Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.
—Sayings of Vattay Gabor

N THIS APPENDIX W€ show that the multidimensional Lyapunov exponents and
relaxation exponents (dynamo rates) of vector fields caxpeesesed in terms
of leading eigenvalues of appropriate evolution operators

G.1 Evolution operator for Lyapunov exponents

,
J Lyapunov exponents were introduced and computed feddimensional
maps in sect. 17.3.2. For higher-dimensional flows only #wbBian matrices are
multiplicative, not individual eigenvalues, and the conmstion of the evolution
operator for evaluation of the Lyapunov spectra requiresettiension of evolution
equations to the flow in the tangent space. We now developethdsite theory.

Here we construct a multiplicative evolution operator (Qwhose spectral
determinant (G.8) yields the leading Lyapunov exponentaimensional flow
(and is entire for Axiom A flows).

The key idea is to extend the dynamical system by the tangemesof the
flow, suggested by the standard numerical methods for evafuaf Lyapunov
exponents: start aty with an initial infinitesimal tangent space vector in tihe
dimensional tangent spaeg0) € T My, and let the flow transport it along the
trajectoryx(t) = fi(xo).

The dynamics in the tangent bundbe dx) € T M is governed by the system
of equations of variations (4.2):

X=Vv(x), n=AX7.
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HereA(X) is (4.3), the stability matrix (velocity gradients madriof the flow. We
write the solution as

X() = f'(%), n() = I'(x0) 1m0, (G.1)

with the tangent space vectptransported by the Jacobian matdixo) = dx(t)/0%o
(4.6).

As explained in sect. 4.1, the growth rate of this vector idtiplicative along
the trajectory and can be representedn@¥ = |n(t)|/|n7(0) u(t) whereu(t) is a
“unit” vector in some nornil.||. For asymptotic times and for almost every initial
(%0, n(0)), this factor converges to the leading eigenvalue ofittearized stability
matrix of the flow.

We implement this multiplicative evaluation of Floquet tipliers by adjoin-
ing thed-dimensional transverse tangent space T My; n(X) - v(X) = 0 to the
(d+1)-dimensional dynamical evolution spaxe M c R%1. In order to deter-
mine the length of the vecterwe introduce a homogeneoudtdrentiable scalar
functiong(n) = |inll. It has the propertg(An) = |A|g(n) for any A. An example
is the projection of a vector to idth component

n
72

g = [ndl -

d

Any vectorn(0) € T My can now be represented by the prodpet Au, where
uis a “unit” vector in the sense that its norm|jig| = 1, and the factor

Al(Xo, Up) = g(n(t)) = 9(J3'(X0)Uo) (G.2)

is the multiplicative “stretching” factor.
Unlike the leading eigenvalue of the Jacobian the stretckactor is multi-

plicative along the trajectory:

A"™(x0, ug) = A" (X(1), u(t)) A'(Xo, o).
exercise G.1

Theu evolution constrained t&T 4y, the space of unit transverse tangent vectors,
is given by rescaling of (G.1):

U =R(xu) = ﬁ\]t(x)u. (G.3)
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Egs. (G.1), (G.2) and (G.3) enable us to defimawtiplicativeevolution operator
on the extended spatéx ETgy

6(x’ ~ ft(x)) S(u = R(x, u))

try/ (/- —_
L(X,U;xu) = AGCOPL

(G.4)

whereg is a variable.

To evaluate the expectation value of |ad(x, u)| which is the Lyapunov ex-
ponent we again have to take the proper derivative of tharigagigenvalue of
(G.4). In order to derive the trace formula for the operatr4) we need to eval-
uate TrL! = fdxduﬂ(u X; U, X). Thefdxmtegral yields a weighted sum over
prime periodic orbitgy and their repetitions:

(Tp)
t
mLo= Z pz|det(1 Mf)|Ap’“
8(u = R (xp, )
Apr = | d G5
o = [T ©.5)

whereMy is the prime cyclep transverse stability matrix. As we shall see below,
Ap, is intrinsic to cyclep, and independent of any particular periodic poipt

We note next that if the trajectorf(x) is periodic with periodT, the tangent
space containd periodic solutions

eDx(T +t) = (xt), i=1..d,

corresponding to thd unit eigenvectorge®, &2, ... e} of the transverse sta-
bility matrix, with “stretching” factors (G.2) given by itsigenvalues

Mp(XeV(¥) = Apie’(x), i=1,..d.  (nosummation of)

Thefdu integral in (G.5) picks up contributions from these peresiblutions. In
order to compute the stability of thth eigen-direction solution, it is convenient to
expand the variation around the eigenvea@rin the stability matrix eigenbasis
su =Y su, el . The variation of the map (G.3) at a complete periedT is then
given by

SR () Msu Med) (59(6(”)

g(MeD) ~ g(MeM)2 | au
_ Apk (10 ) ag(e(i)))
= Z (e e U OU . (G.6)

= Api

Méu)
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Thesu; component does not contribute to this sum sig@ + duel) = 1+ dy
impliesag(e”)/au; = 1. Indeed, infinitesimal variationi must satisfy

ag(u) _
ouy =0,

d
gu+su)y=gu)=1 = Zéu,g
=1

so the allowed variations are of form

ou = kg(e e m Ck, o<1,
#l

and in the neighborhood of thé¥) eigenvector thq duintegral can be expressed
as
f du= f n dog.
9 ki

Inserting these variations into tlfedu integral we obtain

fdu 5(e" + su-RT (€M) - 6RT(€V) + ..
g

= fﬂdq&((l—Ak/Ai)Ck+---)

ki

1
. (G.7)
1_.[ |1- Arp’k/Arp’i |

The corresponding spectral determinant is obtained byreimggthat the Laplace
transform of the trace (18.23) is a logarithmic derivativeL[s) = —dislog F(s)
of the spectral determinant:

esTpr
r|det(1- MY) |

F(B.9 = exp|- > Apr(B) ] (G.8)

p.r

This determinant is the central result of this section. &gz correspond to the
eigenvalues of the evolution operator (G.4), and can beuated by the cycle
expansion methods.
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The leading zero of (G.8) is called “pressure” (or free egigrg

P®) = so(B). (G.9)

The average Lyapunov exponent is then given by the firsta@re of the pressure
atp = 1:

1=P (). (G.10)

The simplest application of (G.8) is to 2-dimensional hjgodic Hamiltonian
maps. The Floquet multipliers are related Ry = 1/A, = A, and the spectral
determinant is given by

s 1
F(B,2 = exp|- A
(8.2 P ;”Awl_wp)z pr(B)
AF 1-B AF -3
Apr(B) Ao 5P (G.11)

+ .
1-1/A%  1-1/A%

The dynamics (G.3) can be restricted ta anit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobi ra®n this neighbor-
hood the largest eigenvalue of the Jacobi matrix is the orbdfpoint, and the
spectral determinant obtained by keeping only the largash theA,, sum in
(G.7) is also entire.

In case of maps it is practical to introduce the logarithmhaf keading zero
and to call it “pressure”

P(B) = log ().

The average of the Lyapunov exponent of the map is then giyéingdfirst deriva-
tive of the pressure ¢ = 1:

A=P(1).

By factorizing the determinant (G.11) into products of zeactions we can
conclude that the leading zero of the (G.4) can also be reedvieom the leading
zeta function

1/4o<ﬁ,z)=exp[—2 . ] (6.12)

r
o rAp

This zeta function plays a key role in thermodynamic appilices, see chapter K.
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G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An plais the mag-
netic field of the Sun which is “frozen” in the fluid motion. A gsively evolving
vector fieldV is governed by an equation of the form

OV +u-VV -V Vu=0, (G.13)

whereu(x, t) represents the velocity field of the fluid. The strength &f Yector
field can grow or decay during its time evolution. The ampdificn of the vector
field in such a process is called the "dynanfteet.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the fiéth an exponent

V(x 1) ~ V(x)et, (G.14)

wherev is called the fast dynamo rate. The goal of this section ishtasthat
periodic orbit theory can be developed for such a highly trsial system as
well.

We can write the solution of (G.13) formally, as shown by Gaud.etx(t, a)

be the position of the fluid particle that was at the p@iitt = 0. Then the field
evolves according to

V(x,t) = @& HV(a,0) , (G.15)

wherelJ(a, t) = d(x)/d(a) is the Jacobian matrix of the transformation that moves
the fluid into itselfx = x(a, t).

We writex = f'(a), wheref! is the flow that maps the initial positions of the
fluid particles into their positions at tinte Its inversea = f~(x), maps particles
at timet and positiorx back to their initial positions. Then we can write (G.15)

Vi(x, t) = f d®a £j;(x,a)V;(a,0) , (G.16)

with

£(x8) = 6(a- f-t(x»g—; . (G.17)

For large times, theftect of £! is dominated by its leading eigenvaluest with
Revg) > Regvj), i = 1,2 3, .... In this way the transfer operator furnishes the fast
dynamo ratey := v.
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The trace of the transfer operator is the sum over all pesiodbit contribu-
tions, with each cycle weighted by its intrinsic stability

6(t (Tp). (G.18)

TrLt= ZT Z |det

We can construct the corresponding spectral determinaunsuzed

tr M,
F(9) = exp|- ZZ |deti ve) S (G.19)

Note that in this formuli we have omitted a term arising frame Jacobian trans-
formation along the orbit which would give 4 tr ML in the numerator rather
than just the trace d1},. Since the extra term corresponds to advection along the
orbit, and this does not evolve the magnetic field, we have&hado ignore it. It

is also interesting to note that the negative powers of tieeklan occur in the
denominator, since we have! in (G.17).

In order to simplify F(s), we factor the denominator cycle stability determi-
nants into products of expanding and contracting eigeeglkor a 3-dimensional
fluid flow with cycles possessing one expanding eigenvalggwith |[Ap| > 1),
and one contracting eigenvalug (with [1p| < 1) the determinant may be ex-
panded as follows:

(L= A= AN =1l D7 Y A (G.20)

=0 k=0

det(1 - m7)[ " =

With this decomposition we can rewrite the exponent in (G

1 uf W\ )esrT c

S IDIONL

p jk=0r=1

“IH

ZZ

(1plAG ke STp) (L+AL) (G.21)

which has the form of the expansion of a logarithm:

D2 |log(1- ePlagiaylak) + log(1- e PlagAG 45| . (G.22)
pjk

The spectral determinant is therefore of the form,

F(s) = Fe(9Fc(9) (G.23)
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where

Fe(s) = n
p

=,

O(1 ~t89Ap) . (G.24)

=
I

(o)

Fo=[][](-t"2). (G.25)
P jk=0

with

. Pl
t9 = o 2 (G.26)
A

The two factors present iR(s) correspond to the expanding and contracting ex-
ponents. (Had we not neglected a term in (G.19), there woeld third factor
corresponding to the translation.)

For 2 — dimensionalHamiltonian volume preserving systems= 1/A and
(G.24) reduces to

oo k+1 eSTp
Fe(s) = HH( Akl] , tp=|AIDI . (G.27)

With op = Ap/|Ayl, the Hamiltonian zeta function (the = k = 0 part of the
product (G.25)) is given by

1/ Zayn(9) = ]—[ (1-ope™). (G.28)

p

This is a curious formula — the zeta function depends onlyhenreturn times,
not on the eigenvalues of the cycles. Furthermore, theiigent

AYYA 2
(L-A)A-1/A) IA-A)A-1/A)

when substituted into (G.23), leads to a relation betweenvittor and scalar
advection spectral determinants:

Fayn(S) = F5(9)/Zayn(9) - (G.29)

The spectral determinants in this equation are entire fgehyolic (axiom A)
systems, since both of them correspond to multiplicativeraiors.
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In the case of a flow governed by a map, we can adapt the forniGl25)
and (G.28) for the dynamo determinants by simply making thesstution

v =T | (G.30)

wheren, is the integer order of the cycle. Then we find the spectrardahant
Fe(2) given by equation (G.27) but with

Zp

th = — G.31

P 1A (€31
for the weights, and

1/Zayn(@) = Tp (1 - op2™) (G.32)

for the zeta-function

Formapswith finite Markov partition the inverse zeta function (G)32duces
to a polynomial forz since curvature terms in the cycle expansion vanish. For ex-
ample, for maps with complete binary partition, and withfilked point stabilities
of opposite signs, the cycle expansion reduces to

1/Zayn(S) = 1. (G.33)

For suchmapsthe dynamo spectral determinant is simply the square ofdakais
advection spectral determinant, and therefore all its z@re double. In other
words, for flows governed by such discrete maps, the fastrdgnate equals the
scalar advection rate.

In contrast, for 3-dimensiondlows the dynamo fect is distinct from the
scalar advection. For example, for flows with finite symbalimamical gram-
mars, (G.29) implies that the dynamo zeta function is a ratiovo entire deter-
minants:

1/Zayn(S) = Fayn(9)/F3(9) . (G.34)

This relation implies that foflowsthe zeta function has double poles at the zeros

of the scalar advection spectral determinant, with zerothefdynamo spectral
determinant no longer coinciding with the zeros of the gcativection spectral
determinant; Usually the leading zero of the dynamo spldétgrminant is larger exercise G.2
than the scalar advection rate, and the rate of decay of tlymetia field is no

longer governed by the scalar advection.
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EXERCISES

Commentary

Remark G.1 Lyapunov exponents.

Remark G.2 Dynamo zeta.

802

Sect. G.1is based on ref. [G.1].

The dynamo zeta (G.32) has been introduced by Aurell

and Gilbert [G.3] and reviewed in ref. [G.4]. Our expositimtiows ref. [13.21].

Exercises

G.1.

G.2.

Stretching factor.  Prove the multiplicative property
of the stretching factor (G.2). Why should we extend the
phase space with the tangent space?

Dynamo rate. Suppose that the fluid dynamics is
highly dissipative and can be well approximated by the
piecewise linear map

£(x) :{

on an appropriate surface of sectialf > 2). Suppose
also that the return time is constaint for x < 0 andTy

x<0,
x>0,

1+ax if

1-bx if (G.35)
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for x > 0. Show that the dynamo zeta is
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1/40(s) = 1— e /a— 5T/, (G.37)
Calculate the dynamo and the escape rates analytically
if b = a2 andT, = 2T.. Do the calculation for the case
when you reverse the signs of the slopes of the map.
What is the diference?
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