear discussion
of the spectrum of the transition matrix.

count - 29jan2009 ChaosBook.org version13, Dec 31 2009



EXERCISES 305

Remark 15.4 Determinant of a graph. Many textbooks fier derivations of the loop
expansions of characteristic polynomials for transiticatmces and their transition graphs,
see for example refs. [15.3, 15.4, 15.5].

Remark 15.5 Ordering periodic orbit expansions. In sect. 20.5 we will introduce an
alternative way of hierarchically organizing cumulant arpions, in which the order is
dictated by stability rather than cycle period: such a pdoace may be better suited to
perform computations when the symbolic dynamics is not wedlerstood.

Remark 15.6 T is not trace class. Note to the erudite reader: the transition maffix
(in the infinite partition limit (15.24)) isottrace class. Still the trace is well defined in
then — oo limit.

Remark 15.7 Counting prime cycles. Duval has an#icient algorithm for generating
Lyndon words (non-periodic necklaces, i.e., prime cydleeitaries).

Exercises

15.1. A transition matrix for 3-disk pinball. Verify that a 3-disk pinball has 3, 2, 3, 6, 9,- prime
cycles of length 2, 3, 4, 5, 6; .

a) Draw the transition graph corresponding to the 3-
disk ternary Symbo“c dynamicsy and write dowril.53 Sum OfA” is like a trace. Let A be a matrix with
the corresponding transition matrix corresponding eigenvaluedy. Show that
to the graph. Show that iteration of the transi-
tion matrix results in two coupled linear fr- I, = Z[An]ij = ch/lﬂ.
ence equations, - one for the diagonal and one for 0 X
the df diagonal elements. (Hint: relateTF to

-1 L.
T+ ) (2) Underwhat conditions do [ir A"| and In|[y| have
b) Solve the above fierence equation and obtain the the same asymptotic behaviorras- o, i.e., their
number of periodic orbits of length. Compare ratio converges to one?
your result with table 15.4. (b) Do eigenvaluesy need to be distinctl, # A for

¢) Find the eigenvalues of the transition mafFifor k # 1?7 How would a degeneracy = 4 affect
the 3-disk system with ternary symbolic dynamics your argument for (a)?
and calculate the topological entropy. Compare
this to the topological entropy obtained from thel5.4. Loop expansions. Prove by induction the sign rule in

binary symbolic dynamicg, 1}. the determinant expansion (15.15):
15.2. 3-disk prime cycle counting. A primecycle p det(1-2T) = (=1)¥tp,t, - to, -
of lengthn, is a single traversal of the orbit; its label is ; p1+_Z_+pk e

a non-repeating symbol string of, symbols. For ex-
ample,12 is prime, bu121 is not, since it i21= 12 15.5. Transition matrix and cycle counting. Suppose you
repeated. are given the transition graph
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c

This diagram can be encoded by a maffixwhere the
entry T;; means that there is a link connecting node
nodej. The value of the entry is the weight of the link.

a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

a c

b 0 |-

b) Enumerate all the walks of length three on the
transition graph. Now compufe® and look at the

entries. Is there any relation between the terms in
T2 and all the walks?

c) Show thatTi’J? is the number of walks from point
i to pointj in n steps. (Hint: one might use the
method of induction.)

d) Estimate the numbédg, of walks of lengthn for
this simple transition graph.

e) The topological entroplymeasures the rate of ex-
ponential growth of the total number of walks,
as a function oh. What is the topological entropy
for this transition graph?

T=

15.6. Alphabet {0,1}, prune .00_.  The transition graph ex-
ample 14.9 implements this pruning rule which implies
that “0” must always be bracketed by “1”s; in terms of a
new symbol 2= 10, the dynamics becomes unrestricted
symbolic dynamics with with binary alphabidt2}. The
cycle expansion (15.15) becomes

15.11.

1/ = (1-t)(A-t2)(1-te2)(1—t112)...
= 1-t—t—(t1o—t1tp) (15.41)
—(t112— tiots) — (tizo — tooto) . ..
In the original binary alphabet this corresponds to:
1/ = 1-1t3—tip— (t1a0— tat10) (15.42)
—(t1110— t110t1) — (trz010— t11ot10) . . .

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-
modal maps this symbolic dynamics is realized by the
tent map of exercise 11.6.

15.7. “Golden mean” pruned map. (continuation of exer-
cise 11.6) Show that the total number of periodic orbits
of lengthn for the “golden mean” tent map is

(1+ V5" + (1 - V5)"
2n '
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15.8. A unimodal map with golden mean pruning.

15.9.

15.10.

15.12.

306

Continued in exercise 19.2. See also exercise 15.8.

Con-
sider the unimodal map

075 10
o

fix)

025 0.5

b0 025 05 075 1o 1
X

0.0

for which the critical point maps into the right hand fixed
point in three iterationsS* = 100L. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood®fixed point, and
_00_ pruned from the recurrent set. (K.T. Hansen)

Glitches in shadowing. (medium dificulty) Note
that the combinatiotyggr1 minus the “shadowtptggr1in
(15.20) cancels exactly, and does not contribute to the
topological zeta function (15.21). Are you able to con-
struct a smaller transition graph than figure 14.6 (e)?

Whence Mobius function?  To understand the origin
of the Mobius function (15.37), consider the function

f(n) = > g(d)

din

(15.43)

whered|n stands for sum over all divisosof n. Invert
recursively this infinite tower of equations and derive the
M®obius inversion formula

o(n) = > u(n/d)f(d).

din

(15.44)

Counting prime binary cycles. In order to get com-
fortable with Mobius inversion reproduce the results of
the second column of table 15.3.

Write a program that determines the number of prime
cycles of lengtm. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

Counting subsets of cycles. The techniques de-
veloped above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynami-
cal system with a complete binary tree, a repeller map
(11.4) with two straight branches, which we label 0 and
1. Every cycle weight for such map factorizes, with a
factorty for each 0, and factay for each 1 in its sym-

bol string. Prove that the transition matrix traces (15.7)
collapse tar(TX) = (to + t1)¥, and 1/ is simply

[1a-t)=1-t-1

p

(15.45)
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Substituting (15.45) into the identity The topological zeta function has a raot = N - 1,
1-t2 as we already know it should from (15.38) or (15.18).
l_[ (1 + tp) = 1_[ P We shall see in sect. 21.4 that the other roots reflect the
P o 1=t symmetry factorizations of zeta functions.
we obtain 15.16. Alphabet {a, b, c}, prune _ab. . Write down the
l_l (1 it ) 1- tg - tf topological zeta function for this pruning rule.
o) = —2 1
P 1-t-b 15.17. Alphabet {0,1}, prune n repeats of “0” _000...00. .
S litort+ 2toty This is equivalent to th@ symbol alphabetl, 2, ...,
1-tp—t; n} unrestricted symbolic dynamics, with symbols corre-
= 1+to+ty sponding to the possible 1000 block lengths: 210,
o nlo 5 3:=100,...,n:=100..00. Show that the cycle expansion
I (k j 1)t('§t2‘k. (15.15) becomes
n=2 k=1
Hence forn > 2 the number of terms in the cumulant 170 = 1-t1—-to...—th—(tiz—tatr) ...
expansion withk 0’s andn — k 1’s in their symbol se- —(tan —titn) ... .

quences is £°%).
In order to count the number of prime cycles in each

such subset we denote witl,x (n = 1,2,...;k =
{0,1} forn=1; k=1,...,n—1 for n> 2) the number15.18. Alphabet {0,1}, prune _100Q, _0010Q, _0110Q.
of prime n-cycles whose labels containzeros. Show Show that the topological zeta function is given by
that
Mio = Myi=1, n>2k=1.. .n-1 1/{=(1-t)(1-ti-to—trz—tnng  (15.48)
NMok = Z u(m) (n/m) with the unrestricted 4-letter alphabgt, 2, 23 113.
ml_ k/m Here 2 and 3 refer to 10 and 100 respectively, as in ex-
K ercise 15.17.
where the sum is over ath which divide bothn andk.
(continued as exercise 20.7) 15.19. Alphabet {0,1}, prune _100Q, _0010Q, _0110Q,
_10011. (This grammar arises from Hénon map

15.13. Logarithmic periodicity of In Np. (medium diti-
culty) Plot (InNp, nh) for a system with a nontrivial fi-
nite transition graph. Do you see any periodicity? If yes,
why? (a) Show that the last pruning ruld0011 leads (in a

way similar to exercise 15.18) to the alphaki®, 23,

21113 1,0}, and the cycle expansion

pruning, see remark 12.3.) The first three pruning rules
were incorporated in the preceeding exercise.

15.14. Symmetric 4-disk pinball topological zeta function.
Show that the 4-disk pinball topological zeta function
(the pruning &ects only the fixed points and the 2-

cycles) is given by 1/¢ = (1-to)(1 -ty —ta—taz3+t1tp3—t2113) .(15.49)
6
174 disk  _ (1 _ 37 (1-2) Note that this says that 1, 23, 2, 2113 are the fundamen-
/¢top ( ) 1-23(1- 2)
(1-2°1-2) tal cycles; not all cycles up to length 7 are needed, only
= (1-3(1+2° 2113.
= 1-67-82-37. (15.46) (b) Show that the topological zeta function is

1/&op=(1-2)(1-z2-7Z -2 + 2 - 7') (15.50)

15.15. Symmetric N-disk pinball topological zeta function.
Show that for anN-disk pinball, the topological zeta

function is given by and that it yields the entrody= 0.522737642. ..

1/§t“$31i5k = (1-(N-1)2)x 15.20. Alphabet {0,1}, prune only the fixed point0.  This
2N(N-1)72 is equivalent to thenfinite alphabet{1, 2, 3, 4,...}

(1-2) unrestricted symbolic dynamics. The prime cycles are

(1-2N-Y(1 - 2)(N-D(N-2)2 labeled by all non-repeating sequences of integers, or-
(1-(N-1)2 1+2N? .(15.47) dered lexically: t,,n > 0; tmn tomn....N > m > O;
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ton ' > N> m> 0,... (see sect. 24.3). Now the num- - Z (tmnr + tmm — tmntr
ber of fundamental cycles is infinite as well: r>n>m>0
— tortn = tmtnr + tmtnaty) - -
/¢ = 1_Ztn_ Z (tmn—tntm)
n>0 n>m>0
= > (tmnn— to) , | _
n>m>0 . As shown in table 24.1, this grammar plays an im-
_ t ot 1551 portz_mt role in description of fixed points of marginal
Z (tman = tmafn) ( ) stability.
n>m>0
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