Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnold’s
law)

2. Berry’s Law: sometimes, the sequence of an-

tecedents seems endless. So, nothing is discovered

for the first time.

3. Whiteheads's Law: Everything of importance has

been said before by someone who did not discover

it.
—M.V. Berry

A.1 Chaosisborn

(R. Mainieri and P. Cvitanovic)

RYING TO PREDICT the motion of the Moon has preoccupied astronomers since

I antiquity. Accurate understanding of its motion was imanttfor deter-
mining the longitude of ships while traversing open seas.

Kepler's Rudolphine tables had been a great improvement pewious ta-
bles, and Kepler was justly proud of his achievements. Heanirothe introduc-
tion to the announcement of Kepler's third lddarmonice MundiLinz, 1619) in
a style that would not fly with the contemporaPhysical Review Lettersditors:

What | prophesied two-and-twenty years ago, as soon as owbsed
the five solids among the heavenly orbits—what | firmly bedblong before
| had seen Ptolemyldarmonics-what | had promised my friends in the title
of this book, which I named before | was sure of my discoveryatsixteen
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years ago, | urged as the thing to be sought-that for whicineTycho
Brahé, for which I settled in Prague, for which | have dedadtee best part
of my life to astronomical contemplations, at length | haveught to light,
and recognized its truth beyond my most sanguine expensatiti is not
eighteen months since | got the first glimpse of light, threenths since
the dawn, very few days since the unveiled sun, most adneirmbbaze
upon, burst upon me. Nothing holds me; | will indulge my sdciery; |
will triumph over mankind by the honest confession that Iéatolen the
golden vases of the Egyptians to build up a tabernacle for oy far away
from the confines of Egypt. If you forgive me, | rejoice; if yawme angry, |
can bear it; the die is cast, the book is written, to be reateeimow or in
posterity, | care not which; it may well wait a century for ader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood siile SNewton.
The formalism that we use today was developed by Euler andabag. By the
end of the 1800's the three problems that would lead to theomaif chaotic
dynamics were already known: the three-body problem, thedéc hypothesis,
and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive thegdiorbits of Kepler
and set an example of how equations of motion could be solyddtegrating.
But the motion of the Moon is not well approximated by an elipvith the Earth

at a focus; at least thdfects of the Sun have to be taken into account if one wants

to reproduce the data the classical Greeks already posisebsalo that one has
to consider the motion of three bodies: the Moon, the Earitl,the Sun. When
the planets are replaced by point particles of arbitrarysessthe problem to be
solved is known as the three-body problem. The three-bodplem was also
a model to another concern in astronomy. In the Newtonianehofithe solar
system it is possible for one of the planets to go from antéliprbit around the
Sun to an orbit that escaped its dominion or that plunged figb it. Knowing

if any of the planets would do so became the problem of thelisyabf the solar
system. A planet would not meet this terrible end if solartesysconsisted of
two celestial bodies, but whether such fate could befalhia three-body case
remained unclear.

After many failed attempts to solve the three-body probleatural philoso-
phers started to suspect that it was impossible to integféte usual technique for
integrating problems was to find the conserved quantitieantities that do not
change with time and allow one to relate the momenta andiposiat diferent
times. The first sign on the impossibility of integrating tieee-body problem
came from a result of Burns that showed that there were noeceed quantities
that were polynomial in the momenta and positions. Burnsultedid not pre-
clude the possibility of more complicated conserved qtiasti This problem was
settled by Poincaré and Sundman in two verjestent ways.
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In an attempt to promote the journAkta MathematicaMittag-Leffler got
the permission of the King Oscar Il of Sweden and Norway tel#isth a mathe-
matical competition. Several questions were posed (adfhdlie king would have
preferred only one), and the prize of 2500 kroner would gdéokiest submission.
One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract eadr aitrording
to Newton’s laws, under the assumption that no two points ewitide, try
to find a representation of the coordinates of each point asriassin a
variable that is some known function of time and for all of wbewalues the
series converges uniformly.

This problem, whose solution would considerably extend wnder-
standing of the solar system, ...

Poincaré’s submission won the prize. He showed that ceedegjuantities that
were analytic in the momenta and positions could not exist. sfow that he
introduced methods that were very geometrical in spirie ithportance of state
space flow, the role of periodic orbits and their cross sestidghe homoclinic
points.

The interesting thing about Poincaré’s work was that itrtbtisolve the prob-
lem posed. He did not find a function that would give the cawatés as a function
of time for all times. He did not show that it was impossibléher, but rather that
it could not be done with the Bernoulli technique of findingomserved quantity
and trying to integrate. Integration would seem unlikelgnfr Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-b8mwedish mathe-
matician Sundman. Sundman showed that to integrate the-Hu@y problem
one had to confront the two-body collisions. He did that bkimg them go away
through a trick known as regularization of the collision rifialal. The trick is not
to expand the coordinates as a function of titnbut rather as a function offt.
To solve the problem for all times he used a conformal map agirip. This
allowed Sundman to obtain a series expansion for the coatebnvalid for all
times, solving the problem that was proposed by Weirstrasisa King Oscar II's
competition.

The Sundman’s series are not used today to compute thettnagescof any
three-body system. That is more simply accomplished by migademethods or
through series that, although divergent, produce betteramical results. The con-
formal map and the collision regularization mean that theeseare ectively in
the variable 1- e VI, Quite rapidly this gets exponentially close to one, the ra-
dius of convergence of the series. Many terms, more ternmrsahg one has ever
wanted to compute, are needed to achieve numerical comeggdhough Sund-
man’s work deserves better credit than it gets, it did na lip to Weirstrass's
expectations, and the series solution did not “considgrektend our understand-
ing of the solar system.” The work that followed from Poiredid.
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A.1.2 Ergodic hypothesis

The second problem that played a key role in development abtah dynamics

was the ergodic hypothesis of Boltzmann. Maxwell and Boétamhad combined
the mechanics of Newton with notions of probability in ordercreate statistical
mechanics, deriving thermodynamics from the equations exfhranics. To eval-
uate the heat capacity of even a simple system, Boltzmanrichathke a great
simplifying assumption of ergodicity: that the dynamicgdtem would visit every

part of the phase space allowed by conservation laws eqofélg. This hypoth-

esis was extended to other averages used in statisticalamieshand was called
the ergodic hypothesis. It was reformulated by Poincargatpthat a trajectory
comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be veffidlilt. By the end
of twentieth century it has only been shown true for a few esyst and wrong
for quite a few others. Early on, as a mathematical necedsi¢yproof of the
hypothesis was broken down into two parts. First one woutnhsthat the me-
chanical system was ergodic (it would go near any point) hed bne would show
that it would go near each point equally often and regulaslytst the computed
averages made mathematical sense. Koopman took the fjsinspeoving the
ergodic hypothesis when he realized that it was possiblefermulate it using
the recently developed methods of Hilbert spaces. This wasportant step that
showed that it was possible to take a finite-dimensional ineal problem and
reformulate it as a infinite-dimensional linear problem.isTtoes not make the
problem easier, but it does allow one to use féetlent set of mathematical tools
on the problem. Shortly after Koopman started lecturing ismiethod, von Neu-
mann proved a version of the ergodic hypothesis, givingeitdfatus of a theorem.
He proved that if the mechanical system was ergodic, thendimputed averages
would make sense. Soon afterwards Birfhmublished a much stronger version
of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the developmeithe theory of
chaotic dynamical systems was the work on the nonlineatlaes. The prob-
lem is to construct mechanical models that would aid our tstdeding of phys-
ical systems. Lord Rayleigh came to the problem throughterést in under-
standing how musical instruments generate sound. In theafigoximation one
can construct a model of a musical instrument as a lineallatsei But real in-
struments do not produce a simple tone forever as the lingalator does, so
Lord Rayleigh modified this simple model by adding frictiondamore realistic
models for the spring. By a clever use of negative frictioncheated two basic
models for the musical instruments. These models have rhare d pure tone
and decay with time when not stroked. In his bofike Theory of Sountord
Rayleigh introduced a series of methods that would proveeqgeneral, such as
the notion of a limit cycle, a periodic motion a system goeseardless of the
initial conditions.
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A.1.4 Chaosgrowsup

(R. Mainieri)

The theorems of von Neumann and Birhon the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developadmdirections. One
direction took an abstract approach and considered dymdsystems as trans-
formations of measurable spaces into themselves. Couldassify these trans-
formations in a meaningful way? This lead Kolmogorov to titedduction of the
concept of entropy for dynamical systems. With entropy agreathical invariant
it became possible to classify a set of abstract dynamicstesys known as the
Bernoulli systems. The other line that developed from tigeéic hypothesis was
in trying to find mechanical systems that are ergodic. An éigsystem could
not have stable orbits, as these would break ergodicity. nNSt888 Hadamard
published a paper with a playful title of ‘... billiards ".where he showed that
the motion of balls on surfaces of constant negative cureatieverywhere un-
stable. This dynamical system was to prove very useful ancé taken up by
Birkhoff. Morse in 1923 showed that it was possible to enumerate thies af
a ball on a surface of constant negative curvature. He dgllhiintroducing a
symbolic code to each orbit and showed that the number oftgessodes grew
exponentially with the length of the code. With contribuisoby Artin, Hedlund,
and H. Hopf it was eventually proven that the motion of a balasurface of con-
stant negative curvature was ergodic. The importance sfrésult escaped most
physicists, one exception being Krylov, who understood &physical billiard
was a dynamical system on a surface of negative curvatutsyithuthe curvature
concentrated along the lines of collision. Sinai, who wasftrst to show that a
physical billiard can be ergodic, knew Krylov's work well.

The work of Lord Rayleigh also received vigorous developtnérprompted
many experiments and some theoretical development by vaPaeDufing, and
Hayashi. They found other systems in which the nonlineaitlagwr played a role
and classified the possible motions of these systems. Thigeteness of experi-
ments, and the possibility of analysis was too much of tetigstdor Mary Lucy
Cartwright and J.E. Littlewood [A.18], who set out to prohat many of the struc-
tures conjectured by the experimentalists and theorgtiogdicists did indeed fol-
low from the equations of motion. Birklfibhad found a ‘remarkable curve’ in a
two dimensional map; it appeared to be noffatentiable and it would be nice
to see if a smooth flow could generate such a curve. The worladi@ght and
Littlewood lead to the work of Levinson, which in turn proeid the basis for the
horseshoe construction of S. Smale. chapter 12

In Russia, Lyapunov paralleled the methods of Poincaré initidted the
strong Russian dynamical systems school. Andronov caomedith the study of
nonlinear oscillators and in 1937 introduced together Withntryagin the notion
of coarse systems. They were formalizing the understangargered from the
study of nonlinear oscillators, the understanding thatyrrthe details on how
these oscillators work do noffact the overall picture of the state space: there will
still be limit cycles if one changes the dissipation or sgtiarce function by a lit-
tle bit. And changing the system a little bit has the greatatikge of eliminating
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exceptional cases in the mathematical analysis. Coargensysvere the concept
that caught Smale’s attention and enticed him to study dycelraystems.

A.2 Chaoswith us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where hé¢ Areol'd,
Anosov, Sinai, and Novikov. He lectured there, and spenttafidime with
Anosov. He suggested a series of conjectures, most of whitdsév proved
within a year. It was Anosov who showed that there are dynahsgstems for
which all points (as opposed to a non—wandering set) admibyiperbolic struc-
ture, and it was in honor of this result that Smale named tegseems Axiom-A.
In Kiev Smale found a receptive audience that had been tigridbout these prob-
lems. Smale’s result catalyzed their thoughts and iniatehain of developments
that persisted into the 1970's.

Smale collected his results and their development in th& i&@ew article on
dynamical systems, entitled “Bérentiable dynamical systems.” There are mathapter 12
great ideas in this paper: the global foliation of invariaets of the map into
disjoint stable and unstable parts; the existence of a Bbogeand enumeration
and ordering of all its orbits; the use of zeta functions tmigtdynamical systems.

The emphasis of the paper is on the global properties of thadical system, on
how to understand the topology of the orbits. Smale’s acctakes you from a
local differential equation (in the form of vector fields) to the glotzglological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little moonfusing. The
general character of entropy was understood by Weiner, wbamsd to have spo-
ken to Shannon. In 1948 Shannon published his results omiation theory,
where he discusses the entropy of the shift transformatigéalmogorov went
far beyond and suggested a definition of the metric entromnadrea preserving
transformation in order to classify Bernoulli shifts. Theggestion was taken by
his student Sinai and the results published in 1959. In 1966l connected
these results to measure-theoretical notions of entrofhye riext step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim Avidrew; these
papers showed that one could define the notion of topologicaibpy and use it
as an invariant to classify continuous maps. In 1967 Anosal inai applied
the notion of entropy to the study of dynamical systems. I \wathe context
of studying the entropy associated to a dynamical systemSimai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems stadistical me-
chanics; this has been a very fruitful relationship. It adésasure notions to the
topological framework laid down in Smale’s paper. Markovtp@ns divide the
state space of the dynamical system into nice little boxasrttap into each other.
Each box is labeled by a code and the dynamics on the state spgis the codes
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around, inducing a symbolic dynamics. From the number ofebaxeeded to
cover all the space, Sinai was able to define the notion obpytof a dynamical

system. In 1970 Bowen came up independently with the sanss,iddthough

there was presumably some flow of information back and foetote these pa-
pers got published. Bowen also introduced the importantephof shadowing of
chaotic orbits. We do not know whether at this point the refet with statistical

mechanics were clear to everyone. They became explicitarwibrk of Ruelle.

Ruelle understood that the topology of the orbits could leesied by a symbolic
code, and that one could associate an ‘energy’ to each drbé.energies could
be formally combined in a ‘partition function’ to generatestinvariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the founduetiof the statisti-
cal mechanics approach to chaotic systems, research ttos@allying particular
cases. The simplest case to consider is 1-dimensional fiapstopology of the
orbits for parabola-like maps was worked out in 1973 by Matis, Stein, and
Stein. The more general 1-dimensional case was worked dl@76 by Milnor
and Thurston in a widely circulated preprint, whose extehdersion eventually
got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, atelnSinspired
Feigenbaum to study simple maps. This lead him to the disg@f¢he universal-
ity in quadratic maps and the application of ideas from fiélelery to dynamical
systems. Feigenbaum’s work was the culmination in the stidydimensional
systems; a complete analysis of a nontrivial transitiorhi@mos. Feigenbaum intro-
duced many new ideas into the field: the use of the renornt@izgroup which
lead him to introduce functional equations in the study ofaiyical systems, the
scaling function which completed the link between dynaisgatems and statis-
tical mechanics, and the presentation functions whichrdesthe dynamics of
scaling functions.

The work in more than one dimension progressed very slowtyisustill far
from completed. The first result in trying to understand tbpology of the or-
bits in two dimensions (the equivalent of Metropolis, Steind Stein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 19/ &r$ton was giv-
ing lectures “On the geometry and dynamics dffebmorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not bpplied in physics,
but much of the classification that Thurston developed caoleined from the
notion of a ‘pruning front’ formulated independently by @movic.

Once one develops an understanding of the topology of thesaba dynam-
ical system, one needs to be able to compute its propertieslleRhad already
generalized the zeta function introduced by Artin and Masuthat it could be
used to compute the average value of observables. Theutty with Ruelle’s
zeta function is that it does not converge very well. Stgrtiut from Smale’s
observation that a chaotic dynamical system is dense wigh ef periodic orbits,
Cvitanovit used these orbits as a skeleton on which to etalthe averages of
observables, and organized such calculations in termspadlyaconverging cy-
cle expansions. This convergence is attained by using thréestorbits used as a
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basis for shadowing the longer orbits.

This account is far from complete, but we hope that it willhget a sense of
perspective on the field. It is not a fad and it will not die amg soon.

A.2.1 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.

— Joe Keller, after being asked to define applied
mathematics

The history of the periodic orbit theory is rich and curioas\d the recent
advances are to equal degree inspired by a century of sepdeselopment of
three disparate subjects; Iclassical chaotic dynamicsnitiated by Poincaré
and put on its modern footing by Smale [1.27], Ruelle [1.32]d many oth-
ers; 2. quantum theorynitiated by Bohr, with the modern ‘chaotic’ formulation
by Gutzwiller [21.13, A.28]; and 3. analyticumber theorynitiated by Riemann
and formulated as a spectral problem by Selberg [A.31, A.BB]lowing totally
different lines of reasoning and driven by versfelient motivations, the three sep-
arate roads all arrive at formally nearly identitace formulaszeta functionand
spectral determinants

That these topics should be related is far from obvious. €otion between
dynamics and number theory arises from Selberg’s observétiat description of
geodesic motion and wave mechanics on spaces of constattveegurvature is
essentially a number-theoretic proble posteriorj one can say that zeta func-
tions arise in both classical and quantum mechanics be@abséh the dynamical
evolution can be described by the action of linear evolufmrtransfer) operators
on infinite-dimensional vector spaces. The spectra of togseators are given
by the zeros of appropriate determinants. One way to evalletierminants is tosection 19.1
expand them in terms of tracdsg det= tr log, and in this way the spectrum of
an evolution operator becames related to its traces, iegiogic orbits. A per-
haps deeper way of restating this is to observe that the feacrilas perform the
same service in all of the above problems; they relate thetspe of lengths (lo-
cal dynamics) to the spectrum of eigenvalues (global aesja@nd for nonlinear
geometries they play a role analogous to that the Fouriesfoam plays for the
circle. exercise 4.1

In Gutzwiller's words:

“The classical periodic orbits are a crucial stepping stortae under-
standing of quantum mechanics, in particular when thersidaksystem is
chaotic. This situation is very satisfying when one think®oincaré who
emphasized the importance of periodic orbits in classicatmanics, but
could not have had any idea of what they could mean for quantechan-
ics. The set of energy levels and the set of periodic orbésamplementary
to each other since they are essentially related throughuadtdransform.
Such a relation had been found earlier by the mathematiamatiege study

appendHist - 19aug2008 ChaosBook.org version13, Dec 31 2009



APPENDIX A. A BRIEF HISTORY OF CHAOS 741

of the Laplacian operator on Riemannian surfaces with emristegative
curvature. This led to Selberg’s trace formula in 1956 whiek exactly the
same form, but happens to be exact. The mathematical proag\er, is
based on the high degree of symmetry of these surfaces waithecom-
pared to the sphere, although the negative curvature aflowsany more
different shapes.”

A.2.2 Dynamicist’svision of turbulence

The key theoretical concepts that form the basis of the tertme chapter 26 are
rooted in the work of Poincaré, Hopf, Smale, Ruelle and @ilker. In his 1889
analysis of the three-body problem [1.22] Poincaré inieti the geometric ap-
proach to dynamical systems and methods that lie at the ¢dhe theory devel-
oped here: qualitative topology of state space flows, Poinsactions, the key
roles played by equilibria, periodic orbits, heteroclicmnnections, and their sta-
ble/unstable manifolds. Poincaré’s work and parallel work gjunov’s school
in Russia was followed up by steady development of dynansigsiems theory
through the 20th century.

In a seminal 1948 paper [A.11], Hopf visualized the functpace of allow-
able Navier-Stokes velocity fields as an infinite-dimenalgrhase space, param-
eterized by viscosity, boundary conditions and externades, with instantaneous
state of a flow represented by a point in this state space. namnfliows corre-
spond to equilibrium points, globally stable forfBaiently large viscosity. As the
viscosity decreases (as the Reynolds number increasedjulént’ states set in,
represented by chaotic state space trajectories.

Hopf's observation that viscosity causes a contractiortaitesspace volumes
under the action of dynamics led to his key conjecture: thagiterm, typically
observed solutions of the Navier-Stokes equations lie atefaimensional man-
ifolds embedded in the infinite-dimensional state spacéloivad states. Hopf's
manifold, known today as the ‘inertial manifold,” is weliaglied in the mathe-
matics of spatio-temporal PDEs. lts finite dimensionaldy rion-vanishing ‘vis-
cosity’ parameter has been rigorously established in icesttings by Foias and
collaborators [A.39].

Hopf noted “[t]he great mathematicalfficulties of these important problems
are well known and at present the way to a successful attattkeon seems hope-
lessly barred. There is no doubt, however, that many cheniatit features of
the hydrodynamical phase flow occur in a much larger classntfas problems
governed by non-linear space-time systems. In order toigaight into the na-
ture of hydrodynamical phase flows we are, at present, fai@éidd and to treat
simplified examples within that class.”

Hopf's call for geometric state space analysis of simplifieadels first came
to fulfillment with the influential Lorenz’s truncation [2.8f the Rayleigh-Bénard
convection state space (see example 2.2), and was broughtlader to true
hydrodynamics with the Cornell group’s POD models of boupdayer turbu-
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lence [A.19, A.12]. Further significant progress has propedsible for sys-
tems such as the 1-spatial dimension Kuramoto-Sivashifieky{A.13, A.14], a
paradigmatic model of turbulent dynamics, and one of thetrxitgnsively stud-
ied spatially extended dynamical systems.

Today, as we hope to have convinced the reader, with modenpuatation and
experimental insights, the way to a successful attack orfutéNavier-Stokes
problem is no longer “hopelessly barred.” We address thdlesige in a way
Hopf could not divine, employing methodology developedyonithin the past
two decades, explained in depth in this book. Hopf presigiertted that “the ge-
ometrical picture of the phase flow is, however, not the mogiartant problem of
the theory of turbulence. Of greater importance is the ddtation of the proba-
bility distributions associated with the phase flow”. Hap¢all for understanding
of probability distributions under phase flow has indeedvproto be a key chal-
lenge, the one in which dynamical systems theory has madgré¢lagest progress
in the last half century, namely, the Sinai-Ruelle-Bowegoeic theory of ‘nat-
ural’ or SRB measures for far-from-equilibrium systems2[4,.1.28, 1.29, 1.32].

The story so far goes like this: in 1960 Edward A. Spiegel wabdt Kraich-
nan’s research associate. Kraichnan told him: “Flow fol@wregular solution for
a while, then another one, then switches to another ones todbulence.” It was
not too clear, but Kraichnan'’s vision of turbulence moved BdL962 Spiegel and
Derek Moore investigated a set of 3rd order convection egusitwhich seemed
to follow one periodic solution, then another, and contthgeing from periodic
solution to periodic solution. Ed told Derek: “This is tutence!” and Derek said
“This is wonderful!” and was moved. He went to give a lectut€altech some-
time in 1964 and came back angry as hell. They pilloried hierg¢h“Why is this
turbulence?” they kept asking and he could not answer, sxenged the word
‘turbulence’ from their 1966 article[A.15] on periodic smions. In 1970 Spiegel
met Kraichnan and told him: “This vision of turbulence of ysinas been very
useful to me.” Kraichnan said: “That wasn’t my vision, thaassHopf’s vision.”
What Hopfactually said and where he said it remains deeply obscure to this very
day. There are papers that lump him together with Landalneat andau-Hopf’s
incorrect theory of turbulence,’ but he did not seem to psgpmcommensurate
frequencies as building blocks of turbulence, which is witeatdau’s guess was.

Starting with the introduction of ‘cycle expansions’ [2Did 1988, the classi-
cal, mathematically rigorous SRB, and the closely relagedislassical Gutzwiller
theory, were refashioned intdfective tools for computing long time averages
of quantities measured in chaotic dynamics. The idea thadtah dynamics is
built upon unstable periodic orbits first arose in Ruellerkvon hyperbolic sys-
tems, with ergodic averages associated with natural iamarmeasures expressed
as weighted summations of the corresponding averages #iminfinite set of
unstable periodic orbits embedded in the underlying chas®t. For a long time
the convergence of such sums bedeviled the practitionat# tlie periodic orbit
theory was recast in terms of highly convergeyptle expansiong0.2] for which
relatively few short periodic orbits led to highly accuratansport rates for clas-
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sical systems, and quantal spectra for quantum systemsid&agin nutshell, is
that long orbits are shadowed by shorter orbits, anchthéerm in a cycle expan-
sion is the diference between the shorter cycles estimate of the perinales’
contribution from the exaat-cycles sum. For hyperbolic, everywhere unstable
flows, this diference falls of exponentially or super-exponentially. lenpenting
the cycle expansions theory, the group of Wintgen soon netha surprisingly
accurate helium spectrum [A.20] from a small set of shortgstes, 50 years af-
ter failure of the old quantum theory to do so, and 20 yeaes &utzwiller first
introduced his quantization of chaotic systems.

In 1996 Christianseret al. [A.40] proposed (in what is now the gold stan-
dard for an exemplaryhaosBook.org project) that the periodic orbit theory
be applied to infinite-dimensional flows, such as the NaSi@kes, using the
Kuramoto-Sivashinsky model as a laboratory for explorihg tlynamics close
to the onset of spatiotemporal chaos. The main conceptwainad in this ini-
tial foray was the demonstration that the high-dimensi¢h&t64 mode Galérkin
truncations) dynamics of this dissipative flow can be reduoean approximately
1-dimensional Poincaré return map- f(s), by choosing the unstable manifold
of the shortest periodic orbit as the intrinsic curvilineaordinate from which to
measure near recurrences. For the first time for any nonliRE4&, some 1,000
unstable periodic orbits were determined numerically.

What was novel about this work? First, dynamics on a strartgactéor em-
bedded in a high-dimensional space was reduced itttdnsic nearly 1-dimensional
dynamics, an approximate-ldimensionaimap from the segment of the unstable
manifold bracketed by the primary turning points onto fts&econd, the solu-
tions found provided both gualitative descriptionand highly accuratguanti-
tative predictiongor the given PDE with the given boundary conditions and the
given system parameter values.

The 1996 project went as far as one could with methods and et@tipn re-
sources available, until 2002, when new variational meshveere introduced [29.15,
A.41, 26.12]. Considerably more unstable, higher-dimameii regimes have be-
come accessible [26.14], and the full Navier-Stokes aimlgs wall-bounded
flows has become feasible [A.42].

A.2.3 Gruppenpest

How many Tylenols should | take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Walée, forced to read a version of chap-
ter 9.

If you are not fan of chapter 9 “World in a mirror,” and its etahtions, you
are not alone. Or, at least, you were not alone in 1930s. Bhahen the arti-
cles by two young mathematical physicists, Eugene WigneiJahann von Neu-
mann [A.23], and Wigner's 1931 Gruppentheorie [A.24] stdiDie Gruppenpest
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that plagues us to this very day.

According to John Baez [A.25], the American physicist Jolfte3, inventor
of the ‘Slater determinant,’ is famous for having dismisgeolups as unnecessary
to physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl enetd the picture
with their ‘Gruppenpest:’ the pest of the group theory [adly the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppest’ wrote papers
which were incomprehensible to those like me who had notietlugroup the-
ory... The practical consequences appeared to be negligibt everyone felt that
to be in the mainstream one had to learn about it. | had what bcdy describe
as a feeling of outrage at the turn which the subject had takeéhwas obvious
that a great many other physicists we are disgusted as | letvai¢h the group-
theoretical approach to the problem. As | heard later, thesse remarks made
such as ‘Slater has slain the 'Gruppenpest”. | believe thaither piece of work
| have done was so universally popular.”

A. John Coleman writes iGroups and Physics - Dogmatic Opinions of a Se-
nior Citizen [A.26]: “The mathematical elegance and profundity of Weyl's book
[Theory of Groups and QM] was somewhat traumatic for the Bhedpeaking
physics community. In the preface of the second edition BOl&fter a visit to
the USA, Weyl wrote, “It has been rumored that the ‘group degiradually being
cut out of quantum physics. This is certainly not true in soafathe rotation and
Lorentz groups are concerned; ...." In the autobiography. 6. Slater, published
in 1975, the famous MIT physicist described the “feeling ofrage” he and other
physicists felt at the incursion of group theory into phgsat the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published thiginly influential
treatise on the “Theory of Atomic Spectra”, Slater was wydeéralded as hav-
ing “slain the Gruppenpest”. Pages 10 and 11 of Condon andl&yis treatise
are fascinating reading in this context. They devote thi@graphs to the role
of group theory in their book. First they say, “We manage tbaeng without
it.” This is followed by a lovely anecdote. In 1928 Dirac gaveeminar, at the
end of which Weyl protested that Dirac had said he would makase of group
theory but that in fact most of his arguments were applicatiof group theory.
Dirac replied, “I said that | would obtain the results withguevious knowledge
of group theory!” Mackey, in the article referred to previty argues that what
Slater and Condon and Shortley did was to rename the gerewftthe Lie al-
gebra of SO(3) as “angular momenta” and create the feeliagwhat they were
doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people yauere working
with in Berlin, was there much interest in group theory as tfine?” WIGNER:
“No. On the opposite. Schrodinger coined the expressi@nuppenpest’ must
be abolished.” “It is interesting, and representative efrlations between math-
ematics and physics, that Wigner's paper was originallynstted to a Springer
physics journal. It was rejected, and Wigner was seekingyaips journal that
might take it when von Neumann told him not to worry, he woudd ifj into the
Annals of Mathematics. Wigner was happy to accept HierdA.27].”
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A.3 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn't.

— A. Pais, Inward Bound: of Matter and Forces in
the Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in higice at the Niels
Bohr Institute beaming with the unparalleled glee of a bop\Wwas just committed
a major mischief. The starting words of the manuscript hejistspenned are

The failure of the Copenhagen School to obtain a reasonable .

34 years old at the time, Dieter was a stywkind of guy, always in sandals and
holed out jeans, the German flavor of a 90’s left winger and antain climber,
working around the clock with his students Gregor and Klausdmplete the
work that Bohr himself would have loved to see done back ir61@l'planetary’
calculation of the helium spectrum.

Never mind that the ‘Copenhagen School’ refers not to thegalaghtum the-
ory, but to something else. The old quantum theory was naytegcll; it was a
set of rules bringing some order to a set of phenomena whittedd®gic of clas-
sical theory. The electrons were supposed to describe taignerbits around the
nucleus; their wave aspects were yet to be discovered. Tured&dions seemed
obscure, but Bohr's answer for the once-ionized helium tdrbgen ratio was
correct to five significant figures and hard to ignore. The aldrqum theory
marched on, until by 1924 it reached an impasse: the heliceotspn and the
Zeeman #ect were its death knell.

Since the late 1890’s it had been known that the helium spectonsists of
the orthohelium and parahelium lines. In 1915 Bohr suggkttat the two kinds
of helium lines might be associated with two distinct shagfesbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to workherproblem, and
wrote to Rutherford: “I have used all my spare time in the fasinths to make
a serious attempt to solve the problem of ordinary heliuncgpe ... think
really that at last | have a clue to the problem.” To othereadjues he wrote that
“the theory was worked out in the fall of 1916” and of havingaihed a “partial
agreement with the measurements.” Nevertheless, the Bommerfeld theory,
while by and large successful for hydrogen, was a disastendatral helium.
Heroic dforts of the young generation, including Kramers and Heisembwere
of no avail.

For a while Heisenberg thought that he had the ionizatioamgt! for helium,
which he had obtained by a simple perturbative scheme. Héevenathusiastic
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letters to Sommerfeld and was drawn into a collaboratiot Wiax Born to com-
pute the spectrum of helium using Born’s systematic pedivb scheme. In first
approximation, they reproduced the earlier calculatidrige next level of correc-
tions turned out to be larger than the computéeat. The concluding paragraph
of Max Born’s classic “Vorlesungen iber Atommechanik’frd 925 sums it up
in a somber tone:

(...) the systematic application of the principles of theagium theory

(...) gives results in agreement with experiment only insthoases where
the motion of a single electron is considered; it fails ewetthie treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not feafinsistent.
(...) A complete systematic transformation of the clagsivechanics into
a discontinuous mechanics is the goal towards which thetgoatheory
strives.

That year Heisenberg fiered a bout of hay fever, and the old quantum the-
ory was dead. In 1926 he gave the first quantitative explanaif the helium
spectrum. He used wave mechanics, electron spin and thedRalusion prin-
ciple, none of which belonged to the old quantum theory, dadgtary orbits of
electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasthe fault
of the old quantum mechanics, but rather it reflected thek &f understanding of
the subtleties of classical mechanics. Today we know wtegt thissed in 1913-
24: the role of conjugate points (topological indices) alatassical trajectories
was not accounted for, and they had no idea of the importahpermdic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods efdld quantum
mechanics has been fixed. Leopold and Percival [A.5] addedoibological in-
dices in 1980, and in 1991 Wintgen and collaborators [A.8] Ainderstood the
role of periodic orbits. Dieter had good reasons to gloatjlevthe rest of us
were preparing to sharpen our pencils and supercomputeyed@r to approach
the dreaded 3-body problem, they just went ahead and did ftatW took—and
much else—is described in this book.

Oneis also free to ponder what quantum theory would looktbkiay if all this
was worked out in 1917. In 1994 Predrag Cvitanovi¢ gavelaitaSeattle about
helium and cycle expansions to—inter alia—Hans Bethe, wed it so much that
after the talk he pulled Predrag aside and they trotted avetans’ secret place:
the best lunch on campus (Business School). Predrag askéoild quantum
mechanics look dierent if in 1917 Bohr and Krameet al. figured out how to
use the helium classical 3-body dynamics to quantize h&fium

Bethe was very annoyed. He responded with an exasperatkd In@Bethe
Deutschinglish (if you have ever talked to him, you can doubiee over your-
self):

“It would not matter at all!”
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Commentary

Remark A.1 Notion of global foliations.  For each paper cited in dynamical systems
literature, there are many results that went into its dgwelent. As an example, take the
notion of global foliations that we attribute to Smale. As & we can trace the idea, it
goes back to René Thom; local foliations were already ugétdniamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom wasaéxiplg his notion of
transversality. One of Thom’s disciples introduced Smaldtazilian mathematician
Peixoto. Peixoto (who had learned the results of the AndréPontryagin school from
Lefschetz) was the closest Smale had ever come until themetédmndronov-Pontryagin
school. It was from Peixoto that Smale learned about stratstiability, a notion that got
him enthusiastic about dynamical systems, as it blendebwitsl his topological back-
ground. It was from discussions with Peixoto that Smale getgroblems in dynamical
systems that lead him to his 1960 paper on Morse inequalifies next year Smale pub-
lished his result on the hyperbolic structure of the non-geaing set. Smale was not the
first to consider a hyperbolic point, Poincaré had alreadyedthat; but Smale was the
first to introduce a global hyperbolic structure. By 1960 &maas already lecturing on
the horseshoe as a structurally stable dynamical systelmanitnfinity of periodic points
and promoting his global viewpoint. (R. Mainieri)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponentKatok and J.-M. Strelcyn
carried out the program and developed a theory of generamjeal systems with sin-
gularities. They studied uniformly hyperbolic systems gaeng as Anosov’s), but with
sets of singularities. Under iterations a dense set of pdiits the singularities. Even
more important are the points that never hit the singulasty In order to establish some
control over how they approach the set, one looks at trajiest¢that approach the set by
some givere", or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the getmof billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was muchenobust: look at the

discontinuity set, take anneighborhood around it. Given that the Lebesgue measure is

€” and the stability grows not faster than (distarficd). Katok and J.-M. Strelcyn proved
that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Nuwsvgroblem has no
invariant Lebesgue measure. Assuming uniform hyperhglieiith singularities, and
tying together Lebesgue measure and discontinuities, amah ghat the stability grows

not faster than (distanck)Ya.B. Pesin proved that the Lyapunov exponent is non-zero,

and that SRB measure exists. He also proved that the Lorezzahd Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all troublenidifferentials. For the

Hénon attractor, already theff#irentials are nonhyperbolic. The points do not separate

uniformly, but the analogue of the singularity set can betetd by excising the regions
that do not separate. Hence there are 3 levels of ergodieragst

1. Anosov flow
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2. Anosov flow+ singularity set: For the Hamiltonian systems the generséda
studied by A. Katok and J.-M. Strelcyn, and the billiardsechg Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Resi

3. Hénon case: The first proof was given by M. Benedicks anddrleson [12.28].
A more readable proof is given in M. Benedicks and L.-S. Yo[&h@g1].

(based on Ya.B. Pesin’s comments)

Remark A.3 Einstein did it? ~ The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein [A.22]. The total discuas®a one sentence remark.
Einstein being Einstein, this one sentence has been deenfiedesit to give him the
credit for being the pioneer of quantum chaos [A.28, A.29 &¥ked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Paigh@ehad any recollection
of the 1917 article. However, Theo Geisel has unearthedexaete that shows that
in early 20s Born did have a study group meeting in his houae studied Poincaré’s
Méchanique Céleste [1.22]. In 1954 Fritz Reiche, who hadipusly followed Einstein
as professor of physics in Breslau (now Wroclaw, Poland)nted out to J.B. Keller
that Keller's geometrical semiclassical quantization aascipated by the long forgotten
paper by A. Einstein [A.22]. In this way an important papeitten by the physicist who
at the time was the president of German Physical Societytfendhost famous scientist
of his time, came to be referred to for the first time by Kellard0], 41 years later. But
before lan Percival included the topological phase, andd#imand students recycled the
Helium atom, knowing Méchanique Céleste was not enougioioplete Bohr's original
program.

Remark A.4 Berry-Keating conjecture. A very appealing proposal in the context
of semiclassical quantization is due to M. Berry and J. KepfA.33]. The idea is to
improve cycle expansions by imposing unitarity as a fun@loequation ansatz. The
cycle expansions that they use are the same as the origiral[@20.2, 22.1] described
above, but the philosophy is quitefidirent; the claim is that the optimal estimate for low
eigenvalues of classically chaotic quantum systems isrodrdeby taking the real part of
the cycle expansion of the semiclassical zeta functionoffuat the appropriate cycle
length. M. Sieber, G. Tanner and D. Wintgen, and P. Dahldirigtthat their numerical
results support this claim; F. Christiansen and P. Cviténde not find any evidence in
their numerical results. The usual Riemann-Siegel formakploit the self-duality of the
Riemann and other zeta functions, but there is no evidensaasf symmetry for generic
Hamiltonian flows. Also from the point of hyperbolic dynamidiscussed above, proposal
in its current form belongs to the category of crude cycleamgions; the cycles are cut
off by a single external criterion, such as the maximal cyclefimith no regard for the
topology and the curvature corrections. While the funaiaguation conjecture is notin
its final form yet, it is very intriguing and fruitful resedrénspiration.

The real life challenge are generic dynamical flows, whichdither of extreme ide-
alized settings, Smale horseshoe on one end, and the Rieretfumction on the other.

Remark A.5 Sources. The tale of appendix A.3, aside from a few personal recollec-
tions, is in large part lifted from Abraham Pais’ accountshaf demise of the old quantum
theory [A.6, A.7], as well as Jammer’s account [A.2]. In Asga994 Dieter Wintgen
died in a climbing accident in the Swiss Alps.
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