Chapter 37

Diffr action distraction

(N. Whelan)

IFFRACTION EFFECTS characteristic to scatteringfowvedges are incorporated
into the periodic orbit theory.

37.1 Quantum eavesdropping

As noted in chapteB6, the classical mechanics of the helium atom is undefined
at the instant of a triple collision. This is a common phenoare- there is often
some singularity or discontinuity in the classical mecharf physical systems.
This discontinuity can even be helpful in classifying thendgics. The points in
phase space which have a past or future at the discontiraity ihanifolds which
divide the phase space and provide the symbolic dynamiesg&heral rule is that
guantum mechanics smoothes over these discontinuitiepriocass we interpret
as difraction. We solve the local firaction problem quantum mechanically and
then incorporate this into our global solution. By doing s@& reconfirm the
central leitmotif of this treatise: think locally - act glalty.

While being a well-motivated physical example, the helitomais somewhat
involved. In fact, so involved that we do not have a clue howddoit. In its
place we illustrate the concept offidlactive dfects with a pinball game. There
are various classes of discontinuities which a billiard bawe. There may be a
grazing condition such that some trajectories hit a smootfase while others
are un#fected - this leads to the creeping described in ch&gterhere may be a
vertex such that trajectories to one side bounéeuintly from those to the other
side. There may be a point scatterer or a magnetic flux linb gt we do not
know how to continue classical mechanics through the diswaities. In what
follows, we specialize the discussion to the second examiblat of vertices or
wedges. To further simplify the discussion, we considersihecial case of a half
line which can be thought of as a wedge of angle zero.
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Figure 37.1: Scattering of a plane wavdfa half line. I

We start by solving the problem of the scattering of a planeend a half
line (see figure37.1). This is the local problem whose solution we will use to
construct a global solution of more complicated geometifés define the vertex
to be the origin and launch a plane wave at it from an angl&vhat is the total
field? This is a problem solved by Sommerfeld in 1896 and caoudision closely
follows his.

The total field consists of three parts - the incident fiel@, téflected field
and the difractive field. Ignoring the third of these for the moment, we $hat
the space is divided into three regions. In region | thereoth lan incident and a
reflected wave. In region Il there is only an incident field.région Il there is
nothing so we call this the shadowed region. However, becafidiffraction the
field does enter this region. This accounts for why you camleeas a conversation
if you are on the opposite side of a thick wall but with a dooewa fneters away.
Traditionally such &ects have been ignored in semiclassical calculations kecau
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with thieline case,
so let us briefly consider that much simpler problem. Thereknawv that the
problem can be solved by images. An incident wave of ammifui of the form

v(r, ) = AeTK cosv (37.1)

wherey = ¢ — @ and¢ is the angular coordinate. The total field is then given by
the method of images as

Vtot = V(I ¢ — @) = V(1. ¢ + @), (37.2)

where the negative sign ensures that the boundary condifiaero field on the
line is satisfied.

Sommerfeld then argued thafr, ) can also be given a complex integral
representation

v(r,y) = A fc dBf (B, y)e 'K 0% (37.3)

This is certainly correct if the functiom(s, ) has a pole of residue/2ri atB =
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Figure 37.2: The contour in the comple& plane. N %* % x%* §§
The pole is ap = —¢ (marked byx in the figure) X§ § \ § §§
and the integrand approaches zero in the shaded \ \ § \\g }i?\\ §§
regions as the magnitude of the imaginary part of NN MANNAN
B approaches infinity.
—y and if the contouC encloses that pole. One choice is
f(B,v¥) = ¢ (37.4)
v 27r &b — eV '

(We choose the pole to beat —y rather thaB = i for reasons discussed later.)
One valid choice for the contour is shown in figlg@.2 This encloses the pole
and vanishes gin 3| — o (as denoted by the shading). The sectibasandD
are congruent because they are displacedsyHbwever, they are traversed in
an opposite sense and cancel, so our contour consists @h@usections; and
C,. The motivation for expressing the solution in this comguied manner should
become clear soon.

What have we done? We extended the space under considdmgtefactor
of two and then constructed a solution by assuming that tiseedso a source
in the unphysical space. We superimpose the solutions frmmwo sources
and at the end only consider the solution in the physicalspabde meaningful.
Furthermore, we expressed the solution as a contour integreh reflects the 2
periodicity of the problem. The half line scattering prahléollows by analogy.

Whereas for the full line the field is periodic int2for the half line it is
periodic in 4. This can be seen by the fact that the field can be expanded in a
series of the forngsin(g/2), sin(@), sin(3/2), - - -}. As above, we extend the space
by thinking of it as two sheeted. The phyS|caI sheet is as shioigure37.1and
the unphysical sheet is congruent to it. The sheets are ghgether along the half
line so that a curve in the physical space which interseet#f line is continued
in the unphysical space and vice-versa. The boundary ¢onsliare that the total
field is zero on both faces of the half line (which are physjcdistinct boundary
conditions) and that as — oo the field is composed solely of plane waves and
outgoing circular waves of the form(¢) exp(kr)/ Vkr. This last condition is a
result of Huygens’ principle.

We assume that the complete solution is also given by theadeihimages
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Figure 37.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The cuFve

is traversed twice in opposite directions and has no
net contribution.
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as

Vtot = U(1, ¢ — @) — u(r, ¢ + ). (37.5)

where u(r, %) is a 4r-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical spackthe negative sign
guarantees that the solution vanishes on both faces of thénea Sommerfeld
then made the ansatz thats as given in equation3{.3 with the same contour
C1 + C, but with the 4 periodicity accounted for by replacing equati@v (4)
with

1 P

f(ﬂa lﬁ) = Eelﬁ/z _ e_iw/z' (376)

(We divide by 4 rather than 2 so that the residue is properly normalized.) The
integral 37.3 can be thought of as a linear superposition of an infinitylahp
waves each of which satisfies the Helmholtz equatith( k?)v = 0, and so their
combination also satisfies the Helmholtz equation. We \e#l that the diracted
field is an outgoing circular wave; this being a result of cing the pole aB =

—y rather tharB = ¢ in equation 87.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions andftbrereonstitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is usefutrtassage the contour.
Depending orp there may or may not be a pole betwggr —r andg = x. In
region I, both functionsu(r, ¢ + a) have poles which correspond to the incident
and reflected waves. In region I, onlyr, ¢ — @) has a pole corresponding to the
incident wave. In region lll there are no poles because okttelow. Once we
have accounted for the geometrical waves (i.e., the polesgxtract the diracted
waves by saddle point analysisfgt +r. We do this by deforming the contours
C so that they go through the saddles as shown in figur2
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CHAPTER 37. DIFFRACTION DISTRACTION 615

ContourC, becomesE, + F while contourC, becomesE; — F where the
minus sign indicates that it is traversed in a negative sefisea resultF has no
net contribution and the contour consists of jHstand Eo.

As a result of these machinations, the curzeare simply the curve® of
figure37.2but with a reversed sense. Since the integrand is no longeerodic,
the contributions from these curves no longer cancel. Wriat@aboth stationary
phase integrals to obtain

gr/4 jkr
u(r,y) = =A sec(/2 37.7
(r,¢) Vo v )WE (37.7)
so that the total diracted field is
gr/4 -« o+ a gkr
Vi = —A (sec( - se ) . 37.8
diff N 2 ) (< 2 ) Ve (37.8)

Note that this expression breaks down wigen « = 7. These angles correspond
to the borders among the three regions of figsirel and must be handled more
carefully - we can not do a stationary phase integral in tloénity of a pole.

However, the integral representatid@di (3 and @7.6) is uniformly valid. fexercise 37.1]

We now turn to the simple task of translating this result ithie language of
semiclassical Green'’s functions. Instead of an incidesmhghvave, we assume a
source at poink’ and then compute the resulting field at the receiver poskion
If xisin region I, there is both a direct term, and a reflected térmis in region
Il there is only a direct term and Kis in region Il there is neither. In any event
these contributions to the semiclassical Green'’s funai@known since the free
space Green’s function between two poirgsandx; is

Gt (X2 X1, K) = _Ll—lH((;“)(kd) ot — expli(kd + 7/4), (37.9)

7T

whered is the distance between the points. For a reflection, we resuittiply
by -1 and the distance is the length of the path via the reflect@ntp Most
interesting for us, there is also dldactive contribution to the Green’s function.
In equation 87.8), we recognize that the cfiientA is simply the intensity at the
origin if there were no scatterer. This is therefore repldngethe Green’s function
to go from the source to the vertex which we lakgl Furthermore, we recognize
that expikr)/ Vkr is, within a proportionality constant, the semiclassicat@'s
function to go from the vertex to the receiver.

Collecting these facts, we say
Gir(% X', K) = Gg(x, xv, K)d(6, 6")G¢(xv, X, K), (37.10)

where, by comparison with equatiors/(8 and @7.9), we have

N [0-¢ 0+6
d(e,e)_seo( 2 )—sec( > ) (37.11)
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Here# is the angle to the source as measured from the vertex anthe angle

to the receiver. They were denoted @snd ¢ previously. Note that there is
a symmetry between the source and receiver as we expect foreadversal
invariant process. Also the ftliaction codicient d does not depend on which
face of the half line we use to measure the angles. As we ve)lagery important
property ofGy;s is that it is a simple multiplicative combination of othenselassical

Green’s functions. .
[exercise 37.2]

We now recover our classical perspective by realizing treatan still think of
classical trajectories. In calculating the quantum Gre@&mction, we sum over
the contributions of various paths. These include the idak#ajectories which
connect the points and also paths which connect the poiattheivertex. These
have diferent weights as given by equatios (9 and @7.10 but the concept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact intezpedsentation for
the Green’s function in the presence of a wedge of arbitragnog angle 15].
It can be written as

G(x, X,K) =g(r,r', k.8 —0) —g(r,r', k., & + 0) (37.12)

where ¢, 6) and ¢/, ¢') are the polar coordinates of the poirtandx’ as measured
from the vertex and the angles are measured from either faite ovedge. The
functiong is given by

gr.r',ky) = 1 (37.13)

8ry

HG (K+/r2 + 172 — 2rr’ cosp)
1+C 1- exp(lT)

wherey = y/n andy is the opening angle of the wedge. fie= 2z in the case of
the half plane). The conto@; + C; is the same as shown in figug&.2

The poles of this integral give contributions which can bentified with
the geometric paths connectingand xX’. The saddle points &8 = +x give
contributions which can be identified with theffdactive path connecting and
X'. The saddle point analysis allows us to identify th@rettion constant as

46,9 4sinZ sing sin&
v (cosZ - cos

— (37.14)

20) (cosZ — cos=L )’
which reduces to37.11) wheny = 2. Note that the diraction codficient vanishes
identically if v = 1/n wheren is any integer. This corresponds to wedge angles
of y = n/n (eg. n=1 corresponds to a full line and=2 corresponds to a right
angle). This demonstration is limited by the fact that it eafrom a leading
order asymptotic expansion but the result is quite genErmlsuch wedge angles,
we can use the method of images (we will require-21 images in addition to
the actual source point) to obtain the Green’s function aedetis no diractive
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CHAPTER 37. DIFFRACTION DISTRACTION 617

Figure 37.4: The billiard considered here. The
dynamics consists of free motion followed by specular
reflections @ the faces. The top vertex induces 3
diffraction while the bottom one is a right angle and %
induces two specular geometric reflections. A

contribution to any order. Classically this correspondshi® fact that for such
angles, there is no discontinuity in the dynamics. Trajgesagoing into the vertex
can be continued out of them unambiguously. This meshesthéthdiscussion in
the introduction where we argued thaffdactive dfects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allog/to consider
geometries such that the angles are near the optical boesdaithe wedge angle
is close tor/n. For these geometries the saddle point analysis leadingj/ta.4
is invalid due to the existence of a nearby pole. In that ewgatrequire a more
sophisticated asymptotic analysis of the full integrakesentation.

37.2 An application

Although we introduced dliraction as a correction to the purely classidé¢ets;

it is instructive to consider a system which can be quantizelgly in terms

of periodic dffractive orbits. Consider the geometry shown in figBre4 The
classical mechanics consists of free motion followed bycslae reflections fi
faces. The upper vertex is a source dfrdiction while the lower one is a right
angle and induces noftliaction. This is an open system, there are no bound
states - only scattering resonances. However, we canestilithe &ectiveness

of the theory in predicting them. Formally, scattering remwces are the poles
of the scatterindgs matrix and by an identity of Balian and Bloch are also poles
of the quantum Green’s function. We demonstrate this fachempter34 for 2-
dimensional scatterers. The poles have complex wavenuknlbsrfor the 3-disk
problem.

Let us first consider how ffractive orbits arise in evaluating the trace of
G which we callg(k). Specifying the trace means that we must consider all
paths which close on themselves in the configuration spade sthtionary phase
arguments for large wavenumbleextract those which are periodic - just as for
classical trajectories. In generalk) is given by the sum over all firactive and
geometric orbits. The contribution of the simpldfdictive orbit labeled’ shown
in figure 37.5to g(k) is determined as follows.

We consider a poinP just a little of the path and determine the semiclassical
Green’s function to return tB via the vertex using37.9 and 37.10. To leading
order iny the lengths of the two geometric paths connecthgndV ared, =
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Figure 37.5: The dashed line shows a simple periodi
diffractive orbity. Between the verte¥ and a pointP 3 R \
close to the orbit there are two geometric legs labelej=—— L ——

+. The origin of the coordinate system is chosen to
atR. N

(L+£x)+y?/(L+X)?/2 so that the phase factid(d, +d_) equals ZKL+iky?/(L2—x2).
The trace integral involves integrating over all poiRtand is

e|(2kL+7r/2) dx 00 (lkyZ;)
~ - L) .
g,(k) 2d, 8K j; Tl dye (37.15)

We introduced an overall negative sign to account for thecgéin at the hard wall
and multiplied by 2 to account for the two traversal sen$8&PV andVPRV.
In the spirit of stationary phase integrals, we have negtethey dependence
everywhere except in the exponential. Thérdction constant, is the one
corresponding to the firactive periodic orbit. To evaluate tlygntegral, we use
the identity

f " ged® = gt \/g (37.16)

and thus obtain a factor which precisely cancelsttiependence in theintegral.
This leads to the rather simple result

(37.17)

A s
2k w/87rk|),

wherel, = 2L is the length of the periodic firactive orbit. A more sophisticated
analysis of the trace integral has been ddijeuging the integral representation
(37.13. ltis valid in the vicinity of an optical boundary and alsar fvedges with
opening angles close mg'n.

Consider a periodic éfractive orbit withn, reflections @ straight hard walls
andy,, diffractions each with a firaction constant, ;. The total length of the
orbit L, = > 1, ; is the sum of the various fiiractive legs and, is the length of
the corresponding prime orbit. For such an orti.(7 generalizes to

0,(k) = }exp{i(kLy + Ny — 3u,m/4)}. (37.18)

Sl

[exercise 37.3]

Each difraction introduces a factor of ¥k and multi-ditractive orbits are thereby
suppressed.
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If the orbity is prime therL, = |,. If y is ther’th repeat of a prime orbjt we
havelL, =rlg, n, = rpg andu, = ro-,g, wherelg, pg ando all refer to the prime
orbit. We can then write

ilg
& =% =5k (37.19)

where

}eXp{l(klﬁ + P — 30'ﬁ71'/4)} (37.20)

{1

It then makes sense to organize the sum ovE@raditive orbits as a sum over the
prime difractive orbits and a sum over the repetitions

At = ), D Gor = —2k Z T tﬁ (37.21)
B r=1

We cast this as a logarithmic derivativé7(7) by noting that?jiﬁ = llgts —
optg/2k and recognizing that the first term dominates in the sensidaklimit. It
follows that

d
i (K) ~ %& {In []a- tﬁ)} . (37.22)
B

In the case that there are onlyffdactive periodic orbits - as in the geometry of
figure 37.4- the poles ofy(k) are the zeros of a dynamical zeta function

1/£(K) = ]—[(1 — ). (37.23)
B

For geometric orbits, this function would be evaluated vaittycle expansion as
discussed in chapter8. However, here we can use the multiplicative nature of
the weightd; to find a closed form representation of the function using akigha
graph, as in secf.0.4.1 This multiplicative property of the weights follows from
the fact that the diractive Green'’s function3(7.10 is multiplicative in segment
semiclassical Green'’s functions, unlike the geometrie cas

There is a reflection symmetry in the problem which meansatetsonances
can be classified as even or odd. Because of this, the dyrlapeitzafunction
factorizesas & = 1/, (as explained in sect$9.5and19.1.1) and we determine
1/, and Y- separately using the ideas of symmetry decomposition qiften®9.

In the Markov graph shown in figurg7.6 we enumerate all processes. We
start by identifying the fundamental domain as just thetriudhlf of figure 37.4

whelan - 30nov2001.tex



CHAPTER 37. DIFFRACTION DISTRACTION 620

1 5

Figure 37.6. The two-node Markov graph with all the B A
diffractive processes connecting the nodes.

There are two nodes which we céllandB. To get to another node froB, we

can ditract (always via the vertex) in one of three directions. Wedig&tract back

to B which we denote as process 1. We cdirdct toB’s image pointB” and then
follow this by a reflection. This process we denote2ashere the bar indicates
that it involves a reflection. Third, we canfidact to nodeA. Starting atA we can

also dftract to a node in three ways. We caiffidict to B which we denote as 4.

We can difract toB’ followed by a reflection which we denote 4s Finally, we

can difract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier disaus First though,

we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratirgpsed loops
which do not intersect themselves in figlde.6 We do it first for 17, because
that is simpler. In that case, the processes with bars aett®n an equal footing
as the others. Appealing back to sdd@.5we find

1/¢4

1- t1 — ti— t5 — taty — t3tZ+ tsty + t5t§,
1- (tl +t;+ t5) — 23ty + t5(t1 + tE) (3724)

where we have used the fact that= t; by symmetry. The last term has a positive
sign because it involves the product of shorter closed lodjescalculate 17,
we note that the processes with bars have a relative negigivelue to the group
theoretic weight. Furthermore, process 5 is a boundary (sbé sectl9.3.1) and
only afects the even resonances - the terms involtdrage absent from/¥_. The
result is

1/¢-

1- L+ tf— taty + t3tZ,
1-(t1 - t5). (37.25)

Note that these expressions have a finite number of termsrantbain the form

: . ise 37.4
of a curvature expansion, as for the 3-disk problem. [exercise 37.4]

It now just remains to fix the weights. We use equati®n.20 but note that
each weight involves just oneftliaction constant. It is then convenient to define
the quantities

expli(2kL + 2r)} UZB _ expli(2kH + n)}‘ (37.26)

16rkL V16rkH

2 _
uA_

The lengthd. andH = L/ V2 are defined in figur87.4 we setl = 1 throughout.
Bouncing inside the right angle Atcorresponds to two specular reflections so that
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0.0

os| e complex k-plane

Figure 37.7: The even resonances of the wedge .s
scatterer of figur&7.4plotted in the complek—plane, 20
with L = 1. The exact resonances are represented -
as circles and their semiclassical approximations as -,
crosses.

«

o

p = 2. We therefore explicitly include the factor exgs) in (37.26 although it is
trivially equal to one. Similarly, there is one speculareefion at pointB giving
p = 1 and therefore a factor of exix]. We have definedia and ug because,
together with some €iraction constants, they can be used to construct all of the
weights. Altogether we define fourfthiaction codicients: dag is the constant
corresponding to dliracting fromB to A and is found from&7.17) with & = 3r/4
andd = m and equals 2 sea(8) ~ 2.165. With analogous notation, we hasiga
anddgg = dg g which equal 2 and ¢ V2 respectivelyd;; = dj; due to the Green’s
function symmetry between source and receiver referreargee Finally, there
is the difractive phase factos = exp (~i37/4) each time there is aftliaction.
The weights are then as follows:

SdB/BUZB ta=1= tZ = SjABUAUB
SdaaUA. (37.27)

1 = SjBBUZB ti

ts

Each weight involves twar's and oned. The u's represent the contribution to
the weight from the paths connecting the nodes to the venidxiaed gives the
diffraction constant connecting the two paths.

The equality ofdgg anddg g implies thatt; = t;. From 37.29 this means that
there are no odd resonances because 1 can never equal Oe Egethresonances
equation 87.24) is an implicit equation fok which has zeros shown in figug&.7.

For comparison we also show the result from an exact quanalculation.
The agreement is very good right down to the ground state s ae bften the
case with semiclassical calculations. In addition we canaig dynamical zeta
function to find arbitrarily high resonances and the resadtsially improve in that
limit. In the same limit, the exact numerical solution be@snmore diicult to
find so the dynamical zeta function approximation is paldidy useful in that

case. )
[exercise 37.5]

In general a system will consist of both geometric antragtive orbits. In
that case, the full dynamical zeta function is the producthef geometric zeta
function and the diractive one. The diiractive weights are typically smaller by
orderO(1/ Vk) but for smallk they can be numerically competitive so that there is
a significant difractive dfect on the low-lying spectrum. It might be expected that
higher in the spectrum, thefect of difraction is weaker due to the decreasing
weights. However, it should be pointed out that an analysihe situation for
creeping difraction [/] concluded that the €iraction is actuallymore important
higher in the spectrum due to the fact that an ever greatetidraof the orbits
need to be corrected forftliactive dfects. The equivalent analysis has not been
done for edge diraction but a similar conclusion can probably be expected.
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To conclude this chapter, we return to the opening paragaaphdiscuss the
possibility of doing such an analysis for helium. The impatt point which
allowed us to successfully analyze the geometry of figiifel is that when a
trajectory is near the vertex, we can extract itérdction constant without reference
to the other facets of the problem. We say, therefore, tlisigta “local” analysis
for the purposes of which we have “turnefi”’dhe other aspects of the problem,
namely sidesAB and AB’. By analogy, for helium, we would look for some
simpler description of the problem which applies near threahody collision.
However, there is nothing to “turnfid’ The local problem is just as fiicult as
the global one since they are precisely the same probletrglaged by scaling.
Therefore, it is not at all clear that such an analysis isiptes$or helium.

Résum é

In this chapter we have discovered new types of periodid®daintributing to the
semiclassical traces and determinants. Unlike the periodiits we had seen so
far, these are not true classical orbits. They are genelatesihgularities of the
scattering potential. In these singular points the classignamics has no unique
definition, and the classical orbits hitting the singulagtcan be continued in
many diferent directions. While the classical mechanics does noivkrhich
way to go, quantum mechanics solves the dilemma by allowspLcontinue
in all possible directions. The likelihoods offiirent paths are given by the
quantum mechanical weights calledfdiction constants. The total contribution to
a trace from such orbit is given by the product of transmissimplitudes between
singularities and diraction constants of singularities. The weights dfrdctive
periodic orbits are at least of ordet ¥k weaker than the weights associated with
classically realizable orbits, and their contribution aige energies is therefore
negligible. Nevertheless, they can strongly influence twe lying resonances
or energy levels. In some systems, such asNhdisk scattering the €raction
effects do not only perturb semiclassical resonances, butlsarcieate new low
energy resonances. Therefore itis always important tadecthe contributions of
diffractive periodic orbits when semiclassical methods aréexpat low energies.

Commentary

Remark 37.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

e a grazing condition such that some trajectories hit a smsotface while others
are un#fected, refs. ], 2, 3, 7]

e avertex such that trajectories to one side bounfterdintly from those to the other
side, refs. P, 4, 5, 8, 9].

e apoint scattererl[0, 11] or a magnetic flux line]2, 13] such that we do not know
how to continue classical mechanics through the discoitigsu
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Remark 37.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extegdhe geometrical ray
picture of optics to cases where there is a discontinuity. mdéntained that we could
hang onto that ray-tracing picture by allowing rays to stike vertex and then leave at
any angle with amplitude3(.8. Both he and Sommerfeld were thinking of optics and not
quantum mechanics and they did not phrase the results irs @fsemiclassical Green’s
functions but the essential idea is the same.

Remark 37.3 Generalizations  Consider the fect of replacing our half line by a
wedge of angle; and the right angle by an arbitrary angle If y, > y1 andy, > /2 this

is an open problem whose solution is given by equati@@s2d and 37.29 (there will
then be odd resonances) but with modified weights reflectiagchanged geometrg]
(Fory, < /2, more difractive periodic orbits appear and the dynamical zeta fonst
are more complicated but can be calculated with the sameinegh) Wheny, = y;, the
problem in fact has bound statesl] 27]. This last case has been of interest in studying
electron transport in mesoscopic devices and in microwaxeguides. However we can
not use our formalism as it stands because tfieadiive periodic orbits for this geometry
lie right on the border between illuminated and shadowetbregso that equatior8{.7)

is invalid. Even the more uniform derivation df][fails for that particular geometry, the
problem being that the firactive orbit actually lives on the edge of a family of georitet
orbits and this makes the analysis still morgidult.

Remark 37.4 Diffractive Green's functions. The result 87.17 is proportional to the
length of the orbit times the semiclassical Green'’s fumc({i®r.9 to go from the vertex
back to itself along the classical path. The multidictive formula87.19 is proportional
to the total length of the orbit times the product of the sdasisical Green’s functions to
go from one vertex to the next along classical paths. Thidtrgeneralizes to any system
— either a pinball or a potential — which contains point silagities such that we can
define a difraction constant as above. The contribution to the traceetemiclassical
Green's function coming from afilfactive orbit which hits the singularities is proportional
to the total length (or period) of the orbit times the prodattsemiclassical Green’s
functions in going from one singularity to the next. Thisuiedirst appeared in reference
[2] and a derivation can be found in referenég [A similar structure also exists for

creeping PJ.

Remark 37.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of diractive
orbits has been made in affdirent atomic physics system, the response of hydrogenic
atoms to strong magnetic fieldgd. In these systems, a single electron is highly excited
and takes long traversals far from the nucleus. Upon retgra a hydrogen nucleus, it is
re-ejected with the reversed momentum as discussed inat&ptHowever, if the atom

is not hydrogen but sodium or some other atom with one valetestron, the returning
electron feels the charge distribution of the core elecamd not just the charge of the
nucleus. This so-called quantum defect induces scatténirsgidition to the classical
re-ejection present in the hydrogen atom. (In this case dhal lanalysis consists of
neglecting the magnetic field when the trajectory is neamtideus.) This is formally
similar to the vertex which causes both specular reflectrmhdiiraction. There is then
additional structure in the Fourier transform of the quamspectrum corresponding to
the induced diractive orbits, and this has been observed experimenial]y [
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Exercises

37.1

37.2.

37.3.

. Stationary phase integral.

Evaluate the two
stationary phase integrals corresponding to contByrs
andE; of figure37.3and thereby verify%7.7).

(N. Whelan)

Scattering from a small disk  Imagine that instead

of a wedge, we have a disk whose radaiss much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for small Following

the discussion above, show that thérdiction constant

1S 37.5.

=
Iog(%)—yeﬂg

whereye = 0.577--- is Euler's constant. Note that in
this limit d depends weakly okbut not on the scattering
angle.

(37.28)

(N. Whelan)

Several diffractivelegs. Derive equation7.18§. The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself
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4. Unsymmetrized dynamical zeta function.

that a slight variation of the ffractive orbit only &ects
one leg at a time.
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Assume
you know nothing about symmetry decomposition.
Construct the three node Markov diagram for fig8rel
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nis a non-negative integer. (See also referendg)

(N. Whelan)

[37.2] G. Vattay, A. Wirzba and P. E. Rosenqgvist, Phys. Resatt.[73, 2304
(1994); G. Vattay, A. Wirzba and P. E. RosenqvistRroceedings of the
International Conference on Dynamical Systems and Chaos. val. 2, edited
by Y.Aizawa, S.Saito and K.Shiraiwa (World Scientific, Sapgre, 1994).

[37.3] H. Primack, H. Schanz, U. Smilansky and I. Ussishighys. Rev. Lett.

76, 1615 (1996).

[37.4] N. D. Whelan, Phys. Rev. &1, 3778 (1995).

[37.5] N. Pavldt and C. Schmit, Phys. Rev. Le®5, 61 (1995).

[37.6] M. Sieber, N. Pavl, C. Schmit, Phys. Rev. b5, 2279 (1997).

refsWhelan - 18dec1997.tex



