

with potential V(q) growing sufficiently fast as $q \to \pm \infty$ so that the classical particle motion is confined for any *E*. Define the local momentum p(q) and the local wavenumber k(q) by

$$p(q) = \pm \sqrt{2m(E - V(q))}, \quad p(q) = \hbar k(q).$$
 (32.3)

The variable wavenumber form of the Schrödinger equation

$$\psi'' + k^2(q)\psi = 0 \tag{32.4}$$

suggests that the wave function be written as $\psi = Ae^{\frac{1}{h}S}$, A and S real functions of q. Substitution yields two equations, one for the real and other for the imaginary part:

$$(S')^2 = p^2 + \hbar^2 \frac{A''}{A}$$
(32.5)

$$S''A + 2S'A' = \frac{1}{A}\frac{d}{dq}(S'A^2) = 0.$$
 (32.6)

The Wentzel-Kramers-Brillouin (*WKB*) or *semiclassical* approximation consists of dropping the \hbar^2 term in (32.5). Recalling that $p = \hbar k$, this amounts to assuming that $k^2 \gg \frac{A''}{A}$, which in turn implies that the phase of the wave function is changing much faster than its overall amplitude. So the WKB approximation can interpreted either as a short wavelength/high frequency approximation to a wave-mechanical problem, or as the semiclassical, $\hbar \ll 1$ approximation to quantum mechanics.

Setting $\hbar = 0$ and integrating (32.5) we obtain the phase increment of a wave function initially at *q*, at energy *E*

$$S(q,q',E) = \int_{q'}^{q} dq'' p(q'').$$
(32.7)

This integral over a particle trajectory of constant energy, called the *action*, will play a key role in all that follows. The integration of (32.6) is even easier

$$A(q) = \frac{C}{|p(q)|^{\frac{1}{2}}}, \qquad C = |p(q')|^{\frac{1}{2}}\psi(q'), \qquad (32.8)$$

WKB - 27aug2009

ChaosBook.org version13, Dec 31 2009

Chapter 32

WKB quantization

THE WAVE FUNCTION for a particle of energy E moving in a constant potential V is

 $\psi = A e^{\frac{i}{\hbar} pq} \tag{32.1}$

with a constant amplitude *A*, and constant wavelength $\lambda = 2\pi/k$, $k = p/\hbar$, and $p = \pm \sqrt{2m(E - V)}$ is the momentum. Here we generalize this solution to the case where the potential varies slowly over many wavelengths. This semiclassical (or WKB) approximate solution of the Schrödinger equation fails at classical turning points, configuration space points where the particle momentum vanishes. In such neighborhoods, where the semiclassical approximation fails, one needs to solve locally the exact quantum problem, in order to compute connection coefficients which patch up semiclassical segments into an approximate global wave function.

Two lessons follow. First, semiclassical methods can be very powerful - classical mechanics computations yield surprisingly accurate estimates of quantal spectra, without solving the Schrödinger equation. Second, semiclassical quantization does depend on a purely wave-mechanical phenomena, the coherent addition of phases accrued by all fixed energy phase space trajectories that connect pairs of coordinate points, and the topological phase loss at every turning point, a topological property of the classical flow that plays no role in classical mechanics.

32.1 WKB ansatz

Consider a time-independent Schrödinger equation in 1 spatial dimension:

$$\frac{\hbar^2}{2m}\psi''(q) + V(q)\psi(q) = E\psi(q), \qquad (32.2)$$

591