Appendix H

Discrete symmetries of dynamics

ASIC GROUP-THEORETIC NOTIONS are recapitulated here: groups, irreducible rep-
resentations, invariants. Our notation follows birdtraeki.

The key result is the construction of projection operatoosnf invariant ma-
trices. The basic idea is simple: a hermitian matrix can lagalalized. If this
matrix is an invariant matrix, it decomposes the reps of tloeig into direct sums
of lower-dimensional reps. Most of computations to follemplement the spectral
decomposition

M =/11P1+/12P2+~-~+/lrpr,

which associates with each distinct rogtof invariant matrixM a projection
operator (H.17):

M - 4;1

P = _
/li—/lj

j#i

Sects. H.3 and H.4 develop Fourier analysis as an applicafithe general
theory of invariance groups and their representations.

H.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanovic)

We definggroup, representationsymmetry of a dynamical systeamdinvariance
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Group axioms. A groupG is a set of elements;, g2, gs, . . . for which compo-
sition or group multiplication g o g; (which we often abbreviate &gg;) of any
two elements satisfies the following conditions:

1. If 91,02 € G, thengz 0 g; € G.
2. The group multiplication is associativg; o (g2 © 91) = (gz © g2) © 01.

3. The groupG containsidentityelemente such thago e = eog = g for every
elementg € G.

4. For every elemeng € G, there exists a unique == g~ € G such that
hog=goh=e

A finite group is a group with a finite number of elements

G=1{e0.....9q;

where|G|, the number of elements, is teder of the group.

Example H.1 Finite groups: Some finite groups that frequently arise in applica-

tions:

e C, (also denoted Z,): the cyclic group of order n.

e D, the dihedral group of order 2n, rotations and reflections in plane that preserve

a regular n-gon.
e S,: the symmetric group of all permutations of n symbols, order n!.

Example H.2 Lie groups: Some compact continuous groups that arise in

dynamical systems applications:

o S (also denoted T1): circle group of dimension 1.

e Tm=S!xSt...x St mtorus, of dimension m.

e SQ(2): rotations in the plane, dimension 1. Isomorphic to S*.

e O(2) = SA2) x D1: group of rotations and reflections in the plane, of dimension
1

to SQ2).
e S((3): rotation group of dimension 3.
e SU(2): unitary group of dimension 3. Isomorphic to SQ(3).
o GL(n): general linear group of invertible matrix transformations, dimension n?.
e SAn): special orthogonal group of dimension n(n — 1)/2.
e O(n) = SANn) x D;: orthogonal group of dimension n(n — 1)/2.
e S (n): symplectic group of dimension n(n + 1)/2.
e SU(n): special unitary group of dimension n? — 1.
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Example H.3 Cyclic and dihedral groups:  The cyclic group C, ¢ SQ2) of order n
is generated by one element. For example, this element can be rotation through 2r/n.

The dihedral group D, ¢ O(2), n > 2, can be generated by two elements one at least
of which must reverse orientation. For example, take o corresponding to reflection in
the x-axis. o = €; such operation o is called an involution. C to rotation through 2x/n,

then Dy, = (o, C), and the defining relations are o> = C" = ¢, (Co)? = e.

Groups are defined and classified as abstract objects bynthiiplication
tables (for finite groups) or Lie algebras (for Lie groups).h& concerns us in

applications is theiactionas groups of transformations on a given space, usually a

vector space (see appendix B.1), but sometimedtarespace, or a more general
manifold M.

Repeated index summation. Throughout this text, the repeated pairs of up-
perlower indices are always summed over

n
Ga™ = ) G, (H.1)
b=1
unless explicitly stated otherwise.

General linear transformations. Let GL(n,F) be the group of general linear
transformations,

GL(F) =(g:F" - F"|det@) # 0} . (H.2)

UnderGL(n, F) a basis set 0¥ is mapped into another basis set by multiplication
with a [nxn] matrix g with entries in fieldf (F is eitherR or C),

2=’

As the vectorx is what it is, regardless of a particular choice of basis,auridis
transformation its coordinates must transform as

b
Xéx:ga Xp -

Standard rep. We shall refer to the set ohjxn] matricesg as astandard rep
of GL(n, F), and the space of afi-tuples &, X2, .. ., xn)T, X € F on which these
matrices act as thgtandard representation space V

Under a general linear transformatigne GL(n, F), the row of basis vectors

transforms by right multiplication ag = eg™, and the column ok,’s trans-
forms by left multiplication as<’ = gx. Under left multiplication the column
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(row transposed) of basis vectags transforms a®’T = g'e’, where thedual
repd = (g7})" is the transpose of the inverse @f This observation motivates
introduction of adual representation spadé, the space on whictL(n, F) acts
via the dual remm®.

Dual space. If V is a vector representation space, thendbal space\7 is the
set of all linear forms oV over the fieldF.

If (€D, ..., ey is a (right) basis oi, thenV is spanned by theual basis
(left basis){gu). - - -, ga)}, the set oin linear formsej) such that

e eV =4

whered‘g1 is the Kronecker symbokig = 1if a = b, and zero otherwise. The
components of dual representation space vectors will herdigtinguished by
upper indices

(A NP (H.3)

They transform undeBL(n, F) as
Yy =@’y (H-4)

For GL(n, F) no complex conjugation is implied by tHenotation; that interpre-
tation applies only to unitary subgroups®t(n, C). g can be distinguished from
g" by meticulously keeping track of the relative ordering af thdices,

B-a’, @B (H.5)

Defining space, dual space. In what followsV will always denote thelefining
n-dimensional complex vector representation space, thtatsay the initial, “el-
ementary multiplet” space within which we commence ourlsgthtions. Along
with the defining vector representation spateomes thelual n-dimensional vec-
tor representation spadé We shall denote the corresponding elemenvdfy
raising the index, as in (H.3), so the components of definpags vectors, resp.
dual vectors, are distinguished by lower, resp. upper gglic

X = (X1, X2,..., %), xeV

O& 8, X, XeV. (H.6)

x|
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Defining rep. LetG be a group of transformations acting linearly\épwith the
action of a group elememgte G on a vectorx € V given by an fixn] matrix g

X =%  ab=12...n. (H.7)

We shall refer taya? as thedefining repof the groupG. The action ofg € G on a
vectorg e V is given by thedual rep[nxn] matrix g':

X2 =g = g’ (H8)

In the applications considered here, the gré@iwill almost always be assumed
to be a subgroup of thenitary group in which caseg™ = g', and? indicates
hermitian conjugation:

(@)a° = @Y = a. (H.9)

Hermitian conjugation is effected by complex conjugation and index transpo-
sition: Complex conjugation interchanges upper and loweices; transposition
reverses their order. A matrix lgermitianif its elements satisfy

(M2 = M2. (H.10)

For a hermitian matrix there is no need to keep track of thatiked ordering of
indices, aMp? = (MT)p2 = M3,

Invariant vectors. The vectorq € V is aninvariant vectorif for any transfor-
mationg € G

a=g9g. (H.11)
If a bilinear formM (X, y) = X2May,, is invariant for allg € G, the matrix
Mz° = ga°gPgM (H.12)

is aninvariant matrix Multiplying with g, and using the unitary condition (H.9),
we find that the invariant matriceommutewith all transformationg € G:

[g.M] = 0. (H.13)
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Invariants. We shall refer to an invariant relation betweprvectors inV and
g vectors inV, which can be written as a homogeneous polynomial in terms of
vector components, such as

H(XY,Z T, 8 = h®geXpyasTiZ (H.14)

as aninvariant in V4 @ VP (repeated indices, as always, summed over). In this
example, the cdicientsh?®.4. are components of invariant tendoe V3 @ V2.

Matrix group on vector space. We will now apply these abstract group defini-
tions to the set ofd x d]-dimensional non-singular matricés B, C, ... € GL(d)
acting in ad-dimensional vector spadé € RY. The product of matriced andB
gives the matri>xC,

Cx=B(AX) = (BA)xeV, VXxe V.

The identity of the group is the unit matrik which leaves all vectors iW un-
changed. Every matrix in the group has a unique inverse.

Matrix representation of a group. Let us now map the abstract groGphome-
omorphicallyon a group of matrice®(G) acting on the vector spadé, i.e., in
such a way that the group properties, especially the grodpiptication, are pre-
served:

1. Anyg e G is mapped to a matrib(g) € D(G).

2. The group produat; o g1 € G is mapped onto the matrix produb{(g, o
g1) = D(g2)D(91).

3. The associativity is preserve®(gs o (g2 o 91)) = D(g3)(D(g2)D(q1)) =
(D(g3)(D(g2))D(gy)-

4. The identity elemen¢ € G is mapped onto the unit matrie(e) = 1 and
the inverse elemerg™! € G is mapped onto the inverse matiiXg?) =
[D(@]™ =D (g).

We call this matrix grouD(G) a linear or matrixrepresentatiorof the groupG
in therepresentation space.WVe emphasize hefénear’ in order to distinguish
the matrix representations from other representatiortsdivaot have to be linear,
in general. Throughout this appendix we only consider limepresentations.

If the dimensionality oV is d, we say the representation is drdimensional

representation We will often abbreviate the notation by writing matridegg) €
D(G) asg, i.e.,x’ = gxcorresponds to the matrix operatigh= Z?zl D(9)ij X
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Character of a representation. The character of,(g) of ad-dimensional rep-
resentatiorD(g) of the group elemerg € G is defined as trace

d
Xa(@) = rD(@) = > Di(9).
i=1
Note thaty(e) = d, sinceD;j(e) = & for 1 <i, j <d.

Faithful representations, factor group. If the mappingG on D(G) is an iso-
morphism, the representation is said tofaghful. In this case the order of the
group of matricedD(G) is equal to the ordelG| of the group. In general, how-
ever, there will be several elemerits G that will be mapped on the unit matrix
D(h) = 1. This property can be used to define a subgrbug G of the group
G consisting of all elementls € G that are mapped to the unit matrix of a given
representation. Then the representation is a faithfulesgmtation of théactor
group G/H.

Equivalent representations, equivalence classesA representation of a group
is by no means unique. If the basis in theimensional vector spa&éis changed,
the matriceD(g) have to be replaced by their transformati@igg), with the new
matricesD’(g) and the old matriceB(g) are related by an equivalence transfor-
mation through a non-singular mati

D'(g)=CD(@C™.

The group of matrice®’(g) form a representatio®d’(G) equivalent to the rep-
resentatiorD(G) of the groupG. The equivalent representations have the same
structure, although the matrices lookfdrent. Because of the cylic nature of the
trace the character of equivalent representations is tine sa

x(9) = ) Dj(g) = trD'(g) = tr (CD(G)C ") .
i=1

Regular representation of a finite group. Theregularrepresentation of a group
is a special representation that is defined as follows: Coenthie elements of a
finite group into a vectofgs, O, . .., ggy}. Multiplication by any elemeng, per-
mutes{g:, &, ..., g} entries. We can represent the elemgnby the permu-
tation it induces on the components of vectgr, gz, ..., 9g}. Thus fori, j =
1,...,|G|, we define theegular representation

o) op ifggi=gwithli=1,...,IG|,
Dij(@) = { 0 otherwise
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In the regular representation the diagonal elements of affioes are zero except
for the identity elemeng, = ewith g,g; = gi. So in the regular representation the
character is given by

_ [ IG| for g=e,
X(g)‘{o for g#e.

H.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational gedtom Hermann
Weyl on the “so-called first main theorem of invariant théory

“All invariants are expressible in terms of a finite number amthem We
cannot claim its validity for every grou; rather, it will be our chief task to
investigate for each particular group whether a finite iritgdbasis exists or not;
the answer, to be sure, will turn ouffiamative in the most important cases.”

It is easy to show that any rep of a finite group can be broughtnitary
form, and the same is true of all compact Lie groups. Hencehat follows, we
specialize to unitary and hermitian matrices.

H.2.1 Projection operators

ForM a hermitian matrix, there exists a diagonalizing unitarytnmeC such that

0 0
L 0 ... 0
T= 0 &
cMC o : o o |
0 b
...
0 0 o

Here 4; # A; are ther distinct roots of the minimatharacteristic(or seculaj
polynomial

ﬁ(M -4i1) =0. (H.16)
i=1
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In the matrixC(M — 1,1)C" the eigenvalues correspondingpare replaced
by zeroes:

-
-2

A3 — A2
Az — A2

and so on, so the product over all factof € 1,1)(M — 131). .., with exception
of the (M — 211) factor, has nonzero entries only in the subspace assdaiatk
A1:

[eNeN
oOr o
= OO
o

c[|m-anct =] Jeu-a)

j#1 j#1
i i 0

Thus we can associate with each distinct rc projection operatorP;,

M - ;1

=] —==, (H.17)
L Ai— 4
j#i

which acts as identity on théh subspace, and zero elsewhere. For example, the
projection operator onto the subspace is

pP,=Cf C. (H.18)

The diagonalization matri€ is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalisnthiat weneverneed

to carry such explicit diagonalization; all we need are \eliat invariant matrices

M we find convenient, the algebraic relations they satisfg, @thonormality and
completeness d?;: The matriced; areorthogonal

PiPj = 6iiPj . (no sum onj), (H.19)
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and satisfy theompleteness relation

(H.20)

.Dgﬂ

T
N

As tr (CP,C") = tr P;, the dimension of thih subspace is given by
d=trP;. (H.21)

It follows from the characteristic equation (H.16) and tbenfi of the projection
operator (H.17) that; is the eigenvalue dil on P; subspace:

MP; = AP, (no sum on). (H.22)

Hence, any matrix polynomial(M) takes the scalar valu&1;) on theP; sub-
space

FIMYP; = fF(L)P;. (H.23)

This, of course, is the reason why one wants to work with wicgole reps: they
reduce matrices and “operators” to pure numbers.

H.2.2 Irreducible representations

Suppose there exist several linearly independent inviiiad] hermitian matrices
M1, Mo, ..., and that we have usdd; to decompose thd-dimensional vector
spaceV = Vi & Vo @ ---. CanMy,M3,... be used to further decomposg?

Further decomposition is possible if, and only if, the in@at matrices commute:

[M1,M2] =0, (H.24)

or, equivalently, if projection operatom; constructed fromM, commute with
projection operator®; constructed fronM 1,

PP = PjP;. (H.25)

Usually the simplest choices of independent invariant ivedrdo not com-
mute. In that case, the projection operatBrgonstructed froniM; can be used
to project commuting pieces M ,:

Mg) =PM,P;, (no sum ori).

appendSymm - 4feb2008 ChaosBook.org version13, Dec 31 2009



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 814

ThatM g) commutes withVl; follows from the orthogonality oP;:
M, M =" 4MP, Pyl =0. (H.26)
i
Now the characteristic equation fMS) (if nontrivial) can be used to decompose
V; subspace.

An invariant matrixM induces a decomposition only if its diagonalized form
(H.15) has more than one distinct eigenvalue; otherwisg firoportional to the
unit matrix and commutes trivially with all group element.rep is said to be
irreducibleif all invariant matrices that can be constructed are prtipoal to the
unit matrix.

According to (H.13), an invariant matrid commutes with group transforma-

tions [G, M] = 0. Projection operators (H.17) constructed frbinare polynomi-
als inM, so they also commute with ale G:

[G,P]=0 (H.27)

Hence, adixd] matrix rep can be written as a direct sum dfsd;] matrix reps:
G=1Gl= ) PGPj= > PGP, = ) Gi. (H.28)
0 i i

In the diagonalized rep (H.18), the matgphas a block diagonal form:

g 0 O
CgC'=|0 @ 0}, g=) ClgCi. (H.29)
0o o0 - i

The repg; acts only on theal-dimensional subspadég consisting of vector®;q,
g € V. In this way an invariantdxd] hermitian matrixM with r distinct eigenval-
ues induces a decomposition oflalimensional vector spadéinto a direct sum
of di-dimensional vector subspacés

vivieve. . ev. (H.30)

H.3 Lattice derivatives

Consider a smooth functiop(x) evaluated on a finitd-dimensional lattice

B0 =d(X), x = at = lattice point, ez, (H.31)
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wherea is the lattice spacing and there ax€ points in all. A vectorg spec-
ifies a lattice configuration. Assume the lattice is hypevicuand letr, €
{A1, fp, -+, Aq} be the unit lattice cell vectors pointing along ttepositive di-
rections |fy,| = 1 . Thelattice partial derivativeis then

_pxran) - 909 _ b, o

(6;1 ¢)l a a

Anything else with the correcd — 0 limit would do, but this is the simplest
choice. We can rewrite the derivative as a linear operatprinbroducing the
hopping operatoi(or “shift,” or “step”) in the directionu

(h‘,)[j = 8raty - (H.32)

As h will play a central role in what follows, it pays to understwhat it does,
so we write it out for the 1-dimensional case in its fl N] matrix glory:

01
01

01

h= N . (H.33)

0 1
1 0

We will assume throughout that the latticepisriodicin eachry, direction; this is
the easiest boundary condition to work with if we are intedsn large lattices
where surfaceféects are negligible.

Applied on the lattice configuration = (¢1, #2, - - -, #n), the hopping operator
shifts the lattice by one sitd¢ = (¢2, ¢3,- -, dn, ¢1). Its transpose shifts the
entries the other way, so the transpose is also the inverse

h™t=h'. (H.34)
The lattice derivative can now be written as a multiplicatily a matrix:
1
By = a(hﬂ - 1)“_ ;.

In the 1-dimensional case thifN] matrix representation of the lattice deriva-
tive is:

1
0=— . H.35
= (H.35)

1 -1
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To belabor the obvious: On a finite lattice Nf points a derivative is simply a
finite [Nx N] matrix. Continuum field theory is a world in which the latids so
fine that it looks smooth to us. Whenever someone calls sange#im “operator,”
think “matrix.” For finite-dimensional spaces a linear agter is a matrix; things
get subtler for infinite-dimensional spaces.

H.3.1 Lattice Laplacian

In order to get rid of some of the lattice indices it is coneito employ vector
notation for the terms bilinear in, and keep the rest lumped into “interaction,”

SOE ——¢ ¢——[h ~1)¢]" - (- 1) ¢ +Sil4]. (H.36)

For example, for the discretized Landau HamiltonM#A/2 = gni/2, C = g/a?,
and the quartic terrs, [¢] is local site-by-sitey,e,eae, = =4 BUGSE,0,005050 5041 SO
this general quartic coupling is a little bit of an overkifiut by the time we get
to the Fourier-transformed theory, it will make sense as aem@um conserving
vertex (H.62).

In the continuum integration by parts movgsaround; on a lattice this amounts
to a matrix transposition

[t =2)o] [~ 1)) = 67 ("= (1~ 1) -0

If you are wondering where the “integration by parts” minignsss, it is there in
discrete case at well. It comes from the identity = ~h~%9. The combination
A = h%%?

d

A=-— (hl D(h-1)= :Z(l——(h +hﬂ)) (H.37)

u 1 pu=1

is thelattice Laplacian We shall show below that this Laplacian has the correct
continuum limit. It is the simplest spatial derivative alled for x — —x sym-
metric actions. In the 1-dimensional case tNex[N] matrix representation of the
lattice Laplacian is:

-2 1 1
1 -2 1
! 1 -2 1 +138)
T a? 1 : '
1
1 1 -2
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The lattice Laplacian measures the second variation of d figlacross three
neighboring sites. You can easily check that it does whaséuwend derivative
is supposed to do by applying it to a parabola restricted ¢ddttice,¢, = ¢(¢),
where ¢(¢) is defined by the value of the continuum functip(x) = x? at the
lattice point¢.

H.3.2 Inverting the Laplacian

Evaluation of perturbative corrections in (28.21) regsithat we come to grips
with the “free” or “bare” propagatoM . While the the Laplacian is a simple
difference operator (H.38), its inverse is a messier object. Atw@ompute is to
start expandindV as a power series in the Laplacian

BM = mgl < r%zz[ ] : (H.39)

As A is a finite matrix, the expansion is convergent foffigiently Iargerr(jz. To
get a feeling for what is involved in evaluating such seriemluateA? in the
1-dimensional case:

6 -4 1 1 -4
-4 6 -4 1
, 1|1 -4 6 -4 1
Mgl o ' (H40)
6 -4
-4 1 1 -4 6

What A3, A4, --- contributions look like is now clear; as we include highedan
higher powers of the Laplacian, the propagator matrix fifls while theinverse
propagator is dferential operator connecting only the nearest neighbloespitop-
agator is integral operator, connecting every lattice tsitany other lattice site.

This matrix can be evaluated as is, on the lattice, and sometiis evaluated
this way, but in case at hand a wonderful simplification fatofrom the obser-
vation that the lattice action is translationally invatiame will show how this
works in sect. H.4.

H.4 Periodic lattices

Our task now is to transfornM into a form suitable to evaluation of Feynman
diagrams. The theory we will develop in this section is aggitie only totrans-
lationally invariantsaddle point configurations. bifurcation
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Consider the fect of ap — h¢ translation on the action
1 B0
AT W T\ 1. __0 4
SIhe] = —5¢" -h"M ¢~ =7 ;zlaw)f-

As M~ is constructed froni and its inverseM~* andh commute, and the bilin-
ear term ish invariant. In the quartic terrh permutes cyclically the terms in the
sum, so the total action is translationally invariant

1 .
Sihg] = Slgl = ~367 - M1og - ER 3 gt (H41)
to=1

If a function (in this case, the actid®{¢]) defined on a vector space (in this case,
the configurationp) commutes with a linear operatbr, then the eigenvalues of

h can be used to decompose theector space into invariant subspaces. For a
hyper-cubic lattice the translations infldirent directions commuté,.h, = h,h,,

so it is sufficient to understand the spectrum of the 1-dimensional spitrator
(H.33). To develop a feeling for how this reduction to ineat subspaces works
in practice, let us continue humbly, by expanding the scdpmupdeliberations

to a lattice consisting of 2 points.

H.4.1 A 2-point lattice diagonalized

The action of the shift operatdr (H.33) on a 2-point latticeg = (¢1,¢2) is to
permute the two lattice sites

n=(1 o)

As exchange repeated twice brings us back to the origindigumation,h? = 1,
and the characteristic polynomial bfis

(h+1)h-1)=0,

with eigenvaluesly = 1,4; = —1. Construct now the symmetrization, antisym-
metrization projection operators

h-11 1 1/1 1

Po= i ‘E(“h)‘é(l 1) (H.42)
h-1 1 11 -1

Po= o133 ) (H.43)
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Noting thatPy + P1 = 1, we can project the lattice configuratignonto the two
eigenvectors oh:

¢ = 1l¢=Po-¢+ P10,
$1\ _ (Pr+¢2) 1 (1\ (pr1—-¢2) 1 (1
(¢2) Y \/i(l)+ N \/z(—l) (H.44)
= Jofo + . (H.45)

As PoP; = 0, the symmetric and the antisymmetric configurations faans sep-
arately under any linear transformation constructed froand its powers.

In this way the characteristic equatitri = 1 enables us to reduce the 2-
dimenional lattice configuration to two 1-dimensional gr@swhich the value of
the shift operator (shift matrixX) is a numberg € {1, -1}, and the eigenvectors are
fg = %(1, 1),f = %(1, —1). We have inserted/2 factors only for convenience,
in order that the eigenvectors be normalized unit vectors.wé shall now see,
(fo, ¢1) is the 2-site periodic lattice discrete Fourier transfafthe field (1, ¢»).

H.5 Discrete Fourier transforms

Now let us generalize this reduction to a 1-dimensionalqukci lattice withN
sites.

Each application oh translates the lattice one step;lhsteps the lattice is
back in the original configuration

hN =1 =] ON-1,4

so the eigenvalues dfare theN distinct N-th roots of unity

2t
N

N-1
hN—lzﬂ(h—wkl):o, w=¢ (H.46)
k=0

As the eigenvalues are all distinct aNdn number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expoundegpendix H.2)
associates with thk-th eigenvalue oh a projection operator that projects a con-
figuration¢ ontok-th eigenvector oh,

h—-2;1
/lk—/lj'

Py = (H.47)

j#k
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A factor (h — 2;1) kills the j-th eigenvectory; component of an arbitrary vector
in expansiong = --- + ¢~:j¢j + ---. The above product kills everything but the
eigen-directiongy, and the factoﬂjik(/lk — ;) ensures thaly is normalized as
a projection operator. The set of the projection operatomplete

D=1 (H.48)
k

and orthonormal
PkPj = 6kjPx (no sum ork) . (H.49)

Constructing explicit eigenvectors is usually not a thet besy to fritter one’s
youth away, as choice of basis is largely arbitrary, and fithe content of the
theory is in projection operators. However, in case at hawedeigenvectors are
so simple that we can forget the general theory, and condtracsolutions of the
eigenvalue condition

h ok A (H.50)
by hand:
01 1 1
01 WX X
1 01 w 1 w
— . Kk |=w— 3K
W e N| o
0 1 : :
1 0)\ (N-1)k WN-D1k

The 1/ VN factor is chosen in order thaf be normalized unit vectors

Apiwpk = % 1=1, (no sum ork)

0
o = (L™ o o DK (H.51)

z"‘

The eigenvectors are orthonormal
G @i =0 (H.52)

as the explicit evaluation q&k - pj yields t[th{or;ecker delta function for a peri-
odic lattice N4

N-1
3 gt
=0
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N2

= (H.53)

Zl-

Okj =
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The sum is over th&l unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unkess j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of tie@esgtors (H.50),
(H.51) as
(P = (Q)elpp)e = %ei ROk (no sum ork). (H.54)
The completeness (H.48) follows from (H.53), and the orthorality (H.49)
from (H.52).

éx. the projection of the configuration on thé-th subspace is given by

(Pe-d)e = i@ (no sum ork)
- 1
= gp=—=) e H.55
o= b= o ;e ¢ (H.55)

We recognizey as thediscrete Fourier transfornof ¢,. Hopefully rediscovering
it this way helps you a little toward understanding why Feutransforms are full
of €XP factors (they are eigenvalues of the generator of tramsis}iand when
are they the natural set of basis functions (only if the thesrtranslationally
invariant).

H.5.1 Fourier transform of the propagator

Now insert the identity};, Px = 1 wherever profitable:

M =1M1= " PMPe = > ey M - gl
kk' kk

The matrix
Mie = (of - M - g) (H.56)

is the Fourier space representationMf No need to stop here - the terms in
the action (H.41) that couple four (and, in general, 3,-4) fields also have the
Fourier space representations

Vertztn 006 Sty = Viadakn PPl Pigy»

Viakoko = Yerlto (k) (Pho) s - (9K
1 i2n
1 5 (K 1+ +Knf,
= ) Ve BG4 57)
Citn
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According to (H.52) the matridy, = (1) = %e" %K is a unitary matrix, and

the Fourier transform is a linear, unitary transformatld)™ = Y Py = 1 with
Jacobian det = 1. The form of the action (H.41) does not change unider g
transformation, and from the formal point of view, it doeg nwatter whether we
compute in the Fourier space or in the configuration spadevwbatarted out with.
For example, the trace & is the trace in either representation

rM = ZMw%Z(PkMPw)N

ZZ(@k)z(sﬂi M - @ie)f)e = Zékl« Mge =trM . (H.58)
W T Wi

From this it follows that tM" = trl\7|", and from the tr In= Intr relation that
detM = detM. In fact, any scalar combination ¢fs, J's and couplings, such as
the partition functiorZ[J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what's the pay-back?

H.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (H.50) to converhatrices into scalars. |If
M commuteswith h, then (oi M -gp) = MSkk, and the matrixM acts as
a multiplication by the scalaMy on thek-th subspace. For example, for the
1-dimensional version of the lattice Laplacian (H.37) thejgction on thek-th
subspace is

2
a

- % (cos(%k) - 1) Se (H.59)

(oA ow) (%(Ofk + ) - 1) (i o)

In the k-th subspace the bare propagator (H.59) is simply a numhbdy,ia con-
trast to the mess generated by (H.39), there is nothing ttimg M~1:

e ! Okk
(M) = b= e eli)

., (H60)

wherek = (ki, ke, ---,k,) is ad-dimensional vector in th&ld-dimensional dual
lattice.

Going back to the partition function (28.21) and stickingtle factors ofl
into the bilinear part of the interaction, we replace thetigal, by its Fourier
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transfornjjk, and the spatial propagatdv{,, by the diagonalized Fourier trans-
formed Go)«k

IM-3=3"A" @ M@ - D = ) FiGoxde.  (H.61)
kk’ k

What's the price? The interaction ter§[¢] (which in (28.21) was local in the

configuration space) now has a more challendindependence in the Fourier
transform version (H.57). For example, the locality of theadic term leads to

the 4-vertexnomentum conservation the Fourier space

Si[¢]

1 N
m)@ﬂzfsﬂ b0, P0,90,0¢, = _ﬁu2(¢f)4 =

=1

N
1 N e s
= Pugan Z 00Ky +korka+ks Pka PhoPiaPis - (H.62)
]

H.6 C, factorization

If an N-disk arrangement haSy symmetry, and the disk visitation sequence is
given by disk labelge; ezes . . .}, only the relative incremenis = .1 — § modN
matter. Symmetries under reflections across axes incréasgroup toCy, and
add relations between symbolg;} and{N — ¢} differ only by a reflection. As
a consequence of this reflection increments become dectsmetil the next re-
flection and vice versa. Consider four equal disks placedhenvertices of a
square (figure H.1). The symmetry group consists of the itjerf the two re-
flectionsoy, oy acrossx, y axes, the two diagonal reflectiongs, 024, and the
three rotation<C,, C, ande by anglest/2, = and 3r/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute labeds(1, 2, 3,4}

by relative incrementg; € {1,2,3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflectiois; tbw sym-
bol will be called_1 Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As ample consider
the fundamental domain cycle 112. Taking the disk»Idisk 2 segment as the
starting segment, this symbol string is mapped into the diskation sequence
1,12,13,21... = 123, where the subscript indicates the increments (or eecre
ments) between neighboring symbols; the period of the cy&® is thus 3 in
both the fundamental domain and the full space. Similahy,dyclel12 will be
mapped into 112 11 »3.12,13,,1 = 121323 (note that the fundamental domain
symbol_1corresponds to a flip in orientation after the second and $ijtihbols);
this time the period in the full space is twice that of the famental domain. In
particular, the fundamental domain fixed points corresporitie following 4-disk
cycles:
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Figure H.1: Symmetries of four disks on a square. A -
fundamental domain indicated by the shaded wedge.
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Table H.1: C4, correspondence between the ternary fundamental domairemyclesp™
and the full 4-disk(1,2,3,4 labeled cycles, together with theC,, transformation that
maps the end point of thp ¢ycle into an irreducible segment of thgecycle. For ty-
pographical convenience, the symbobflsect. H.6 has been replaced by 0, so that the
ternary alphabet i€, 1, 2}. The degeneracy of thecycle ism, = 8n/np. Orbit 2 is the
sole boundary orbit, invariant both under a rotationd®nd a reflection across a diagonal.
The two pairs of cycles marked bg)(and p) are related by time reversal, but cannot be
mapped into each other 168, transformations.

M
Figure H.2: Symmetries of four disks on a rectangle

Ox
=
A fundamental domain indicated by the shaded wedc ///
4-disk reduced
12 © 1
1234 o 1
13 o 2

Conversions for all periodic orbits of reduced symbol péfiess than 5 are listed
in table H.1.

This symbolic dynamics is closely related to the group-tego structure
of the dynamics: the global 4-disk trajectory can be geeerdity mapping the
fundamental domain trajectories onto the full 4-disk spbgehe accumulated
product of theCq4, group elementsy; = C, g» = C?, 01 = 0diagC = Caxis:
whereC is a rotation byr/2. In the112 example worked out above, this yields
012 = G101 = C?Coaxis = Tdiag, listed in the last column of table H.1. Our
convention is to multiply group elements in the reverse owiéh respect to the
symbol sequence. We need these group elements for our pextisé dynamical
zeta function factorizations.

TheCyy, group has four 1-dimensional representations, either sgtmen(A;)
or antisymmetric &) under both types of reflections, or symmetric under one and
antisymmetric under the otheB{, By), and a degenerate pair of 2-dimensional
representation&. Substituting theC,, characters
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[ hp p hp
0 12 ox 0001 12121414 oo
1 1234 Cs 0002 12124343 oy
2 13 Co, 013 0011 12123434 Cx
01 1214 ooa 0012 121241413434 2323c§
02 1243 ay 0021 @) 1213414234312324 c
12 12413423 c3 0022 1213
001 121232343414 C, 0102 @) 1214232134324143 c4
002 121343 C 0111 12143234 013
011 121434 oy 0112 ) 12142123 ox
012 121323 13 0121 ) 12132124 ox
021 124324 13 0122 12131413 o2
022 124213 ox 0211 12432134 ox
112 123 e 0212 12431423 o2
122 124231342413 C, 0221 12421424 024
0222 12424313
1112 123423413412 4123(:4
1122 12313413
1222 124241313424 2313C3
Coy |AL A, B B E
e 1 1 1 1 2
C 1 1 1 1 -2
CsCil1 1 -1 -1 0
Oaxes | 1 -1 1 -1 0
Odiag | 1 -1 -1 1 0
into (21.15) we obtain:
hs Ar As B; B, E
e (1- tg = (1-t5) (1-tp) (1-tp) (I-tp) (L-tp)?
Co (1-t5)" = (I-tp) (-t (1-tp) (L-tp) (L+tp)*
C4C (1- t‘.‘)2 = (1-t5) (I-tp) (L+tp) (L+tp) (L+1t2)?
Taes (1-t9)" = (1-t5) (1+ts) (1-tp) (L+tp) (1-t5)?
Tdiag. (1- tﬁ)“ = (I-tp) (L+t)) (L+tp) (1-tp) (1- tﬁ)2

The possible irreducible segment group elemédnysare listed in the first col-
umn; oaxes denotes a reflection across either the x-axis or the y-arid 0@iag

denotes a reflection across a diagonal (see figure H.1). lii@dddegener-
ate pairs of boundary orbits can run along the symmetry lingke full space,
with the fundamental domain group theory weights= (Cz + 0«)/2 (axes) and

appendSymm - 4feb2008 ChaosBook.org version13, Dec 31 2009



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 826

hp = (C2 + 013)/2 (diagonals) respectively:
A Ao B; B, E
axes: (I-t5)* = (1-tp)(1-Otp)(1—tp)(1 - Otp)(L + tp)
diagonals: (:13)> = (1-tp)(1- Otp)(1 - Ots)(1 — tp)(1 + t5)*(H.63)
(we have assumed thigtdoes not change sign under reflections across symmetry

axes). For the 4-disk arrangement considered here onlyidgexial orbits13, 24
occur; they correspond to tiefixed point in the fundamental domain.

The A; subspace i€4, cycle expansion is given by

1/¢a (1 - 1to)(1 — t2)(1 - t2)(1 — tor)(1 — to2)(1 — t12)
(1= to02)(1 — too2)(1 — toa1)(L — t012)(1 — to21)(1 — to22)(1 — t112)
(1 - t122)(1 ~ tooo1)(1 — to002)(1 — too11)(1 — too12)(1 - too21) - - -
= 1-to—t1 —to — (tor — tots) — (toz — totz) — (t12 — tato)

~(too1 — toto1) — (tooz — totoz) — (to11 — tator)

—(to22 — totop) — (t112 — tat1z) — (t122 — tat12)

—(to12 + toza + totatz — tot12 — tatoz — tatoa) . . . (H.64)

(for typographical convenience, id replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the charactndbe readdthe symbol
strings: ya,(hp) = (~1)°, xe,(hp) = (~1)™, xe,(hp) = (~1)"*™, whereng and

n; are the number of times symbols 0, 1 appear inflsgribol string. FoB; all

tp with an odd total number of 0's and 1's change sign:

1/¢s, (1 + to)(1 + t1)(1 — t2)(1 — tor) (1 + to2)(1 + t12)
(1 + tooD) (L — too2)(L + tor1)(1 — tor2)(1 — to21)(1 + to22)(1 — t112)
(1 + t122)(1 ~ tooo1)(1 + too02) (1 — too11)(1 + too12)(1 + too21) - - -
= l+to+1tr—to— (tor — tota) + (toz — totz) + (tr2 — tato)

+(too1 — toto1) — (too2 — totoz) + (toa1 — tator)

+(to22 — tatoz) — (t112 — tat1z) + (t122 — tat12)

—(to12 + toza + totatz — tot12 — tatoz — tatoa) . .. (H.65)

The form of the remaining cycle expansions depends cryaislthe special role
played by the boundary orbits: by (H.63) the othitioes not contribute té, and
By,

1/2n,

(1 +1to)(1 — ta)(1 + tor)(1 + toz)(1 — t12)

(1~ too)(L — too2)(L + tor1)(L + to12)(1 + to21)(1 + toz2)(1 - t112)
(1 = t222)(1 + toooD)(1 + tooo2)(1 — too12)(1 — too22)(1 — too21) - . -
= 1+to—t1+ (tor —tots) + oz — t12

~(too1 — toto1) — (tooz — totoz) + (to11 — tator)

+lo22 — tazz — (ta12 — tats2) + (toaz + toza — totaz — tatoo) . . (H.66)
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and
1/, (1 - to)(1 + t1)(1 + tor)(1 — to2)(1 + t12)

(1 +to02)(1 — to02)(1 — toa1)(L + tor2)(L + tozn)(1 — to22)(1 — t112)
(1 +t122)(1 + tooon)(1 — tooo2) (1 — too11)(1 + too12)(1 + too21) - - -
= 1-to+ty+ (tor —tot) — tox + t12

+(too1 — toto1) — (tooz — totoz) — (tor1 — tato1)

—to22 + tr22 — (t112 — t1t12) + (to12 + to21 — tot12 — tito2) . . (H.67)

In the above we have assumed thadoes not change sign undgj, reflections.
For the mixed-symmetry subspaEghe curvature expansion is given by

Ve = 1+t+(—to® +11?) + (2tooz — tote® — 2t112+ to11%)
+(2too11 — 2too22 + 2tatooz — tor? — to2? + 2t1122— 2ati1z
+112% — to?t1%) + (2tooooz— 2too112+ 2tztoo11 — 2toor21— Aooz11
+2to0222— 2tatooz2+ 2tor012+ 2to1021— 2o1102— totor® + 2toz022
~tatop? + 21112~ 21200+ 2tot1120— 22120+ tot1o? — tat?ty?
+2t02(—to? + 11%) — 2ty15(—to? + %)) (H.68)

A quick test of the = (AlgAzgglggzgé factorization is &orded by the topo-
logical polynomial; substituting, = Z' into the expansion yields

1in =1-3z, 1/{p, =1/, =1, 1/{g,=1/le=1+2Z,

in agreement with (15.46). exercise 20.9

H.7 C,, factorization

An arrangement of four identical disks on the vertices ofcargle ha€,, sym-
metry (figure H.2b).Cy, consists ofe, oy, oy, Co}, i.e., the reflections across the
symmetry axes and a rotation by

This system fiords a rather easy visualization of the conversion of a &k-dis
dynamics into a fundamental domain symbolic dynamics. Aitdeaving the
fundamental domain through one of the axis may be folded bgck reflection
on that axis; with these symmetry operatiogis = ox andg; = oy we asso-
ciate labels 1 and 0, respectively. Orbits going to the diadjp opposed disk
cross the boundaries of the fundamental domain twice; tbdyut of these two
reflections is jusC, = ooy, to which we assign the label 2. For example, a
ternary string 0010201. is converted into 12143123, and the associated
group-theory weight is given by.. 9190929091 90Jo-
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- odic orbits split as follows
Table H.2: Cy, correspondence between the ternfiyl, 2} fundamental domain prime P

cyclesp and the full 4-disk{1,2,3,4 cyclesp, together with theC,, transformation that
maps the end point of thp ¢ycle into an irreducible segment of thpecycle. The de-

generacy of thep cycle ismy = 4nz/np. Note that the 012 and 021 cycles are related gg a- t~)4 _ (1'51” (1ézt~) a ?1” a ?2”

by time reversal, but cannot be mapped into each oth&hyransformations. The full " g 2 P. P. P P

space orbit listed here is generated from the symmetry etloode by the rules given in Co (1-t5)° = (1-t) (1-t) (1-t5) (1-tp)

sect. H.7, starting from disk 1. o (1-t3)% = (1- tp) (L+tp) (A-tp) (1+tp)
p_p g p p g oy (-t = (L-t) @+t (L+ts) (L-tp)
0 14 ay 0001 14143232 C,
1 12 oy 0002 14142323 oy
Sl 1232 g; 885 iﬁg 4143 2 Cycle expansions follow by substituting cycles and thedugrtheory factors from
02 1423 oy 0021 14134142 (,z table H.2. ForA; all characters are-1, and the corresponding cycle expansion is
12 1243 oy 0022 1413 e given in (H.64). Similarly, the totally antisymmetric syfage factorizatiord; is
001 141232 o 0102 14324123 oy given by (H.65), theB, factorization ofCa,. ForB; all t, with an odd total number

002 141323 C; 0111 14343212 C;

011 143412 o, 0112 14342343 oy of 0's and 2's change sign:

012 143 e 0121 14312342 oy
021 142 e 0122 14313213 C,
022 142413 oy 0211 14212312 oy g, = (L+1to)(1-t)(L+t2)(1+tor)(1 — to2)(1 + t12)
112 121343 C; 0212 14213243 C, 1t 1+t 1+t 1 -t 1-t 1+t 1+t
125 1oasis o 0331 1434904 & (1= to02)(1 + too2)(1 + toa1)(L — t012)(1 — to21)(1 + to22)(1 + t112)
0222 14242313 oy (1 - t222)(1 + tooo1)(1 — tooo2)(1 — too11)(1 + too12)(1 + too21) - - -
1112 12124343 oy = 1+1to—tg+tp+ (tor — tots) — (toz — totz) + (t12 — tat
1125 1213 g 0 —t1 + 1t + (tor — tots) — (toz — totz) + (t12 — tat2)
1222 12424313 oy —(too1 — toto1) + (tooz — toto2) + (to11 — tator)
+(to2z — tatop) + (t112 — tat1o) — (t122 — tat12)
Short ternary cycles and the corresponding 4-disk cyclesisted in table H.2. —(tor2 + toza + totatz — totaz — tatoz — tator) . . - (H.69)

Note that already at length three there is a pair of cycleg €0143 and 02k 142)

related by time reversal, bubtby anyCz symmetries. For B> all t, with an odd total number of 1's and 2's change sign:

The above is the complete description of the symbolic dynarfor 4 suf-
ficiently separated equal disks placed at corners of a rgigtarHowever, if the 1YZs, = (L—to)(d+t)(d+ 1)1+ tor)(d + toz)(1 — t12)

fundamental domain requires further partitioning, thenéey description is in-
sufiicient. For example, in the stadium billiard fundamental domone has to (2+%o02)(1 + too2)(1 ~ to1)(1 ~ toa2)(1 ~ toza)(1 ~ toz2)(1 + t12)

distinguish between bounce# ¢he straight and the curved sections of the bil- (1 + t122)(1 + tooon) (L + too02) (1 — too11)(2 — too12)(1 — tooza) .- -
liard wall; in that case five symbols fiice for constructing the covering symbolic = 1-to+ty+tx+ (tor —toty) + (toz — totz) — (t12 — tat2)
dynamics. +(too1 — toto1) + (tooz — totoz) — (toa1 — tator)

The groupCay, has four 1-dimensional representations, distinguishethély ~(fozz — tato2) + (t112 ~ tata2) + (fr22 — a2
behavior under axis reflections. Tle representation is symmetric with respect —(tor2 + toza + totatz — tot12 — tytoz — tatos) . .. (H.70)

to both reflections; thé\, representation is antisymmetric with respect to both.
The B; and B, representations are symmetric under one and antisymmetder

| ; Note that all of the above cycle expansions group long otbiether with their
the other reflection. The character table is

pseudoorbit shadows, so that the shadowing argumentsrivergence still apply.

Cx|A A Bl B The topological polynomial factorizes as
e 1 1 1 1
C |1 1 -1 -1 1 1 1 1
ox | 1 -1 1 -1 —=1-3z , —=—=—=1+2
oy |1 -1 -1 1 Ia n, B LBy

. ) ) ) L . consistent with the 4-disk factorization (15.46).
Substituted into the factorized determinant (21.14), thetrdbutions of peri-
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H.8 Hénon map symmetries

We note here a few simple symmetries of the Henon map (3A®)b # 0 the
Hénon map is reversible: the backward iteration of (3.28@jiven by

X1 = —5 (L% ). (H71)

Hence the time reversal amountstte» 1/b, a — a/b? symmetry in the param-
eter plane, together witk — —x/b in the coordinate plane, and there is no need
to explore the &, b) parameter plane outside the stb {-1,1}. Forb = -1 the
map is orientation and area preserving ,

Xno1=1-ax — Xni1. (H.72)

the backward and the forward iteration are the same, andahewandering set
is symmetric across the,.1 = X, diagonal. This is one of the simplest models of
a Poincaré return map for a Hamiltonian flow. For the origatareversingo = 1
case we have

Xne1=1— % + Xni1. (H.73)

and the non-wandering set is symmetric acrossihe = —x, diagonal.

Commentary

Remark H.1 Literature This material is covered in any introduction to linear alge-
bra [H.1, H.2, H.3] or group theory [21.15, 10.2]. The expiosi given in sects. H.2.1
and H.2.2 is taken from refs. [4.9, 4.10, 9.4]. Who wrote thosvn first we do not know,
but we like Harter's exposition [H.23, H.24, 4.15] best. téas theory of class algebra-
safers a more elegant and systematic way of constructing thénnadset of commuting
invariant matriced/; than the sketchféered in this section.

Remark H.2 Labeling conventions While there is a variety of labeling conventions [25.19,

9.23] for the reduce@,, dynamics, we prefer the one introduced here because obis cl
relation to the group-theoretic structure of the dynamibs: global 4-disk trajectory can
be generated by mapping the fundamental domain trajestorieo the full 4-disk space
by the accumulated product of tki, group elements.

Remark H.3 Cy symmetry  Cy, is the symmetry of several systems studied in the
literature, such as the stadium billiard [8.10], and theirdahsional anisotropic Kepler
potential [21.3].
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Exercises

H.1.

H.2.

exerAppSymm - 1feb2008

Amlagroup?  Show that multiplication table

-~ 0T

-~ Q. O T® DD
0O+~ o0 oo
DO+~ Qoo
QOO —+~T oo
TOOO -0l
DT OAD O —H—

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix H.1.)

From W.G. Harter [4.15]

Three coupled pendulums with aC, symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same mass and length, the one midway of same
length but diferent mas#, with the tip coupled to the
tips of the outer ones with springs offétiessk. Assume
displacements are smak,/| < 1.

(a) Show that the acceleration matkix —axis

X1 a+b —a 0 X1
X |=-| -c 2c+b -c X2 |,
X3 0 -a a+b X3

wherea = k/ml, ¢ = k/Ml andb = g/I.

(b) Check that§ R] = 0, i.e., that the dynamics is
invariant undeiC, = {e R}, whereR interchanges the
outer pendulums,

R=

001
010 } .
100
(c) Construct the corresponding projection operakrs
andP_, and show that the 3-pendulum system decom-
poses into a 1-dimensional subspace, with eigenvalue
(w)? = a+ b, and a 2-dimensional subspace, with
acceleration matrix (trust your own algebra, if it strays
from what is stated here)

a+b -+2a

(+) —
a’ =
—‘/EC c+b

The exercise is simple enough that you can do it with-
out using the symmetry, so: constriet, P_ first, use
them to reducea to irreps, then proceed with computing
remaining eigenvalues af

(d) Does anything interesting happerMf= m?

H.3.

The point of the above exercise is that almost alway
symmetry reduction is only partial: a matrix represe
tion of dimensiond gets reduced to a set of subsp
whose dimensiond® satisfy Y, d® = d. Beyond tha
love many, trust few, and paddle your own canoe.

From W.G. Harter [4.15

Lorenz system in polar coordinates: dynamics.
(continuation of exercise 9.8.)

1. Show that (9.24) has two equilibria:

(ro,20) = (0,0), 6 undefined
(r.61.z1) = (V2b(p - 1), 7/4,p (HLJ4

2. Verify numerically that the eigenvalues and ei
vectors of the two equilibria are (we list h
the precise numbers to help you check your
grams):

EQ: = (0, 12 27) equilibrium: (and its CY/2.
rotationE Q) has one stable real eigenvalue
AW = 13854578,

and the unstable complex conjugate pair
A@3) = @ + i@ = 0.093956+110.194505.
The unstable eigenplane is defined by el
vectors

Reel? = (-0.4955 -0.201Q -0.8450)

Ime® = (0.5325 -0.8464 0)

with periodT = 27/w® = 0.6163308,

radial expansion multiplier

Ar = exp(2u®/w®) = 1.059617,

and the contracting multiplier

Ac = exp(2u®/w®) ~ 1.95686x 104

along the stable eigenvector B,

e® = (0.8557 -0.3298 —0.3988).

EQ = (0,0,0) equilibrium: The stable eige
vectore) = (0,0, 1) of EQy, has contraction ra
1@ = _b=-2666....

The other stable eigenvector is

€@ = (-0.244001-0.9697750), with contrac
ing eigenvalue

1@ = —22.8277. The unstable eigenvector
e® = (-0.6530490.7573160) has eigenvalue
A® =118277.

3. Plot the Lorenz strange attractor both in
Lorenz coordinates figure 2.5, and in the doul
polar angle coordinates (9.20) for the Lorenz
rameter values = 10,b = 8/3, p = 28. Topolog
ically, does it resemble the Lorenz butterfly,
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Rossler attractor, or neither? The Poincaré sec-  suficiently largen?. To get a feeling for what is in-
tion of the Lorenz flow fixed by the-axis and the volved in evaluating such series, show thatis:
equilibrium in the doubled polar angle represen-

tation, and the corresponding Poincaré return map i ’g i 1 1 -4
(sn, Sh + 1) are plotted in figure 11.8. 1 ’1 4 76 4 1
4. Construct the Poincaré return mag, 6,:1), A = i 1 4 - (H.76)
6 -4
-4 1 1 -4 6

20 WhatA3, A%, - - - contributions look like is now clear; as

we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while thieversepropa-
gator is diferential operator connecting only the nearest
neighbors, the propagator is integral operator, connect-
ing every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer

20

cise H.5.
wheresis arc-length measured along the unstable ) ) _ ) )
manifold of EQy, lower Poincaré section of fig- H.5. Lattice Laplacian diagonalized. Insert the iden-
ure 11.8 (b). Elucidate its relation to the Poincare tity 3 P = 1 wherever you profitably can, and use the
return map of figure 11.9. (plot by J. Halcrow) eigenvalue equation (H.50) to convert shiftmatrices

) . into scalars. 1M commutesvith h, then (] - M - g) =
5. Shpw that |fa'per|od|c OI’.bIt 'ofthelpolar represen- MO, and the matriM acts as a multiplication by
tation Lorenz is also periodic orbit of the Lorenz the scalai® on thekth subspace. Show that for the 1-

flow, their Floquet mulltipliers are the same. How dimensional version of the lattice Laplacian (H.38) the
do the Floguet multipliers of relative periodic or- projection on thekth subspace is

bits of the representations relate to each other?

6. What does the volume contraction formula (4.48) (¢l CAgp) = 32 (cos(z—”k) _ 1) S . (H.77)
look like now? Interpret. & N

In the kth subspace the propagator is simply a number,

H.4. Laplacian is a non-local operator. and, in contrast to the mess generated by (H.75), there is

While the Laplacian is a simple tri-diagonafidirence nothing to evaluating:

operator (H.38), its inverse (the “free” propagator of sta-

. N A - A . l 6kk’

tistical mechanics and quantum field theory) is a messier o O = (H.78)
object. A way to compute is to start expanding propaga- KPl-A e - ﬁ (cos Zrk/N - 1)

tor as a power series in the Laplacian ) o . . .
wherek is a site in theN-dimensional dual lattice, and
a = L/N is the lattice spacing.

1 1o 1
— == —A". H.75
m1l-A P HZ:; m" ( ) H.6. Fix Predrag’s lecture od Feb 5, 2008.  Are theC;
frequencies on pp. 4,5 correct? If not, write the correct
As A is a finite matrix, the expansion is convergent for expression for the beat frequency.
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