Appendix F

| mplementing evolution

F.1 Koopmania

the language of functional analysis, by introducing Keepman operator,
whose action on a state space funcégx) is to replace it by its downstream
value timet later,a(x) — a(x(t)) evaluated at the trajectory poir(t):

THE waY in which time evolution acts on observables may be rephrased

Kla(x) = a(f'(x). (F.1)

Observablea(x) has no explicit time dependence; all the time dependence
comes from its evaluation a{t) rather than ak = x(0).

Suppose we are starting with an initial density of represtre pointsp(X):
then the average value afx) evolves as

_ 1 t _ 1 1
@it = o fM dxa(fi(x))p(x) = o fM dx [K'a(9| p(x).

An alternative point of view (analogous to the shift from tHeisenberg to the
Schroédinger picture in quantum mechanics) is to push dyecelraffects into the
density. In contrast to the Koopman operator which advativegrajectory by
timet, the Perron-Frobenius operator (16.10) depends on theeteay point time
tin the past, so the Perron-Frobenius operator is the adjbitite Koopman op-
erator

fM dx [K'a(x)] p(x) = fM dxa¥) [Lp(x)] - (F.2)

Checking this is an easy change of variables exercise. Fte fiimensional de-
terministic invertible flows the Koopman operator (F.1)imgly the inverse of the
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Perron-Frobenius operator (16.6), so in what follows welstw distinguish the
two. However, for infinite dimensional flows contractingvi@rd in time and for
stochastic flows such inverses do not exist, and there yaditod®e more careful.

The family of Koopman'’s operator{ﬂ(‘},gm forms a semigroup parameter-
ized by time

(@ x°=1
(b) K'K' =Kk tt >0 (semigroup property) ,

with the generator of the semigroup, the generator of infinitesimal time transl
tions defined by

A = lim 3(7(1—1).

t—0+ t

(If the flow is finite-dimensional and invertiblel is a generator of a group). The
explicit form of A follows from expanding dynamical evolution up to first order
asin (2.5):

Aa(¥) = lim % (a(f'(%) - a(x) = w(x)aia. (F3)

Of course, that is nothing but the definition of the time datiixe, so the equation
of motion fora(x) is

(% —5‘() a(x) = 0. (F.4)

appendix F.2

The finite time Koopman operator (F.1) can be formally exgedsby exponenti-
ating the time evolution generatot as

K=", (F.5)

exercise F.1

The generatorA looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothibgt a translation by

time x velocity: exercise 16.10

eVia(x) = a(x + tv). (F.6)

As we will not need to implement a computational formula fengrale” in

what follows, we relegate making sense of such operatorpperalix F.2. Here appendix F.2
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we limit ourselves to a brief remark about the notion of “dpem” of a linear
operator.

The Koopman operatok acts multiplicatively in time, so it is reasonable to
suppose that there exist constams> 0, 8 > 0 such that|k"|| < Mé&” for all
t > 0. What does that mean? The operator norm is define in the Sainiteirs
which we defined the matrix norms in sect. J.2: We are assuthigno value
of K'p(X) grows faster than exponentially for any choice of functigr), so that
the fastest possible growth can be bounde@'hya reasonable expectation in the
light of the simplest example studied so far, the exact escafe (17.20). If that
is so, multiplyingX! by e we construct a new operater#%* = &%) which
decays exponentially for large||€” )| < M. We say thae ¥%! is an element
of abounded semigroup with generatafl — 1. Given this bound, it follows by
the Laplace transform

0 1
j; dte Skt = - Res> S, (F.7)

that theresolvent operator 6 — A)~! is bounded (“resolvent= able to cause section J.2

separation into constituents)

< f dte*Me¥ = l.
0 s-p

=
s—-A

If one is interested in the spectrum%f, as we will be, the resolvent operator is a
natural object to study. The main lesson of this brief assdiat for the continu-
ous time flows the Laplace transform is the tool that bringsmthe generator in
(16.29) into the resolvent form (16.31) and enables us tysits spectrum.

F.2 Implementing evolution

(R. Artuso and P. Cvitanovit)

§
J We now come back to the semigroup of operatfts We have introduced
the generator of the semigroup (16.27) as

d
A= 5K

=0

If we now take the derivative at arbitrary times we get

t+7 _ t
(gm)(x) i YE09) ()

70 n

vi(F109) %w(i)';:f'(x)
= (K'Aw) (%)
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which can be formally integrated like an ordinanffdiential equation yielding exercise F.1

K=, (F.8)

This guarantees that the Laplace transform manipulatiosedt. 16.5 are correct.
Though the formal expression of the semigroup (F.8) is ggiitgple one has to
take care in implementing its action. If we express the egptal through the
power series

Kt = S . (F.9)

we encounter the problem that the infinitesimal generat6r2(@) contains non-
commuting pieces, i.e., there darg¢ combinations for which the commutator does
not satisfy

7}
a—xi,vj(x)] =0.

To derive a more useful representation, we follow the stratesed for finite-
dimensional matrix operators in sects. 4.2 and 4.3 and @ssetimigroup property
to write

t/or

K =[x
m=1

as the starting point for a discretized approximation todbetinuous time dy-
namics, with time stepr. Omitting terms from the second order onwards in the
expansion ofk?” yields an error of orde®(572). This might be acceptable if the
time stepdt is suficiently small. In practice we write the Euler product

t/oT

K= || @+6rAm) + O(T?) (F.10)
m=1

where

(Amy) () = (™ () g—ﬁ

 lg= e ()

As far as thex dependence is concernel”™™ acts as

X1 X1

gl ' : (F.11)
% % +6Tvi(X)
Xd Xd
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exercise 2.6

We see that the product form (F.10) of the operator is notkisg but a prescrip-
tion for finite time step integration of the equations of matk in this case the
simplest Euler type integrator which advances the trajgchy é7xvelocity at
each time step.

F.2.1 A symplecticintegrator

y
J The procedure we described above is only a starting poininfore so-
phisticated approximations. As an example on how to get gpehédound on the
error term consider the Hamiltonian flo = 8+ C, 8 = pi a‘—z]i, C= —aiV(q)a‘—;i.

Clearly the potential and the kinetic parts do not commute.riféike sense of theexercise F.2

formal solution (F.10) by splitting it into infinitesimalegbs and keeping terms up
to 672 in

KO = KO+ 2—14(67)3[8 +2C,[B.Cl| +---. (F.12)
where
(i((?r — e%ri'rﬁéifce%(irB . (F13)

The approximate infinitesimal Liouville operatﬁ‘i’ is of the form that now gen-
erates evolution as a sequence of mappings induced by 1@ 3eee flight by
1678, scattering byraV(q'), followed again by:s78 free flight:

e%m;{Q} . {q} _ {qf %’p}
p p p
I P PV
o4 p’ P+ otV (d)
/7 1 /0T
egm{q”} . {qm}:{q ZP } (F.14)

p p p’
Collecting the terms we obtain an integration rule for tlgiset of symplectic flow
which is better than the straight Euler integration (F.14)itais accurate up to
ordersr?:

(67)?

Oner = On—6TPn— Tav (Gn — 67pn/2)
pn + 670V (On — 67pn/2) (F.15)

Pn+1

The Jacobian matrix of one integration step is given by

1 —6t/2 1 0\(1 -o1/2
M:(O 1 )(5raV(q') 1)(0 1 ) (F.16)
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Note that the billiard flow (8.11) is an example of such syrofieintegrator. In
that case the free flight is interrupted by instantaneousreféctions, and can be
integrated out.

Commentary

Remark F.1 Koopman operators.  The “Heisenberg picture” in dynamical systems
theory has been introduced by Koopman and Von Neumann [B]] sEe also ref. [16.12].
Inspired by the contemporary advances in quantum mechatdopman [F.1] observed
in 1931 thatk" is unitary onL?(u) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator@i?n/h) —the kernel of£!(y, x) introduced

in (16.16) (see also sect. 17.2) is the analogue of the Gsdenction discussed here in
chapter 31. The relation between the spectrum of the Koopspanator and classical
ergodicity was formalized by von Neumann [F.2]. We shall us¢ Hilbert spaces here
and the operators that we shall stusiyl not be unitary. For a discussion of the relation
between the Perron-Frobenius operators and the Koopmaatopsefor finite dimensional
deterministic invertible flows, infinite dimensional camdting flows, and stochastic flows,
see Lasota-Mackey [16.12] and Gaspard [1.8].

Remark F.2 Symplectic integration. The reviews [F.12] and [F.13]ffer a good start-
ing point for exploring the symplectic integrators litareg. For a higher order integrators
of type (F.13), check ref. [F.18].

Exercises

F.1. Exponential form of semigroup elements. Check (F.12) are not vanishing by showing that

that the Koopman operator and the evolution generator

commute,K'A = AK', by considering the action of [8,C] = —p(v”— _vZ

both operators on an arbitrary state space funaieh

F.3. Symplectic leapfrog integrator.
for 2-dimensional Hamiltonian flows; compare it v
Runge-Kutta integrator by integrating trajectorie
F.2. Non-commutativity. Check that the commutators in some (chaotic) Hamiltonian flow.
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