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26.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespear&omeo and JullietAct I, Scene |

Chapter 26 The Kuramoto-Sivashinsky [KS] system describes the flaroet filutter of
gas burning on your kitchen stove, figure 26.1 (a), and mahgrgbroblems of
greater import, is one of the simplest nonlinear systemsekiaibit ‘turbulence’
(in this context often referred to more modestly as ‘spatigporally chaotic be-

Tu rb u Ie n Ce’) havior’). The time evolution of the ‘flame front velocity’ = u(x, t) on a periodic

domainu(x,t) = u(x + L, t) is given by

Ut + %(UZ)X + Uxx + Uxxxx = 0, xe[0,L]. (26.2)

| am an old man now, and \_Nhen | die ar_1d go to Heaven In this equatiort is the time andk is the spatial coordinate. The subscrigtandt
there are two matters on which | hope enlightenment. One

is quantum electro-dynamics and the other is turbulence of denote partial Fieri_vatives with respect)t@_ndt: U = c'_)u/da, Uxxxx Stands for the
fluids. About the former, I am rather optimistic. 4th spatial derivative ofi = u(x, t) at positionx and timet. In what follows we
use interchangeably the “dimensionless system dizejr the periodic domain
sizeL = 2xL, as the system parameter. We take note, as in the NavieesStok
equation (26.1), of the “inertial” termayu, the “anti-difusive” terma2u (with a

HERE 1S ONLY ONE honorable cause that would justify sweating through so muc) “wrong” sign), etc..
formalism - this is but the sharpening of a pencil in ordet thea may attack @%
the Navier-Stokes equation,

—Sir Horace Lamb

The term (?)x makes this anonlinear system This is one of the simplest
conceivable nonlinear PDE, playing the role in the theorgmdtially extended
systems a bit like the role that thé nonlinearity plays in the dynamics of iterated
mappings. The time evolution of a typical solution of the &mioto-Sivashinsky section 3.3

ou
- Vul=-v Veu + f 26.1
P( +u U) pHyViu+T, (26.1) system is illustrated by figure 26.1 (b). remark 26.1

ot

Spatial periodicityu(x,t) = u(x + L,t) makes it convenient to work in the

and solve the problem of turbulence. Fourier space,

Flows described by partial fierential equations [PDESs] are said to be ‘in-

finite dimensional’ because if one writes them down as a seirdihary dif- 3 S ikx/ T
ferential equations [ODESs], one needs infinitely many ofhthe represent the u(x.t) = k; a()e ™, (26.3)

dynamics of one partial fierential equation.  Even though the state space is
infinite-dimensional, the long-time dynamics of many syseof physical inter-

est is finite-dimensional, contained within mertial manifold with the 1-dimensional PDE (26.2) replaced by an infiniteafeDDEs for the

complex Fourier coicientsay(t):

Being realistic, we are not so foolhardy to immediately igjerintothe prob-
lem — there are too many dimensions and indices. Insteadtastessnall, in one . o - . =
spatial dimensiony — u, u-Vu — udy, assume constapt forget about the pres- ac= @) = ((k/L)" - (/L)) a - '5F Z 8m3-m- (26.4)
surep, and so on. This line of reasoning, as well as many other Bgs@hsible e
threads of thought, such as the amplitude equations obtaiaeweakly nonlin-
ear stability analysis of steady flows, leads to a small sdtegfuently studied
nonlinear PDEs, like the one that we turn to now.

Sinceu(x, ) is real,a = a’, , and we can replace the sum in (26.10) by a sum
overk > 0.

Due to the hyperviscous dampingxxx long time solutions of Kuramoto-
Sivashinsky equation are smoo#h drop df fast withk, and truncations of (26.10)
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. 26,1 () Kuramoto-Sivashinsky dvnam 2vt, t), with v an arbitrary constant velocity, is also a solution. Withtags of
iclgLi;iiualiiéd(:)s thueaau?msen bismersgmg fﬁmer, generality, in our calculations we shall work in the mearoaelocity frame

with u = u(x, t) the “velocity of the flame front” at

positionx and timet. (b) A typical “turbulent” so-

lution of the Kuramoto-Sivashinsky equation, sys- fdx u=0. (26.5)
tem sizeL = 8886. The color (gray scale) in-

dicates the value afl at a given position and in-
stant in time. Thex coordinate is scaled with the
most unstable wavelengtlr2/2, which is approx-
imately also the mean wavelength of the turbule

u.h \ In terms of the system sidg the only length scale available, the dimensions

of terms in (26.2) areq] = L, [f] = L% [u] = L™, [v] = L?. Scaling out the

flow. The dynamics is typical of a large system, “viscosity” v
in this case approximately 10 mean wavelength
wide. (from ref. [26.14])
1 1
X=Xz, t—-ty, u-w?z,

brings the Kuramoto-Sivashinsky equation (26.2) to a niomedsional form

U= (W)= U= Ugoor, X € [0,Lv7%] = [0, 21l (26.6)
to N terms, 16< N < 128, yield highly accurate solutions for system sizes con-
sidered here. Robustness of the Fourier representatiorsaa function of the
number of modes kept in truncations of (26.10) is, howevsuile issue. Adding
an extra mode to a truncation of the system introduces a grdlirbation. How-
ever, this can (and often will) throw the dynamics into fietient asymptotic state.

A chaotic attractor foN = 15 can collapse into an attractive period-3 cycle for L=L/@rVv) (26.7)
N = 16, and so on. If we compute, for example, the Lyapunov expioh@., N)

for a strange attractor of the system (26.10), there is nsore#o expecti(L_, N) ) . . ) )

to smoothly converge to a limit valugL, o) asN — o, because of the lack of which plays the role of a "Reynolds number” for the Kuram&iwashinsky sys-
structural stability both as a function of truncatibh and the system size The tem.

topology is more robust fo windows of transient turbulence, where the system
can be structurally stable, and it makes sense to compufgibygs exponents, es-
cape rates, etc., for the repeller, i.e., the closure of ¢hefall unstable periodic

In this way we trade in the “viscosity’ and the system siZefor a single dimen-
sionless system size parameter

In the literature sometimédsis used as the system parameter, wiftxed to 1,
and at other timesis varied withL fixed to either 1 or 2. To minimize confusion,
in what follows we shall state results of all calculationsuimits of dimensionless

orbits. system sizd.. Note that the time units also have to be rescaled; for exanifpl
Spatial representations of PDEs (such as tesBapshots of velocity and T is a period of a periodic solution of (26.2) with a giverndL = 2r, then the
vorticity fields in Navier-Stokes)fer little insight into detailed dynamics of low- corresponding solution of the non-dimensionalized (282 period

Reflows. Much more illuminating are the state space repreienta

. o . . To=Tp/v. (26.8)
The objects explored in this paper: equilibria and shor!qnham orbits, are

robust both under mode truncations and small system paeainehanges.

26.1.2 Fourier space representation

26.1.1 Scaling and symmetries -
Spatial periodic boundary conditiargx, t) = u(x + 2zL,t) makes it convenient to

. . . . . . . . work in the Fourier space,
The Kuramoto-Sivashinsky equation (26.2) is space tréioskly invariant, time

translationally invariant, and invariant under reflectiors —x, u —» —u.

+00
jkx/L
Comparingu; and (12), terms we note that has dimensions ofq/[t], henceu u(x.t) = Z bi(t)e"/". (26.9)
is the “velocity,” rather than the “height” of the flame froibdeed, the Kuramoto- k=—co

Sivashinsky equation is Galilean invariant:uifx, t) is a solution, therv + u(x +
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with (26.6) replaced by an infinite tower of ODEs for the Feuodficients:
) . . . +00
b = (k/D)? (1 - (/D)) by + i(k/D) Z Brmbim - (26.10)
m=—co

This is the infinite set of ordinary fierential equations promised in this chapter’'s
introduction.

Sinceu(x t) is real,bx = b”, , so we can replace the sum oveiin (26.10) by
a sum ovem > 0. Asby = 0, by is a conserved quantity, in our calculations fixed
to by = 0 by the vanishing meaguy condition (26.5) for the front velocity.

Example 26.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier co-
efficients by are in general complex numbers. We can isolate the antisymmetric sub-
space u(x,t) = —u(—x,t) by considering the case of by pure imaginary, by = iax, where
ax = —a are real, with the evolution equations

&= (/DY (1= (WD) ac= (/D) D andim. (26.11)

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces
to the invariance under discrete translation by half a spatial period L. In the Fourier
representation (26.11) this corresponds to invariance under

m — Azm, Bm+1 —> —amil- (26.12)

The antisymmetric condition amounts to imposing u(0, t) = 0 boundary condition.

26.2 Infinite-dimensional flows: Numerics

The computer is not a mere mathematical excrescence,
useful for technological ends. Rather, | believe that it
is a meta-development that might very well change what
mathematics is considered to be.

— P. J. Davis [26.1]

The trivial solutionu(x, t) = 0 is an equilibrium point of (26.2), but that is basically
all we know as far as useful analytical solutions are corexriio develop some
intuition about the dynamics we turn to numerical simulasio

How are solutions such as figure 26.1 (b) computed? The sdéature of

such partial dierential equations is a theorem saying that for state space c
tracting flows, the asymptotic dynamics is describable Hiyite set of “inertial
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Figure 26.2: Spatiotemporally periodic solution
Up(X, 1), with periodTo = 30.0118 . The antisymmetric
subspaceu(x,t) = —u(-x,t), so we plotx € [0, L/2].
System sizd. = 2.89109,N = 16 Fourier modes trun-
cation. (From ref. [26.5])

manifold” ordinary diferential equations. How you solve the equation (26.2) nu-
merically is up to you. Here are some options:

Discrete mesh:You can divide thecinterval into a séficiently fine discrete grid of
N points, replace space derivatives in (26.2) by approxindaerete derivatives,
and integrate a finite set of first orderfigirential equations for the discretized
spatial components;(t) = u(jL/N,t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (26.10-tr
cating the ladder of equations to a finite number of mddese., setay = 0 for

k > N. In the applied mathematics literature more sophisticagthnts of such exercise 2.6

truncations are calle@alerkin truncationsor Galerkin projections You need to
worry about “stifness” of the equations and the stability of your integrafeor

the parameter values explored in this chapter, truncathns range 16 to 64
yields suficient accuracy.

Pseudo-spectral methods:You can mix the two methods, exploiting the speed
of Fast Fourier Transforms.

Example 26.2 Kuramoto-Sivashinsky simulation, antisymmetric subspac e: To
get started, we setv = 0.02991Q L = 2r in the Kuramoto-Sivashinsky equation (26.2),
or, equivalently, v = 1, L = 36.33052in the non-dimensionalized (26.6). Consider
the antisymmetric subspace (26.11), so the non-dimensionalized system size is L=
L/4r = 2.89109 Truncate (26.11) to 0 < k < 16, and integrate an arbitrary initial
condition. Let the transient behavior settle down.

Why this L? For this system size L the dynamics appears to be chaotic, as
far as can be determined numericall. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N, and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space using (26.9),
as in figure 26.1 (b) and figure 26.2. Such patterns give us a qualitative picture of the
flow, but no detailed dynamical information; for that, tracking the evolution in a high-
dimensional state space, such as the space of Fourier modes, is much more informa-
tive.
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-1.38

ugln+1)

142
Figure 26.3: Projections of a typical 16- Figure 26.4: The attractor of the Kuramoto-
dimensional trajectory onto fierent 3- Sivashinsky system (26.10), plotted as #iecompo- 1
dimensional subspaces, coordinatedga)a. as}, nent of thea; = 0 Poincaré section return map. Here s 0
(b) {a1, @, as}. System sizé. = 2.89109,N = 16 10,000 Poincaré section returns of a typical trajectol
Fourier modes truncation. (From ref. [26.5].) are plotted. Also indicated are the periodic points 0, : 1
01 and 10. System side = 2.89109,N = 16 Fourier 15

26.3 Visualization

The ultimate goal, however, must be a rational theory of
statistical hydrodynamics where [] properties of turbu-
lent flow can be mathematically deduced from the funda-
mental equations of hydromechanics.

—E. Hopf

The problem with high-dimensional representations, ssdhuacations of the
infinite tower of equations (26.10), is that the dynamicsitfiallt to visualize.

The best we can do without much programming is to examine réjectory’s section 26.3

projections onto any three axesa;, a, as in figure 26.3.

The question is: how is one to look at such a flow? It is not dleatrrestricting
the dynamics to a Poincaré section necessarily helpsr-alfte section reduces
a (d + 1)-dimensional flow to a@-dimensional map, and how much is gained by
replacing a continuous flow in 16 dimensions by a set of pami$ dimensions?
The next example illustrates the utility of visualizatiohdynamics by means of
Poincaré sections.

Example 26.3 Kuramoto-Sivashinsky Poincar é return maps: Consider the
Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (ar-
bitrarily) the hyperplane a, = O as the Poincaré section, and integrate (26.10) with
a; = 0, and an arbitrary initial point (az, ...,an). When the flow crosses the a; = 0
hyperplane in the same direction as initially, the initial point is mapped into (&, ... ay) =
P(az, ...,an). This defines P, the Poincaré return map (3.1) of the (N — 1)-dimensional
a; = 0 hyperplane into itself.

Figure 26.4 is a typical result. We have picked - again arbitrarily - a subspace
such as ag(n + 1) vs. ag(n) in order to visualize the dynamics. While the topology of the
attractor is still obscure, one thing is clear: even though the flow state space is infinite
dimensional, the attractor is finite and thin, barely thicker than a line.

The above example illustrates why a Poincaré section givesre informa-
tive snapshot of the flow than the full flow portrait. While nadistructure is
discernible in the full state space flow portraits of the Kneo#o-Sivashinsky dy-
namics, figure 26.3, the Poincaré return map figure 26.4atetbe fractal struc-
ture in the asymptotic attractor.

PDEs - 30mar2009 ChaosBook.org version13, Dec 31 2009

-15 -1.48 -142 -1.38 -1.34

modes truncation. (From ref. [26.5].) ag ()

In order to find a better representation of the dynamics, we twn to its
topological invariants.

26.4 Equilibria of equilibria

(Y. Lan and P. Cvitanovi€)

The set of equilibria and their stableinstable manifolds form the coarsest topo-
logical framework for organizing state space orbits.

The equilibrium conditiony = 0 for the Kuramoto-Sivashinsky equation PDE
(26.6) is the ODE

(Uz)x = Uxx — Uxxxx = 0

which can be analyzed as a dynamical system in its own rigtiegtating once
we get

U2 = Uy — Ugex = C, (26.13)

wherecis an integration constant whose value strongly influencesiature of the
solutions. Written as a 3-dimensional dynamical systerh gfiiatial coordinate
playing the role of “time,” this is a volume preserving flow

Uy =V, Vi =W, wy=ul-v-c, (26.14)
with the “time” reversal symmetry,

X— =X, U—-U V-V, W -W.
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From (26.14) we see that
(U+w)y=1?-c.

If ¢ < 0, u+ wincreases without bound witk — o, and every solution escapes
to infinity. If ¢ = 0, the origin (00, 0) is the only bounded solution.

Forc > 0 there is mucte-dependent interesting dynamics, with complicated
fractal sets of bounded solutions. The sets of the solutibtise equilibrium con-
dition (26.14) are themselves in turn organized by the éuyial of the equilibrium
condition, and the connections between them.d=s10 the equilibrium points of
(26.14) arec; = (4/c,0,0) andc_ = (- +/c, 0,0). Linearization of the flow around
¢, yields Floquet multipliers [2, -1 + i6] with

1
A= —sinhg, 0 = coshg,
73 ¢ he

andg fixed by sinh ® = 3V3c. Hencec, has a 1-dimensional unstable manifold
and a 2-dimensional stable manifold along which solutigrsabin. By thex —
—Xx“time reversal” symmetry, the invariant manifoldsaf have reversed stability
properties.

The non—-wandering set fo this dynamical system is quiteiyprand surpris-
ingly hard to analyze. However, we do not need to explore thetdl set of the
Kuramoto-Sivashinsky equilibria for infinite size systeerdy for a fixed system
size L with periodic boundary condition, the only surviving edjoila are those
with periodicity L. They satisfy the equilibrium condition for (26.10)

(k/D)? (1= (/D)%) b+ i(k/ D) i Brbm = 0. (26.15)

m=—co

Periods of spatially periodic equilibria are multipleslofEvery timef crosses an
integer valuel = n, n-cell states are generated through pitchfork bifurcatidns
the full state space they form an invariant circle due to taedlational invariance
of (26.6). In the antisymmetric subspace considered hieeg,dorresponds to two
points, half-period translates of each other of the form

u(x,t) = —zz brnSin(kny) ,
k

whereby, € R.

For any fixed period. the number of spatially periodic solutions is finite up to
a spatial translation. This observation can be heurigyicabtivated as follows.
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1 1
Figure 26.5: The non-wandering set under study =0 39
appears to consist of three patches: the left part
(SL), the center part§c) and the right part$g), - -
each centered around an unstable equilibrium: (a) R
centralC, equilibrium, (b) sideR; equilibrium on ) 10 20 30 40 2 10 20 30
the interval [QL]. (@) X (b) X

Finite dimensionality of the inertial manifold bounds theesof Fourier compo-
nents of all solutions. On a finite-dimensional compact fidehi an analytic
function can only have a finite number of zeros. So, the dayidl; i.e., the zeros
of a smooth velocity field on the inertial manifold, are fihjtenany.

For a stficiently smallL the number of equilibria is small, mostly concen-
trated on the low wave number end of the Fourier spectrumsé&kelutions may
be obtained by solving the truncated versions of (26.15).

Example 26.4 Some Kuramoto-Sivashinsky equilibria:

26.5 Why does a flame front flutter?

| understood every word. section 18.2
—Fritz Haake

We start by considering the case wheggis an equilibrium point (2.8). Ex-
panding around the equilibrium poiag, and using the fact that the matux =
A(ag) in (4.2) is constant, we can apply the simple formula (4.8ip to the
Jacobian matrix of an equilibrium point of a PDE,

Nag =" A=Aag).

Example 26.5 Stability matrix, antisymmetric subspace: The Kuramoto-Sivashinsky
flat flame front u(x, t) = 0 is an equilibrium point of (26.2). The stability matrix (4.3) fol-
lows from (26.10)

(@)

A(@) = a8, = ((k/D)? = (k/D)Ho; — 2(k/Darj . (26.16)

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and — as in (4.16)
— 50 is the Jacobian matrix J; (0) = di;e /L~ (/D

PDEs - 30mar2009 ChaosBook.org version13, Dec 31 2009
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10

Figure 26.6: Lyapunov exponents;, versusk for the o

least unstable spatio-temporally periodic ofbibf the -20
Kuramoto-Sivashinsky system, compared with the Flg
quet exponents of the(x,t) = O stationary solution,
A = K2 —vk*. The eigenvaluel;, for k > 8 falls be-
low the numerical accuracy of integration and are not
meaningful. The cycld was computed using meth- -0
ods of chapter 13. System sife= 2.89109,N = 16

Fourier modes truncation. (From ref. [26.5]) ) 2 4 6 8, 10 12 14 16

ForL < 1, u(xt) = 0 is the globally attractive stable equilibrium. As the
system sizd. is increased, the “flame front” becomes increasingly uristahd
turbulent, the dynamics goes through a rich sequence afdaifions on which we
shall not dwell here.

The long wavelength perturbations of the flat-front equilim are linearly
unstable, while all short wavelength perturbations arengfty contractive. The
high k eigenvalues, corresponding to rapid variations of the flo@, decay so
fast that the corresponding eigen-directions are phygioaélevant. To illustrate
the rapid contraction in the non-leading eigen-directiaesplot in figure 26.6 the
eigenvalues of the equilibrium in the unstable regime, éatively small system
size, and compare them with the Floquet multipliers of thestainstable cycle
for the same system size. The equilibrium solution is verstaiole, in 5 eigen-
directions, the least unstable cycle only in one. Note thakf> 7 the rate of
contraction is so strong that higher eigen-directions amaerically meaningless
for either solution; even though the flow is infinite-dimesrsl, the attracting set
must be rather thin.

While in general forl. sufficiently large one expects many coexisting attrac-
tors in the state space,in numerical studies most randaialinbnditions settle
converge to the same chaotic attractor.

From (26.10) we see that the origix, t) = 0 has Fourier modes as the linear
stability eigenvectors. Whelk| € (0, L), the corresponding Fourier modes are
unstable. The most unstable modes fas: £/ V2 and defines the scale of ba-
sic building blocks of the spatiotemporal dynamics of thedtooto-Sivashinsky
equation in large system size limit.

Consider now the case of initia suficiently small that the bilineaamayx-m
terms in (26.10) can be neglected. Then we have a set of diecblipear equa-
tions forax whose solutions are exponentials, at most a finite numbew/fich
k% > vk* is growing with time, and infinitely many withk* > k? decaying in time.
The growth of the unstable long wavelengths (Ifiy excites the short wave-
lengths through themak-m nonlinear term in (26.10). The excitations thus trans-
ferred are dissipated by the strongly damped short wavéiengnd a “chaotic
equilibrium” can emerge. The very short wavelengtiss> 1/ /v remain small
for all times, but the intermediate wavelengths of orfiker~ 1/ +/v play an im-
portant role in maintaining the dynamical equilibrium. Agtdamping parameter
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Table 26.1: Important Kuramoto-Sivashinsky equilibria: the first fevouet exponents

S FeETL PR PEETES
C, 0.04422:10.26160 -0.25510.431 -0.347%10.463
R, 0.01135:10.79651 -0.21%10.549 -0.35810.262
T 0.25480 -0.0%10.645 -0.264

decreases, the solutions increasingly take on shock fiwartacter poorly repre-
sented by the Fourier basis, and many higher harmonics mey teebe kept in
truncations of (26.10).

Hence, while one may truncate the high modes in the expa@&h0), care
has to be exercised to ensure that no modes essential torieemis are chopped
away.

In other words, even though our starting point (26.2) is dinite-dimensional
dynamical system, the asymptotic dynamics unfolds on eefuliinensional at-
tracting manifold, and so we are back on the familiar teryitof sect. 2.2: the
theory of a finite number of ODEs applies to this infinite-dimi®nal PDE as
well.

We can now start to understand the remark on page 42 that fioiténdi-
mensional systems time reversibility is not an option: etioh forward in time
strongly damps the higher Fourier modes. There is no turbigk: if we re-
verse the time, the infinity of high modes that contract sjtpriorward in time
now explodes, instantly rendering evolution backwardrnmetimeaningless. As so
much you are told about dynamics, this claim is also wrong subtle way: if
the initial u(x, 0) is in the non—-wandering set (2.2), the trajectory is well defined
both forward and backward in time. For practical purposkis, subtlety is not of
much use, as any time-reversed numerical trajectory in sefmide truncation
will explode very quickly, unless special precautions ateenh.

When is an equilibrium important? There are two kinds of roles equilibria
play:
“Hole” in the natural measure The more unstable eigen-directions it has (for

example, thair = 0 solution), the more unlikely it is that an orbit will recur its
neighborhood.

unstable manifold of a “least unstable” equilibriumAsymptotic dynamics
spends a large fraction of time in neighborhoods of a fewldmjiz with only a
few unstable eigen-directions.

Example 26.6 Stability of Kuramoto-Sivashinsky equilibria:
spiraling out in a plane, all other directions contracting
Stability of “center” equilibrium
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0.7

0.6+ o1

0.5~

P(s) 04

Figure 26.7: The Poincaré return map of the |

Kuramoto-Sivashinsky system (26.10) figure 26.4, °7 10

from the unstable manifold of the fixed point to the 01

(neighborhood of) the unstable manifold. Also indi-
cated are the periodic poinBsand01.

oo
0 01 02 03 04 05 06 07 08
s

linearized Floquet exponents:
W+ i0® 4@+ iw®,..) = (0.044+ 10.262, —0.255+ i 0.431, - --)

The plane spanned by u™ + iw® eigenvectors rotates with angular period
T ~ 2r/w® = 2402

a trajectory that starts near the C, equilibrium point spirals away per one rota-
tion with multiplier A ragiz) ~ expu®T) = 2.9.

each Poincaré section return, contracted into the stable manifold by factor of
Ay ~ exp@T) = 0.002

The local Poincaré return map is in practice 1 — dimensional

26.6 Periodic orbits

expanding eigenvalue of the least unstable spatio-tertipguariodic orbit 1:
A1 =-20...

very thin Poincaré section
thicknessx least contracting eigenvalue, = 0.007. ..

15- dimensional- 15 - dimensionaPoincaré return map projection on the
[ag — ag] Fourier component is not even- 1.

26.7 Intrinsic parametrization

Both in the Rossler flow of example 3.4, and in the Kuramat@shinsky system
of example 26.3 we have learned that the attractor is very thit otherwise the
return maps that we found were disquieting — neither figuéer@r figure 26.4
appeared to be one-to-one maps. This apparent loss ofibiligris an artifact of
projection of higher-dimensional return maps onto lowienehsional subspaces.
As the choice of lower-dimensional subspace is arbitrdng,resulting snapshots
of return maps look rather arbitrary, too. Other projecsionight look even less
suggestive.
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Such observations beg a question: Does there exist a “hatmtansically
optimal coordinate system in which we should plot of a retmap?

As we shall now argue (see also sect. 13.1), the answer isTy&sintrinsic
coordinates are given by the stgbilestable manifolds, and a return map should
be plotted as a map from the unstable manifold back onto tineeidiate neigh-
borhood of the unstable manifold.

Examination of numerical plots such as figure 26.3 suggkatsatmore thought-
ful approach would be to find a coordinate transformatjoa h(x) to a “center
manifold,” such that in the new, curvilinear coordinategé&scale dynamics takes
place in {1, y») coordinates, with exponentially small dynamicsy#ys - - -. But
- thinking is extra price - we do not know how to actually acgiish this.

Both in the example of the Rdssler flow and of the Kuramot@§hinsky
system we sketched the attractors by running a long chaafectory, and noted
that the attractors are very thin, but otherwise the retuapsithat we plotted were
disquieting — neither figure 3.6 nor figure 26.4 appeared tb-tie1 maps. In this
section we show how to use such information to approximdtelgite cycles.

26.8 Energy budget

The space average of a functiar= a(x, t) on the interval,

L
(a):%fo dxaxt), (26.17)

is in general time dependent. Its mean value is given by the &verage

1 t l t L
a= lim —fdr @ = lim —fdedXdX,T)‘ (26.18)
o0 € g o0 1L Jy Jo

The mean valu@, a = a(u) evaluated on an equilibrium or relative equilibrium
u(x,t) = ug(x—ct) is

aq = (8 - (26.19)

Evaluation of the infinite time average (26.18) on a functbm periodT, peri-
odic orbit or relative periodic orbitiy(x, t) requires only a single traversal of the
periodic solution,

T
ap_—

=T o dr (@) . (26.20)
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Equation (26.2) can be written as
U = —Vy, V(X 1) = 3% + Uy + Ugex. (26.21)

u is related to the “flame-front heighti(x, t) by u = hy, SOE can be interpreted
as the mean energy density (26.22). So, even though KS isreptamological
small-amplitude equation, the time-dependent quantity

1t 1t o

has a physical interpretation as the average “energy” tdeonsithe flame front.
This analogy to the corresponding definition of the meantiénenergy density
for the Navier-Stokes will be useful in what follows.

The energy (26.22) is also the quadratic norm in the Foupacs,

o0

E=) B,  Ex=ja? (26.23)
k=1

Take time derivative of the energy density (26.22), subii{26.2) and inte-
grate by parts. Total derivatives vanish by the spatialquiicity on theL domain:

m-
Il

lJ2
<utU>:7<(3+uux+uum) u>

X

2
<+ux UE + (Uy)? + Uy uxxx> . (26.24)

For an equilibriumE is constant:

. u2
E= <(? + Uy + uxxx)ux> =E(uy) =0.

The first term in (26.24) vanishes by integration by pa(r(te?’)x> = 3(ux u2> =0,
and integrating the third term by parts yet again we get thaenergy variation

E = ((u0)?) - ((ux)?) (26.25)

balances the KS equation (26.2) power pumped in by the @ffitistbnuyy against
energy dissipated by the hypervicosityx.

In figure 26.8 we plot the power inp{fuy)?) vs. dissipation((u)?) for all
L = 22 equilibria and relative equilibria determined so faxesal periodic orbits
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Figure 26.8: Power input((u,)?) vs. dissipation
((Uo)?) for L = 22 equilibria and relative equilib-
ria, for several periodic orbits and relative periodic
orbits, and for a typical “turbulent” state. Note that
(upx)? of the (Tp, dp) = (328,10.96) relative peri-
odic orbit which appears well embedded within
the turbulent state, is close to the turbulent expec-
tation(ux)? [temporary Japanese heresy].

0.2

Figure 26.9: EQ, (red), EQ, (green), EQs
(blue), connections fromEQ; to A(L/4EQ, v o4
(green), fromA(L/4)EQ, to EQ, (yellow-green)

and fromEQ; to A(L/4)EQ, (blue), along with 0.2
a generic long-time “turbulent” evolution (grey)

for L = 22. Three diferent projections of the

(E, ((ux)2>, ((uxx)2>) —((ux)2>) representation are
shown.

(uy) 2>

and relative periodic orbits, and for a typical “turbulemVolution.  The time
averaged energy densifycomputed on a typical orbit goes to a constant, so the
expectation values (26.26) of drive and dissipation eydwlance each out:

E = Jim % f drE = (U2 - (Ug)2 = 0. (26.26)
Sy

In particular, the equilibria and relative equilibria sit the diagonal in figure 26.8,
and so do time averages computed on periodic orbits andveefagriodic orbits:

E L
p—T—pfo rEr)

- 1 Tp 2 -
(W% = T, fo dr ((u0?) = (Und?p.- (26.27)
In the Fourier basis (26.23) the conservation of energy @nage takes form

0= (WDP?-(DHE.  E®) = la®)’. (26.28)
k=1
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The largek convergence of this series is insensitive to the systemlsiEg have
to decrease much faster thap(d/L)*.  Deviation of Ex from this bound for
smallk determines the active modes. This may be useful to boundutréder
of equilibria, with the upper bound given by zeros of a smalinber of long
wavelength modes.

Résum é

Turbulence is the graveyard of theories
— Hans W. Liepmann

We have learned that an instanton is an analytic solutionaoigYMills equa-
tions of motion, but shouldn't a strongly nonlinear fielddhgdynamics be dom-
inated by turbulent solutions? How are we to think aboutesyst where every
spatiotemporal solution is unstable?

Here we think of turbulence in spatially extended systentsrims of recurrent
spatiotemporal patterns. Pictorially, dynamics drivesvery spatially extended
system through a repertoire of unstable patterns; as wehveatarbulent system
evolve, every so often we catch a glimpse of a familiar patter

For any finite spatial resolution, the system follows apprately for a finite
time a pattern belonging to a finite alphabet of admissibléepas, and the long
term dynamics can be thought of as a walk through the spacacbf gatterns.
Recasting this image into mathematics is the subject obidxk.

The problem one faces with high-dimensional flows is thair ttegology is
hard to visualize, and that even with a decent starting gieesspoint on a peri-

odic orbit, methods like the Newton-Raphson method aréylitefail. Methods chapter 29

that start with initial guesses for a number of points aldmg ¢ycle, such as the
multipoint shooting method of sect. 13.3, are more robushe Telaxation (or
variational) methods take this strategy to its logical exte, and start by a guess
of not a few points along a periodic orbit, but a guess of théremrbit. As
these methods are intimately related to variational ppiesi and path integrals,
we postpone their introduction to chapter 29.

At present the theory is in practice applicable only to systevith a low
intrinsic dimension-the minimum number of coordinates necessary to capture its
essential dynamics. If the system is very turbulent (a dietson of its long time
dynamics requires a space of very high intrinsic dimensiea)are out of luck.
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Commentary

Remark 26.1 Model PDE systems.  The theorem on finite dimensionality of iner-
tial manifolds of state space contracting PDE flows is proiweref. [26.2]. The
Kuramoto-Sivashinsky equation was introduced in refs.3286.4]. Holmes, Lumley
and Berkooz [26.6] fier a delightful discussion of why this system deserves saglg
staging ground for studying turbulence in full-fledged Nanv&tokes equation. How good
a description of a flame front this equation is not a conceme;hsufice it to say that
such model amplitude equations for interfacial instak#itarise in a variety of contexts
- see e.g. ref. [26.7] - and this one is perhaps the simplestipdly interesting spatially
extended nonlinear system.

For equilibria theL-independent bound o is given by Michelson [26.8]. The best
current bound[26.9, 26.10] on the long-time limitBfas a function of the system size
scales a€ o« L3/2,

The work described in this chapter was initiated by Putkze&d1996 term project
(seeChaosBook.org/extras), and continued by Christiansen Cvitanovi¢, Davidchack,
Gibson, Halcrow, Lan, and Siminos [26.5, 26.11, 26.12, 920.15, 26.14, 26.15,
26.13].

Exercises

26.1. Galilean invariance of the Kuramoto-Sivashinsky equation for finite dimensional systems do not have smootl
havior in infinite dimensional vector spaces. Cons
as an example, a concentratipuliffusing onR accorc
ing to the difusion equation

(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: ifu(x,t) is a solution, then

V + U(x + 2vt, t), with v an arbitrary constant ve- b = }Vzd?
locity, i s also a solution. w2t
(b) Verify that mean (a) Interpretthe partial dierential equation as anir
_1 d nite dimensional dynamical system. That is, \
W= Jdxu it asx = F(x) and find the velocity field.
is conserved by the flow. (b) Show by examining the norm
(c) Arguethat the choice (26.5) of the vanishing mean 2_ [ dxa?
velocity, (u)y = 0 leads to no loss of generality in llgll” = 5 X¢°(x)
caIcuI?nons that follow. that the vector fieldr is not continuous.
(d) & [thinking is extra cost] Inspection () Trythe norm

of various “turbulent” solutions of Kuramoto- [l = suple(X)| .
Sivashinsky equation reveals subregions of “trav- R

exerPDEs - 22apr2007

eling waves” with locally nonzerdgu). Is there
a way to use Galilean invariance locally, even
though we eliminated it by th@l) = 0 condition?

26.2. Infinite  dimensional dynamical systems are not

smooth.  Many of the operations we consider natural

Is F continuous?

(d) Argue that the semi-flow nature of the proble
not the cause of our fliculties.

(e) Do you see a way of generalizing these resul

ChaosBook.org version13, Dec 31 2009



REFERENCES 525

References

[26.1] P.J. Davis, “Spanning multiple worldsSIAM Newst1 (Dec. 2008).

[26.2] C. Foias, B. Nicolaenko, G.R. Sell, and R. Témam, réfnoto-
Sivashinsky equation,]. Math. Pures et Appb7, 197 (1988).

[26.3] Y. Kuramoto and T. Tsuzuki, “Persistent propagatminconcentration
waves in dissipative media far from thermal equilibriun®togr. Theor.
Physics55, 365 (1976).

[26.4] G.I. Sivashinsky, “Nonlinear analysis of hydrodymaal instability in
laminar flames - I. Derivation of basic equation&¢ta Astr4, 1177 (1977).

[26.5] F. Christiansen, P. Cvitanovic and V. PutkaradZpdtiotemporal chaos
in terms of unstable recurrent patterns\onlinearity 10, 55 (1997);
arXiv:chao-dyn/9606016.

[26.6] P.Holmes, J.L. Lumley and G. Berkodzjrbulence, Coherent Structures,
Dynamical Systems and Symmetambridge U. Press, Cambridge 1996).

[26.7] I.G. Kevrekidis, B. Nicolaenko and J.C. Scovel, “Réc the saddle again:
a computer assisted study of the Kuramoto-SivashinskytemiaSIAM J.
Applied Math.50, 760 (1990).

[26.8] D. Michelson, Steady solutions of the Kuramoto-Shiasky equation,
Physica D19, 89 (1986).

[26.9] L. Giacomelli and F. Otto, New bounds for the Kuram&iwashinsky
equation, Comm. Pure Appl. Math8, 297 (2005).

[26.10] J. C. Bronski and T. N. Gambill, Uncertainty estiemand_, bounds for
the Kuramoto-Sivashinsky equation, Nonlinearit§, 2023-2039 (2006);
arXiv:math/0508481.

[26.11] “Chaoctic field theory: a sketch,/Physica A 288 61 (2000);
arXiv:nlin.CD/0001034.

[26.12] Y. Lan, Dynamical systems approach to 1-d spatiotemporal chaos — A
cyclist's view,Ph.D. thesis, Georgia Inst. of Tech. (2004).

[26.13] Y. Lan and P. Cvitanovic, “Unstable recurrent pais in
Kuramoto-Sivashinsky dynamics,Phys. Rev. E78, 026208 (2004);
arXiv:0804.2474.

[26.14] P. Cvitanovit, R. L. Davidchack and E. Siminos,dt8tspace geometry
of a spatio-temporally chaotic Kuramoto-Sivashinsky flo8lAM J. Applied
Dynam. System@009); arXiv:0709.2944.

[26.15] J. F. Gibson, J. Halcrow, and P. Cvitanovic, “Vikziag the geome-
try of state-space in plane Couette flow,”Fluid Mech.611, 107 (2008);
arXiv:0705.3957.

refsPDEs - 30mar2009 ChaosBook.org version13, Dec 31 2009

References 526
[26.16] J. F. Gibson, Movies of plane Couettg(Georgia Tech, 2009);
ChaosBook.orgtutorials.

[26.17] A. K. Kassam and L. N. Trefethen, “Fourth-order tistepping for st
PDESs,"SIAM J. Sci. Comp(2004).

[26.18] Poul Martin Mgller,En dansk Students Eventyr [The Adventures of a
Danish StudentjCopenhagen 1824).

refsPDEs - 30mar2009 ChaosBook.org version13, Dec 31 2009



