Chapter 6

Get straight

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

coordinates to an action-angle coordinate frame where k@ space

dynamics is described by motion on circles, one circle farthedegree
of freedom. In the same spirit, a natural description of aehigplic, unstable
flow would be attained if one found a change of coordinates @nframe where
the stabl@unstable manifolds are straight lines, and the flow is aloygeltbolas.
Achieving this globally for anything but a handful of coned examples is too
much to hope for. Still, as we shall now show, we can make sosagiay on

A Hamicronian system is said to be ‘integrable’ if one can find a change of

straightening out the flow locally. (ﬁb

Even though such nonlinear coordinate transformationsvarg important,
especially in celestial mechanics, we shall not necegsasit them much in what
follows, so you can safely skip this chapter on the first negdi Except, per-
haps, you might want to convince yourself that cycle stabddiare indeed metric
invariants of flows (sect. 6.6), and you might like transfatimns that turn a Ke-
plerian ellipse into a harmonic oscillator (example 6.2) aegularize the 2-body
Coulomb collisions (sect. 6.3) in classical helium.

fast track:
W chapter 7, p. 121
6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, endrenot al-
ways expressed in the most convenient way. In order to siynplgiven problem,
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CHAPTER 6. GET STRAIGHT 106

one may stretch, rotate, bend and mix the coordinates, hidgiirg so, the vector
field will also change. The vector field lives in a (hyper)m@atangent to state
space and changing the coordinates of state sp@eetsathe coordinates of the
tangent space as well, in a way that we will now describe.

Denote byhtheconjugation functionwhich maps the coordinates of the initial
state spaceM into the reparameterized state spak® = h(M), with a point
X € M related to a poiny € M’ by

y=h() = (y1(x),y2(x). . ... ya(x)) .

The change of coordinates must be one-to-one and span\atid M’, so given
any pointy we can go back tax = h™1(y). For smooth flows the reparameterized
dynamics should support the same number of derivativeseasitial one. Ifhis

a (piecewise) analytic function, we referlias asmooth conjugacy

The evolution ruleg'(yp) on M’ can be computed from the evolution rule
f'(x0) on M by taking the initial pointyg € M’, going back toM, evolving, and
then mapping the final poingt) back toM’:

y() = g'(yo) = ho f o h™(yo). (6.1)

Here ‘o’ stands for functional compaositiono f(x) = h(f(x)), so (6.1) is a short-
hand fory(t) = h(f'(h~*(y0)))-

The vector fieldx'= v(X) in M, locally tangent to the flow!, is related to the
flow by differentiation (2.5) along the trajectory. The vector figkd w(y) in M,

locally tangent tay! follows by the chain rule: exercise 6.2
dd _d t pol ‘
W) = G| = glhe e o)
= WO EVY) = H (V9. (6.2)

In order to rewrite the right-hand side as a functioryofote that the, differen-
tiation of h(h™1(y)) = y implies

oh™t
ay

oht
x 0y

oh

-1
o (y)] , 6.3)

oh
=1 - —¥-= [
y ox

so the equations of motion in the transformed coordinatdt, tive indices rein-
stated, are

. oht 171
yi=wi<y>=[W<y>] v ). (6.4)

ij
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CHAPTER 6. GET STRAIGHT 107

Imagine that the state space is a rubber sheet with the fl@s tinawn on it.
A coordinate changé corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersection$ the distorted rubber
sheet. Trajectories that are closed loopsphwill remain closed loops in the
new manifold M’, but their shapes will change. Globaltydeforms the rubber
sheet in a highly nonlinear manner, but locally it simplycass and shears the
tangent field by the Jacobian matidxh;, hence the simple transformation law
(6.2) for the velocity fields.

The time itself is a parametrization of points along flow §nand it can also
be reparameterized = s(t), with the attendant modification of (6.4). An exam-
ple is the 2-body collision regularization of the helium Htaomian (7.6), to be
undertaken in sect. 6.3 below.

fast track:
W sect. 6.6, p. 115
6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under sthogonjugacies is
to use it to pick out the simplest possible representativanogquivalence class.
In general and globally these are just words, as we have mohdw to pick such
‘canonical’ representative, but for smooth flows we can gbwvdo it locally and
for sufficiently short time, by appealing to thectification theorema fundamen-
tal theorem of ordinary dlierential equations. The theorem assures us that there
exists a solution (at least for a short time interval) and e solution looks like.
The rectification theorem holds in the neighborhood of moftthe vector field
v(x) that are not singular, that is, everywhere except for thalégium points
(2.8), and points at whichis infinite. According to the theorem, in a small neigh-
borhood of a non-singular point there exists a change oftioatesy = h(x) such
that X = v(X) in the new,canonicalcoordinates takes form

=\ = ... =\ _ :0
o= e =

with unit velocity flow alongyy, and no flow along any of the remaining directions.
This is an example of a one-parameter Lie group of transfoams, with finite

time r action exercise 9.8
exercise 6.1
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CHAPTER 6. GET STRAIGHT 108

Example 6.1 Harmonic oscillator, rectified: As a simple example of global recti-
fication of a flow consider the harmonic oscillator

q=p, p=-q. (6.6)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates 'y = (r, 6):

1. g = hi}r,6) = rcosd
h { p = hXr.6) =rsing - 6.7)
The Jacobian matrix of the transformation is
cosd sing
h = sing  cosh (6.8)
r r
resulting in (6.4) of rectified form exercise 5.1
: cosf  sing :
) _ i aj_( O
(9)_[_sm9 cosd ](p)_(—l)' (6.9)
r r

In the new coordinates the radial coordinate r is constant, and the angular coordinate
6 wraps around a cylinder with constant angular velocity. There is a subtle point in
this change of coordinates: the domain of the map h™! is not the plane R?, but rather
the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
transformations should not change the topology of the space in which the dynamics
takes place; the coordinate transformation is not defined on the equilibrium point X =
(0,0),0orr =0.

6.3 Collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, gamelillpand other
curious but rather idealized dynamical systems. If you lmeme impatient and
started wondering what good are the methods learned so folwng real life

physical problems, good news are here. We will apply hereepts of nonlinear
dynamics to nothing less than the helium, a dreaded thrdg-Boulomb problem.

Can we really jump from three static disks directly to thréarged particles
moving under the influence of their mutually attracting opeking forces? It
turns out, we can, but we have to do it with care. The full peablis indeed
not accessible in all its detail, but we are able to analyzeraesvhat simpler
subsystem—collinear helium. This system plays an importaa in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons osmmasind charge
—emoving about a positively charged nucleus of magsand charger2e.
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Figure 6.1: Coordinates for the helium three body ++
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Figure 6.2: Collinear helium, with the two electrons
on opposite sides of the nucleus. rl

The helium electron-nucleus mass ratige/me = 1836 is so large that we
may work in the infinite nucleus mass approximatiog, = oo, fixing the nucleus
at the origin. Finite nucleus masffects can be taken into account without any
substantial dticulty. We are now left with two electrons moving in three splat
dimensions around the origin. The total angular momentuthetombined elec-
tron system is still conserved. In the special case of angudementuniL = 0, the
electrons move in a fixed plane containing the nucleus. Tiemthody problem
can then be written in terms of three independent coordinaidy, the electron-
nucleus distancag andr, and the inter-electron ang®, see figure 6.1.

This looks like something we can lay our hands on; the probies been
reduced to three degrees of freedom, six phase space cataslim all, and the
total energy is conserved. But let us go one step furtherlénerons are attracted
by the nucleus but repelled by each other. They will tenddy as far away from
each other as possible, preferably on opposite sides ofutieus. It is thus worth
having a closer look at the situation where the three pasiare all on a line with
the nucleus being somewhere between the two electrons,, Ihaedition, let the
electrons have momenta pointing towards the nucleus asurefig 2, then there
is no force acting on the electrons perpendicular to the comimterparticle axis.
Thatis, if we start the classical system on the dynamicadgated = r, d%@ =0,
the three particles will remain in thollinear configuratiorfor all times.

6.3.1 Scaling

In what follows we will restrict the dynamics to this collimesubspace. lItis a
system of two degrees of freedom with the Hamiltonian

1, o, 2@ 22 @
H—Tne(pl'sz)—?—E-i‘rl_’_rz—E, (610)

wherekE is the total energy. As the dynamics is restricted to the feelgy shell,
the four phase space coordinates are not independent;dlgyeshell dependence
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can be made explicit by writing

(r1,r2, p1, P2) = (ri(E), r2(E), pa(E), p2(E)).

We will first consider the dependence of the dynamics on theeggrE. A
simple analysis of potential versus kinetic energy tellshat if the energy is
positive both electrons can escaperto— oo, i = 1,2. More interestingly, a
single electron can still escape evelkifs negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remgiminer electron has no
lower bound. Not only that, but one electraiill escape eventually for almost all
starting conditions. The overall dynamics thus dependially on whethelk >
0 or E < 0. But how does the dynamics change otherwise with varyireggs?
Fortunately, not at all. Helium dynamics remains invariantder a change of
energy up to a simple scaling transformation; a solutiomefequations of motion
at a fixed energ¥g = —1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

ri(E) = (_eZ_E) r, Pp(E)=+v-mEnp, =12,

together with a time transformatiofE) = e?my/2(—E)~3/2t. We include the
electron mass and charge in the scaling transformationdardo obtain a non—
dimensionalized Hamiltonian of the form

H=—=+—=2-——-—+¢ =-1. (6.11)

The case of negative energies chosen here is the most tirigrese for us. It
exhibits chaos, unstable periodic orbits and is respoasdrithe bound states and
resonances of the quantum problem.

6.3.2 Regularization of two—body collisions

Next, we have a closer look at the singularities in the Hami#in (6.11). When-
ever two bodies come close to each other, accelerationsrizetayge, numerical
routines require lots of small steps, and numerical prenisiffers. No numerical
routine will get us through the singularity itself, and inlogear helium electrons
have no option but to collide with the nucleus. Henagegularizationof the dif-
ferential equations of motions is a necessary prerequisiggly numerical work
on such problems, both in celestial mechanics (where a spgcexecutes close
approaches both at the start and its destination) and intguamechanics (where
much of semiclassical physics is dominated by returningsital orbits that probe
the quantum wave function at the nucleus).
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There is a fundamental fiierence between two—body collisions= 0 orr, =
0, and the triple collisiorr; = r, = 0. Two—body collisions can be regularized,
with the singularities in equations of motion removed by #afille coordinate
transformation together with a time transformation prewgy the Hamiltonian
structure of the equations. Such regularization is notiptes$or the triple colli-
sion, and solutions of the fligrential equations can not be continued through the
singularity at the origin. As we shall see, the chaos in nelir helium originates
from this singularity of triple collisions.

A regularization of the two—body collisions is achieved bgans of the Kust-
aanheimo-Stiefel (KS) transformation, which consists obardinate dependent
time transformation which stretches the time scale neaotigen, and a canonical
transformation of the phase space coordinates. In ordertivate the method,
we apply it first to the 1-dimensional Kepler problem

1 2
H=Zp’-==E. 6.12
5P (6.12)
Example 6.2 Keplerian ellipse, rectified: To warm up, consider the E = O case,

starting at X = 0 att = 0. Even though the equations of motion are singular at the initial

point, we can immediately integrate

by means of separation of variables

Vxdx= v2dt,  x=(31)3, (6.13)

and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which

the passage through the origin is smooth.

A time transformation dt = f(q, p)dr for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f(q, p)(H(q, p) — E). For the 1-
dimensional Coulomb problem with (6.12) we choose the time transformation dt = xdr

which lifts the |X| — 0 singularity in (6.12) and leads to a new Hamiltonian

7{=:—2pr2—2—Ex=0. (6.14)

The solution (6.13) is now parameterized by the fictitous time dr through a pair of

equations

The equations of motion are, however, still singular as X — 0:

@(—_id_x+xE
dr2 = 2xdr ’
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Appearance of the square root in (6.13) now suggests a canonical transformation of
form

P

x= Q7. P= o (6.15)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q, P)=%P2—EQ2=2, (6.16)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idghat one seeks
a higher-dimensional generalization of the ‘square rootaeal’ trick (6.15), by
introducing a new vecto® with propertyr = |QJ2. In this simple 1-dimensional
example the KS transformation can be implemented by

Py P2

20" P2 = 20, (6.17)

2 2
rn. = Qf, r,=Q5, pL =

and reparameterization of time lo = dt/rir,.  The singular behavior in the
original momenta at; or rp, = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of thetamsof motions with
respect to the new timeis conserved, if we consider the Hamiltonian

Hho = 5(Q5P3 + Q2P - 2R, + QRQY(-E+ 1/RE) = 0 (6.18)

with Ry = (Q2 + Q3)2, and we will takeE = -1 in what follows. The equations
of motion now have the form

2

2
1
-Q; (1"‘ F\?“ )] Q1= Zpng (6.19)

12

P1=2Q; [2

. P2 2 :
P

12

Individual electron—nucleus collisions &t = Ql Oorry = Q2 0 no longer
pose a problem to a numerical integration routine. The egusit(6.19) are sin-
gular only at the triple collisiorR;» = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (6.18) are veryulisdien calcu-
lating trajectories for collinear helium; they are, howevess intuitive as a visual-
ization of the three-body dynamics. We will therefore rdfethe old coordinates
ri1, r> when discussing the dynamics and the periodic orbits.
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Figure 6.3: (a) A typical trajectory in ther, ;]
plane; the trajectory enters here along theaxis o
and escapes to infinity along the axis; (b) 0 ) : ‘ ‘
Poincaré maprg=0) for collinear helium. Strong

chaos prevails for smalh near the nucleus. N i

To summarize, we have brought a 3-body problem into a formrevkiee 2-
body collisions have been transformed away, and the phase $f@jectories com-
putable numerically. To appreciate the full beauty of whes heen attained, you
have to fast-forward to quantum chaos parChfosBook.org; we are already
‘almost’ ready to quantize helium by semiclassical methods

W fast track:
chapter 5, p. 94

6.4 Rectification of maps

o3

In sect. 6.2 we had argued that nonlinear coordinate tramsfitons can be prof-
itably employed to simplify the representation of a flow. Vdalsnow apply the
same idea to nonlinear maps, and determine a smooth nantheage of coor-
dinates that flattens out the vicinity of a fixed point and nsatkee magdinear in
an open neighborhood. In its simplest form the idea can bé&imgnted only for
an isolated nondegenerate fixed point (otherwise are ndadibé@ normal form
expansion around the point), and only in a finite neighbodhoba point, as the
conjugating function in general has a finite radius of cogeace. In sect. 6.5 we
will extend the method to periodic orbits.

6.4.1 Rectification of a fixed point in one dimension
exercise 6.3

Consider a 1-dimensional mag.1 = f(xn) with a fixed point atx = 0, with
stability A = f7(0). If |A] # 1, one can determine term-by-term the power series
for a smooth conjugatioh(x) centered at the fixed poiniy0) = 0, that flattens
out the neighborhood of the fixed point

f(x) = h™}(Ah(x)) (6.20)
and replaces the nonlinear mé&fx) by alinear mapyn.1 = Ayn.
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To compute the conjugatioh we use the functional equatidm(Ax) =
f(h~1(x)) and the expansions

f(X) AX+X2f + X fa+ ...
h™l(x) = x+x?hy+x°hg+... . (6.21)

Equating the coicients of X< on both sides of the functional equation yields
h order by order as a function db, fs,.... If h(X) is a conjugation, so is any
scalingh(bX) of the function for a real numbdy. Hence the value df’(0) is not
determined by the functional equation (6.20); it is coneanito sety(0) = 1.

The algebra is not particularly illuminating and best leftomputers. In any
case, for the time being we will not use much beyond the firstar term in these
expansions.

Here we have assumetd # 1. If the fixed point has firsk—1 derivatives
vanishing, the conjugacy is to théh normal form

In several dimensions\ is replaced by the Jacobian matrix, and one has to

check that the eigenvalued are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.8). remark 6.3

6.5 Rectification of a periodic orbit

In sect. 6.4.1 we have constructed the conjugation fundtioa fixed point. Here

we turn to the problem of constructing it for periodic orbiEach point around the

cycle has a dferently distorted neighborhood, withffi#ring second and higher

order derivatives, so we need to compute fiedént conjugation functioh, at

each periodic poink,. We expand the majp around each periodic point along (ﬁb
the cycle,

Ya(@) = fa(¢) — Xar1 = ¢fa1 + ¢2 fa2+... (6.22)

where x, is a point on the cyclefa(¢) = f(xa + ¢) is centered on the periodic
orbit, and the index in fyy refers to thekth order in the expansion (6.21).

For a periodic orbit the conjugation formula (6.20) geniges to

fa(@) = L (f(0ha(¢)), a=12---,n,

point by point. The conjugationg functiors, are obtained in the same way as
before, by equating cdigcients of the expansion (6.21), and assuming that the
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cycle Floquet multiplierA = ]‘[2;% f’(xa) is not marginal |JA| # 1. The explicit
expressions foh, in terms of f are obtained by iterating around the whole cycle,

f'(Xa + ¢) = 3 (Aha(9)) + Xa. (6.23)

evaluated at each periodic poatAgain we have the freedom to 9&{(0) = 1 for remark 6.2
all a.

6.5.1 Repeats of cycles

We have traded in our initial nonlinear mdgor a (locally) linear map\y and an
equally complicated conjugation functitm What is gained by rewriting the map
f in terms of the conjugacy function? Once the neighborhood of a fixed point
is linearized, the repeats of it are trivialized; from thengmation formula (6.21)
one can compute the derivatives of a function composed teidif i times:

f(x) = h"}(Ah(x)).

One can already discern the form of the expansion for argitepeats; the answer
will depend on the conjugacy functidi{x) computed for ainglerepeat, and all
the dependence on the repeat number will be carried by fagolynomial in
A", a considerable simplification. The beauty of the idea fBadilt to gauge at
this stage—an appreciation only sets in when one starts aimgpperturbative
corrections, be it in celestial mechanics (where the methas born), be it the
quantum or stochastic corrections to ‘semiclassical’ agipnations.

6.6 Cycle Floguet multipliers are metric invariants

on e

In sect. 5.2 we have established that for a given flow the dyldquet multipli-

ers are intrinsic to a given cycle, independent of the stgrioint along the cy-
cle. Now we can prove a much stronger statement; cycle Ftaguéipliers are
smooth conjugacygr metric invariantsof the flow, the same ianyrepresentation
of the dynamical system.

That the cycle Floquet multipliers are an invariant propart the given dy-
namical system follows from elementary considerationseat.s6.1: If the same
dynamics is given by a mapin x coordinates, and a mapin they = h(x) co-
ordinates, therf andg (or any other good representation) are related by (6.4), a
reparameterization and a coordinate transformatjoa ho f o h™. As both f
andg are arbitrary representations of the dynamical systemexipdicit form of
the conjugacyh is of no interest, only the properties invariant under ansr
formation h are of general import. Furthermore, a good representatimuld
not mutilate the data) must be esmooth conjugacyhich maps nearby periodic
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points of f into nearby periodic points aj. This smoothness guarantees that the
cycles are not only topological invariants, but that theiearized neighborhoods
are also metrically invariant. For a fixed poififx) = x of a 1-dimensional map
this follows from the chain rule for derivatives,

gO) = W)
- h’(x)f’(x)h,%X)=f’(x). (6.24)

In d dimensions the relationship between the maps fiedint coordinate repre-
sentations is agaig o h = ho f. We now make the matrix structure of relation
(6.3) explicit:

: ont
ohi and  Tl(0) = —

Tik(X) = —_— ,
! X Ix Yk hx

i.e., Tik(X) is the matrix inverse ofi(l(x). The chain rule now relates!’, the
Jacobian matrix of the magto the Jacobian matrix of mafa

M;(h()) = Ti(F DM CIT (%) (6.25)

If x is a fixed point then (6.25) is similarity transformation and thus preserves
eigenvalues: itis easy to verify that in the case of peripdycle againM’P(h(x))

andMP(x) are related by a similarity transformation (note that ikisot true for

M"(x) with r # np). As stability of a flow can always be reduced to stability of a
Poincaré section return map, a Floquet multiplier of angleyfor a flow or a map

in arbitrary dimension, is a metric invariant of the dynaatisystem. exercise 6.3

F in depth:
3 appendix B.4, p. 763
Résumé
Dynamics M, f) is invariant under the group of all smooth conjugacies

(M, f) > (M, g) = (h(M),ho fohl).

This invariance can be used to (i) find a simplified repres@mdor the flow and
(i) identify a set of invariants, numbers computed withiparticular choice of
(M, f), but invariant under alM — h(M) smooth conjugacies.
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The 2D-dimensional phase space of an integrable Hamiltoniaresystf D
degrees of freedom is fully foliated Hy-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system one would like to ¢eimto a coordinate
frame where the stablgnstable manifolds form a set of transversally intersect-
ing hyper-planes, with the flow everywhere locally hypeibolThat cannot be
achieved in general: Fully globally integrable and fullplgally chaotic flows are
a very small subset of all possible flows, a ‘set of measure’ zethe world of
all dynamical systems.

What wereally care about is developping invariant notions of what a given d
namical system is. The totality of smooth one-to-one nemlircoordinate trans-
formationsh which map all trajectories of a given dynamical system, (f!) onto
all trajectories of dynamical systemaA, ¢") gives us a huge equivalence class,
much larger than the equivalence classes familiar fromhbery of linear trans-
formations, such as the rotation groQd) or the Galilean group of all rotations
and translations i®9. In the theory of Lie groups, the full invariant specificatio
of an object is given by a finite set of Casimir invariants. \Waayood full set
of invariants for a group of general nonlinear smooth coaftigs might be is not
known, but the set of all periodic orbits and their Floquettmpliers will turn out
to be a good start.

Commentary

Remark 6.1 Rectification of flows. See Section 2.2.5 of ref. [6.10] for a pedagogical
introduction to smooth coordinate reparameterizationgpligit examples of transfor-
mations into canonical coordinates for a group of scalinys @ group of rotations are
worked out.

Remark 6.2 Rectification of maps. The methods outlined above are standard in the
analysis of fixed points and construction of normal formddfifurcations, see for example
ref. [1.26, 12.35,6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 3.11]. Thengetry underlying such methods
is pretty, and we enjoyed reading, for example, PercivalRictards [6.8], chaps. 2 and 4
of Ozorio de Almeida’s monograph [6.9], and, as always, Ad®.1].

Recursive formulas for evaluation of derivatives needeeMaluate (6.21) are given,
for example, in Appendix A of ref. [16.9]. Section 10.6 of.r§8.11] describes in detail
the smooth conjugacy that relates the Ulam map (11.5) tcethitendap (11.4). For ‘nega-
tive Schwartzian derivatives, families of conjugaciestém-type maps, associated Lya-
punov exponents, continuous measures and further poiatéterature, see ref. [6.12].

Remark 6.3 A resonance condition. In the hyperbolic case there is a resonance con-
dition that must be satisfied: none of the Floquet exponeaig Ibe related by ratios of
integers. Thatis, il 1, Apo, ..., Apg are the Floguet multipliers of the Jacobian matrix,
then they are in resonance if there exist integers. ., ng such that

(Ap)™(Ap2)™ -+ (Apa)™ = 1.
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If there is resonance, then one may get corrections to thie basjugation formulas in
the form of monomials in the variables of the map. (R. Maiipier
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Exercises

6.1.

6.2.

Harmonic oscillator in polar coordinates:  Given a
harmonic oscillator (6.6) that followg = —q andq = p,
use (6.8) to rewrite the system in polar coordinates (6.7)
and find equations farandé.

1. Show that the 1-dimensional state space of the
rewritten system is the quotient spat€/SO(2).

2. Construct a Poincaré section of the quotiented
flow.

Coordinate transformations. Changing coordinates

is conceptually simple, but can become confusing when
carried out in detail. The fliculty arises from con-
fusing functional relationships, such a&) = h=1(y(t))
with numerical relationships, such agy) = h'(x)v(x).
Working through an example will clear this up.

(a) The diterential equation in theé\ space isx =
{2x4, X2} and the change of coordinates frowito
M ish(xq, X2) = {2X1 + X2, X1 — X2}. Solve forx(t).
Findh,

(b) Show that in the transformed spak€, the difer-
ential equation is

d [ % } 1

dt| Y2 | 3

5y1 + 2y
yi+4y: |-
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6.3. Linearization for maps.

6.4.

Solve this system. Does it match the solution in
the M space?

Letf : C —» C be amap
from the complex numbers into themselves, with a fixed
point at the origin and analytic there. By manipulating
power series, find the first few terms of the maghat
conjugated to az, thatis,

f(2) = h"l(eh(2)).

There are conditions on the derivative foft the origin
to assure that the conjugation is always possible. Can
you formulate these conditions by examining the series?

(difficulty: medium) (R. Mainieri)

Ulam and tent maps.  Show that the smooth conju-
gacy (6.1)
9(Yo) = hofoh™(y)
y = h(X) = sirf(rx/2),

conjugates the tent maffx) = 1 — 2|x — 1/2| into the
Ulam mapg(y) = 4y(1-y) . (continued as exercise 13.1)
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