Chapter 37

Diffr action distraction

(N. Whelan)

IFFRACTION EFFECTs Characteristic to scatteringfovedges are incorporated
into the periodic orbit theory.

37.1 Quantum eavesdropping

As noted in chapteB6, the classical mechanics of the helium atom is undefined
at the instant of a triple collision. This is a common phenoare- there is often
some singularity or discontinuity in the classical mechartf physical systems.
This discontinuity can even be helpful in classifying theawics. The points in
phase space which have a past or future at the discontirarity ihanifolds which
divide the phase space and provide the symbolic dynamiasg@&heral rule is that
guantum mechanics smoothes over these discontinuitiepriocass we interpret
as difraction. We solve the local firaction problem quantum mechanically and
then incorporate this into our global solution. By doing 8@ reconfirm the
central leitmotif of this treatise: think locally - act glaly.

While being a well-motivated physical example, the helidomais somewhat
involved. In fact, so involved that we do not have a clue hovddoit. In its
place we illustrate the concept offilactive dfects with a pinball game. There
are various classes of discontinuities which a billiard bawe. There may be a
grazing condition such that some trajectories hit a smootfase while others
are undtected - this leads to the creeping described in chaptethere may be a
vertex such that trajectories to one side bounéedintly from those to the other
side. There may be a point scatterer or a magnetic flux link twat we do not
know how to continue classical mechanics through the dismaities. In what
follows, we specialize the discussion to the second examiblat of vertices or
wedges. To further simplify the discussion, we considersthecial case of a half
line which can be thought of as a wedge of angle zero.
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Figure 37.1: Scattering of a plane wavéfa half line. 1

We start by solving the problem of the scattering of a planeend a half
line (see figured7.1). This is the local problem whose solution we will use to
construct a global solution of more complicated geometiiés define the vertex
to be the origin and launch a plane wave at it from an anglgVhat is the total
field? This is a problem solved by Sommerfeld in 1896 and csoudision closely
follows his.

The total field consists of three parts - the incident field téflected field
and the difractive field. Ignoring the third of these for the moment, we ¢hat
the space is divided into three regions. In region | thereoth lan incident and a
reflected wave. In region Il there is only an incident field.région Il there is
nothing so we call this the shadowed region. However, becafidiffraction the
field does enter this region. This accounts for why you cantmas a conversation
if you are on the opposite side of a thick wall but with a dooew fmeters away.
Traditionally such &ects have been ignored in semiclassical calculations kecau
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with thieline case,
so let us briefly consider that much simpler problem. Therekmn@wv that the
problem can be solved by images. An incident wave of amm@ifuts of the form

v(r, ) = Agikrcosy (37.1)

wherey = ¢ — a and¢ is the angular coordinate. The total field is then given by
the method of images as

Viot = V(1. ¢ — @) = V(1. ¢ + ), (37.2)

where the negative sign ensures that the boundary condifiaero field on the
line is satisfied.

Sommerfeld then argued thafr, ) can also be given a complex integral
representation

v(r. ) = A fc dB1(B.w)e ™ 0%, (37.3)

This is certainly correct if the functiof(B, ) has a pole of residue/2ri atp =
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Figure 37.2: The contour in the compleX plane.
The pole is a8 = —y (marked byx in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
B approaches infinity.

A

—y and if the contouC encloses that pole. One choice is

1 €&
2ref e

(37.4)

fB,y) =

(We choose the pole to be@t —y rather tharB = ¢ for reasons discussed later.)
One valid choice for the contour is shown in figu#.2 This encloses the pole
and vanishes gimg| — « (as denoted by the shading). The sectibasandD;
are congruent because they are displacedhyHowever, they are traversed in
an opposite sense and cancel, so our contour consists @h@usection<C; and
C,. The motivation for expressing the solution in this comgtierl manner should
become clear soon.

What have we done? We extended the space under considdrgtafactor
of two and then constructed a solution by assuming that tiseadso a source
in the unphysical space. We superimpose the solutions fr@mwo sources
and at the end only consider the solution in the physicalespabde meaningful.
Furthermore, we expressed the solution as a contour ihtebieh reflects the 2
periodicity of the problem. The half line scattering prabléllows by analogy.

Whereas for the full line the field is periodic int2for the half line it is
periodic in 4. This can be seen by the fact that the field can be expanded in a
series of the forntsin(g/2), sin(@), sin(3¢/2), - - -}. As above, we extend the space
by thinking of it as two sheeted. The physical sheet is as shodigure37.1and
the unphysical sheet is congruent to it. The sheets are ghgether along the half
line so that a curve in the physical space which interseetf#f line is continued
in the unphysical space and vice-versa. The boundary ¢onsliare that the total
field is zero on both faces of the half line (which are physjcdistinct boundary
conditions) and that as — oo the field is composed solely of plane waves and
outgoing circular waves of the form(¢) exp(kr)/ Vkr. This last condition is a
result of Huygens’ principle.

We assume that the complete solution is also given by theadethimages
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Figure 37.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The cufve

is traversed twice in opposite directions and has no
net contribution.

as
Vot = U(r, ¢ —a) — U(r. ¢ + ). (37.5)

whereu(r,y) is a 4r-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical spackthe negative sign
guarantees that the solution vanishes on both faces of thénea Sommerfeld
then made the ansatz thats as given in equatior3{.3 with the same contour
Cy + C, but with the 4 periodicity accounted for by replacing equatid@v (4)
with

1 b

Ar @Bl2 — g w2’ (37.6)

f(B.v) =

(We divide by 4 rather than 2 so that the residue is properly normalized.) The
integral 87.3 can be thought of as a linear superposition of an infinity lahp
waves each of which satisfies the Helmholtz equatiéh«( k?)v = 0, and so their
combination also satisfies the Helmholtz equation. We &l that the dfracted
field is an outgoing circular wave; this being a result of cting the pole g =

—y rather tharnB = ¢ in equation 87.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions andftivereonstitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is usefultassage the contour.
Depending ory there may or may not be a pole betwger —r andg = . In
region |, both functiona(r, ¢ + @) have poles which correspond to the incident
and reflected waves. In region Il, onlfr, ¢ — @) has a pole corresponding to the
incident wave. In region Ill there are no poles because oftialow. Once we
have accounted for the geometrical waves (i.e., the palesgxtract the diracted
waves by saddle point analysis@at +r. We do this by deforming the contours
C so that they go through the saddles as shown in figudr2
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ContourC; becomesE, + F while contourC, becomesE; — F where the
minus sign indicates that it is traversed in a negative sefisa& resultF has no
net contribution and the contour consists of jHstandE;.

As a result of these machinations, the cureare simply the curve® of
figure37.2but with a reversed sense. Since the integrand is no longeer2odic,
the contributions from these curves no longer cancel. Wriat@both stationary
phase integrals to obtain

dr/4 dkr
u(r,y) ~ —~-A——=sec(/2)— 37.7
(r.v) N v/2) N (37.7)
so that the total diracted field is
- g4 d—a o +ay v
Vaift = ~A~ 2= (sed*5") -sed*5)) N (37:8)

Note that this expression breaks down wigen @ = 7. These angles correspond
to the borders among the three regions of figeirel and must be handled more
carefully - we can not do a stationary phase integral in thinity of a pole.

However, the integral representatidv (3) and 37.6) is uniformly valid. [exercise 37.1]

We now turn to the simple task of translating this result ithte language of
semiclassical Green'’s functions. Instead of an incidesnt@lave, we assume a
source at poink’ and then compute the resulting field at the receiver position
If xis in region I, there is both a direct term, and a reflected térmis in region
Il there is only a direct term and K is in region Ill there is neither. In any event
these contributions to the semiclassical Green’s funaierknown since the free
space Green'’s function between two poirtsandx; is

G (%2, X1, K) = -}‘Hgﬂ (kd) ~ — expli(kd + 7/4)), (37.9)

1
V8rkd

whered is the distance between the points. For a reflection, we resdittiply
by —1 and the distance is the length of the path via the reflect@ntp Most
interesting for us, there is also dftlactive contribution to the Green’s function.
In equation 87.9), we recognize that the cirientA is simply the intensity at the
origin if there were no scatterer. This is therefore repldmgethe Green’s function
to go from the source to the vertex which we lakel Furthermore, we recognize
that expikr)/ Vkr is, within a proportionality constant, the semiclassicaé@h’s
function to go from the vertex to the receiver.

Collecting these facts, we say
Gy (% X', k) = G¢(x, xv. K)d(6, 8")G¢ (xv. X, K), (37.10)

where, by comparison with equatior&7(8 and 37.9, we have

d0.0) = se{e‘zel) _Sec(g_;g/)‘ (37.11)
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Here¢' is the angle to the source as measured from the vertex &nthe angle

to the receiver. They were denoted @sand ¢ previously. Note that there is
a symmetry between the source and receiver as we expect foreardversal
invariant process. Also the filiaction codicient d does not depend on which
face of the half line we use to measure the angles. As we vellsgery important
property ofGy;q is that itis a simple multiplicative combination of othenselassical

Green’s functions. )
[exercise 37.2]

We now recover our classical perspective by realizing theatan still think of
classical trajectories. In calculating the quantum Greémction, we sum over
the contributions of various paths. These include the idaktajectories which
connect the points and also paths which connect the poiatteivertex. These
have diferent weights as given by equatio®s (9 and @7.10 but the concept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact integpedsentation for
the Green'’s function in the presence of a wedge of arbitragning angle 15).
It can be written as

G(x, X, k) =g(r,r',k, ¢ —6) —g(r,r',k, ¢ + 6) (37.12)

where ¢,0) and ¢’, ") are the polar coordinates of the poimtandx’ as measured
from the vertex and the angles are measured from either fate ovedge. The
functiongis given by

, i HY (ky/r2 + 12 — 2rr’ cosp)
olr. k) = — 0

(37.13)
8mv Jeire, 1-exp(i2t)

wherev = y/x andy is the opening angle of the wedge. fie= 2r in the case of
the half plane). The conto@; + C; is the same as shown in figus&.2

The poles of this integral give contributions which can beniified with
the geometric paths connectingand X'. The saddle points g8 = =+ give
contributions which can be identified with theffdactive path connecting and
X'. The saddle point analysis allows us to identify th@rection constant as

- N
4sinZ siny sin<;

de,¢) = - (37.14)

v (cosZ - cos® ) (cosZ - cosﬂ)’

v v

which reduces to37.11) wheny = 2. Note that the diraction codficient vanishes
identically if v = 1/n wheren is any integer. This corresponds to wedge angles
of y = n/n (eg. r=1 corresponds to a full line and=@ corresponds to a right
angle). This demonstration is limited by the fact that it eafrom a leading
order asymptotic expansion but the result is quite genEalsuch wedge angles,
we can use the method of images (we will require-21 images in addition to
the actual source point) to obtain the Green'’s function &wedetis no diractive
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Figure 37.4: The billiard considered here. The
dynamics consists of free motion followed by specular
reflections & the faces. The top vertex induces
diffraction while the bottom one is a right angle and
induces two specular geometric reflections.

contribution to any order. Classically this correspondshe fact that for such
angles, there is no discontinuity in the dynamics. Trajéesogoing into the vertex
can be continued out of them unambiguously. This meshestiétidiscussion in
the introduction where we argued thafftictive éfects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allog/to consider
geometries such that the angles are near the optical boesdarthe wedge angle
is close tar/n. For these geometries the saddle point analysis leadingj/ta4
is invalid due to the existence of a nearby pole. In that ewgatrequire a more
sophisticated asymptotic analysis of the full integraresgntation.

37.2 An application

Although we introduced dliraction as a correction to the purely classidé¢ets;

it is instructive to consider a system which can be quantizelély in terms

of periodic difractive orbits. Consider the geometry shown in fig@re4 The
classical mechanics consists of free motion followed bycslze reflections i
faces. The upper vertex is a source dfrdiction while the lower one is a right
angle and induces no fifiaction. This is an open system, there are no bound
states - only scattering resonances. However, we canedillthe &ectiveness

of the theory in predicting them. Formally, scattering remuces are the poles
of the scatterindS matrix and by an identity of Balian and Bloch are also poles
of the quantum Green’s function. We demonstrate this fachapter34 for 2-
dimensional scatterers. The poles have complex wavenuknlsrfor the 3-disk
problem.

Let us first consider how firactive orbits arise in evaluating the trace of
G which we callg(k). Specifying the trace means that we must consider all
paths which close on themselves in the configuration spade sthtionary phase
arguments for large wavenumbleextract those which are periodic - just as for
classical trajectories. In generg(k) is given by the sum over all firactive and
geometric orbits. The contribution of the simpléfdictive orbit labeled shown
in figure 37.5to g(k) is determined as follows.

We consider a poin® just a little df the path and determine the semiclassical

Green’s function to return tB via the vertex using37.9 and @87.10. To leading
order iny the lengths of the two geometric paths connectthgndV ared. =
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%
Figure 37.5: The dashed line shows a simple periodiyf -----------===
diffractive orbity. Between the verte¥ and a poinf
close to the orbit there are two geometric legs label

atR.

(L+xX)+y?/(L+x)?/2 so that the phase factid(d, +d_) equals ZKL-+iky?/(L2-x?).
The trace integral involves integrating over all poiRtand is

d(@KLin/2)

6,09 ~ ~20, f \/T f ayd ). (37.15)

We introduced an overall negative sign to account for thecgéin at the hard wall
and multiplied by 2 to account for the two traversal sens#PV and VPRV.
In the spirit of stationary phase integrals, we have negtethey dependence
everywhere except in the exponential. Thérdction constand, is the one
corresponding to the firactive periodic orbit. To evaluate tlygntegral, we use
the identity

f " qeda — dnld \/g (37.16)

and thus obtain a factor which precisely cancelsttependence in theintegral.
This leads to the rather simple result

i 4 |,
Ny gi(Kly+/4) 37.17
2k { \/87rk|7} ( )

wherel, = 2L is the length of the periodic firactive orbit. A more sophisticated
analysis of the trace integral has been ddfjeuping the integral representation
(37.13. Itis valid in the vicinity of an optical boundary and alsar fvedges with
opening angles close g/n.

Consider a periodic diractive orbit withn, reflections @ straight hard walls
andy, diffractions each with a ffraction constantl, j. The total length of the
orbit L, = X1, ; is the sum of the various filfactive legs and, is the length of
the corresponding prime orbit. For such an ordf.(7 generalizes to

g, (k) = —=~ {ﬂ W} expli(kLy + nym — 3u,1/4)). (37.18)

[exercise 37.3]

Each difraction introduces a factor of ¥k and multi-ditractive orbits are thereby
suppressed.
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If the orbity is prime therL, = |,. If y is ther’th repeat of a prime orbj§ we
havel, = rlg, n, = rpg andu, = rop, wherelg, pg andoy all refer to the prime
orbit. We can then write

il
Oy = Qs = -Z—ﬁt,g (37.19)
where
op
tg = ———— rexpli(klg + pgm — 3opm/4)}. (37.20)
=

It then makes sense to organize the sum ov@raditive orbits as a sum over the
prime difractive orbits and a sum over the repetitions

- . .
i@ = > > Gor = —i > Iﬁr’*tﬁ. (37.22)
B =1 B

We cast this as a logarithmic derivativé7(7) by noting that%—tﬁ = ilgtg -
optg/2k and recognizing that the first term dominates in the sensidablimit. It
follows that

9gifK) = %( % {m []a- tﬁ)} . (37.22)
B

In the case that there are onlyffdactive periodic orbits - as in the geometry of
figure 37.4- the poles ofy(k) are the zeros of a dynamical zeta function

e =] Ja-t). (37.23)
B

For geometric orbits, this function would be evaluated vaittycle expansion as
discussed in chaptel8. However, here we can use the multiplicative nature of
the weightsi to find a closed form representation of the function using akigla
graph, as in secf.0.4.1 This multiplicative property of the weights follows from
the fact that the diractive Green’s function3(7.10 is multiplicative in segment
semiclassical Green'’s functions, unlike the geometrie cas

There is a reflection symmetry in the problem which meansathatsonances
can be classified as even or odd. Because of this, the dyrlareizafunction
factorizes as & = 1/¢,{- (as explained in sect$9.5and19.1.1) and we determine
1/¢, and Y- separately using the ideas of symmetry decomposition gfteh#.

In the Markov graph shown in figurg7.6 we enumerate all processes. We
start by identifying the fundamental domain as just thetrludf of figure 37.4
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1
Figure 37.6: The two-node Markov graph with all the
diffractive processes connecting the nodes.

There are two nodes which we c&llandB. To get to another node from, we

can difract (always via the vertex) in one of three directions. Wedifract back

to B which we denote as process 1. We cdirdct toB’s image pointB’ and then
follow this by a reflection. This process we denote2aghere the bar indicates
that it involves a reflection. Third, we canfldact to nodeA. Starting atA we can

also difract to a node in three ways. We caffidict to B which we denote as 4.

We can difract toB’ followed by a reflection which we denote 4s Finally, we

can difract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier dis@us First though,

we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratiripsed loops
which do not intersect themselves in figude.6 We do it first for 1/, because
that is simpler. In that case, the processes with bars atetten an equal footing
as the others. Appealing back to séd@.5we find

1/, = 1-t1 —t5—t5 —taty — tatz + tsty + tst3,
1- (tl + t§+ t5) - 2t3t4 + ts(tl + ti) (3724)

where we have used the fact that t; by symmetry. The last term has a positive
sign because it involves the product of shorter closed lodscalculate 17,
we note that the processes with bars have a relative negagivelue to the group
theoretic weight. Furthermore, process 5 is a boundary (s sectl9.3.1 and
only afects the even resonances - the terms involt4rage absent from/L_. The
result is

1/

1-t +t5 —tats + tatz,
1-(th—t3). (37.25)

Note that these expressions have a finite number of termsrambain the form

: B ise 37.4
of a curvature expansion, as for the 3-disk problem. [exercise 37.4]

It now just remains to fix the weights. We use equati®n.20 but note that
each weight involves just oneffiaction constant. It is then convenient to define
the quantities

expli(2kL + 2r)} 2 = expli(2kH + 7))}
— ) = ———.

37.26
l6rkL V16rkH ( )

2 _
Up =

The lengthd andH = L/ V2 are defined in figur87.4 we setl = 1 throughout.
Bouncing inside the right angle Atcorresponds to two specular reflections so that
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complex k-plane

Figure 37.7: The even resonances of the wedge .s
scatterer of figur87.4plotted in the complek—plane, 20
with L = 1. The exact resonances are represented =2s
as circles and their semiclassical approximations as -,
crosses.

p = 2. We therefore explicitly include the factor exgs) in (37.26 although itis
trivially equal to one. Similarly, there is one speculareefion at pointB giving
p = 1 and therefore a factor of exixf. We have definedin andug because,
together with some éraction constants, they can be used to construct all of the
weights. Altogether we define four fifiaction codficients: dag is the constant
corresponding to diracting fromB to Aand is found from37.11) with ¢’ = 3r/4
andé = m and equals 2 sea(8) ~ 2.165. With analogous notation, we hadga
anddgg = dg'g Which equal 2 and £ V2 respectivelyd;; = dj; due to the Green’s
function symmetry between source and receiver referreddgee Finally, there
is the difractive phase factos = exp (-i37/4) each time there is aftiiaction.
The weights are then as follows:

= SjBBUZB t; = SjBrBUZB ta=t4=1;= sdagUaUR
ts = sdaala. (37.27)

Each weight involves twars and oned. Theu's represent the contribution to
the weight from the paths connecting the nodes to the vertdxteed gives the
diffraction constant connecting the two paths.

The equality oflgg anddg g implies thatt; = t5. From 37.25 this means that
there are no odd resonances because 1 can never equal e Evethresonances
equation 87.24) is an implicit equation fok which has zeros shown in figug&.7.

For comparison we also show the result from an exact quanaloulation.
The agreement is very good right down to the ground state s as bften the
case with semiclassical calculations. In addition we canais dynamical zeta
function to find arbitrarily high resonances and the resadtsially improve in that
limit. In the same limit, the exact numerical solution beesnmore diicult to
find so the dynamical zeta function approximation is paldidy useful in that
case.

[exercise 37.5]

In general a system will consist of both geometric antralctive orbits. In
that case, the full dynamical zeta function is the producthef geometric zeta
function and the diractive one. The diractive weights are typically smaller by
orderO(1/ VK) but for smallk they can be numerically competitive so that there is
a significant difractive éfect on the low-lying spectrum. It might be expected that
higher in the spectrum, thefect of difraction is weaker due to the decreasing
weights. However, it should be pointed out that an analybthe situation for
creeping difraction [/] concluded that the diraction is actuallymore important
higher in the spectrum due to the fact that an ever greatetidraof the orbits
need to be corrected forftliactive éfects. The equivalent analysis has not been
done for edge diraction but a similar conclusion can probably be expected.
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To conclude this chapter, we return to the opening paragaaghdiscuss the
possibility of doing such an analysis for helium. The impatt point which
allowed us to successfully analyze the geometry of figkifel is that when a
trajectory is near the vertex, we can extract iffrdction constant without reference
to the other facets of the problem. We say, therefore, thatgla “local” analysis
for the purposes of which we have “turneff"ahe other aspects of the problem,
namely sidesAB and AB’. By analogy, for helium, we would look for some
simpler description of the problem which applies near thregtbody collision.
However, there is nothing to “turnfid’ The local problem is just as fiiicult as
the global one since they are precisely the same probletrglaged by scaling.
Therefore, it is not at all clear that such an analysis isiptesor helium.

Résumé

In this chapter we have discovered new types of periodidsdaintributing to the
semiclassical traces and determinants. Unlike the periodiits we had seen so
far, these are not true classical orbits. They are genetstesihgularities of the
scattering potential. In these singular points the classignamics has no unique
definition, and the classical orbits hitting the singulastcan be continued in
many diferent directions. While the classical mechanics does notvkwhich
way to go, quantum mechanics solves the dilemma by allowsgpcontinue
in all possible directions. The likelihoods offi#irent paths are given by the
guantum mechanical weights calledftiction constants. The total contribution to
atrace from such orbit is given by the product of transmissimplitudes between
singularities and diraction constants of singularities. The weights dfrdictive
periodic orbits are at least of ordef ¢k weaker than the weights associated with
classically realizable orbits, and their contribution aigke energies is therefore
negligible. Nevertheless, they can strongly influence tive liying resonances
or energy levels. In some systems, such asNhdisk scattering the éraction
effects do not only perturb semiclassical resonances, butlsarcieeate new low
energy resonances. Therefore it is always important tadecthe contributions of
diffractive periodic orbits when semiclassical methods aréexppt low energies.

Commentary

Remark 37.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

e a grazing condition such that some trajectories hit a smsatface while others
are undfected, refs. T, 2, 3, 7]

e avertex such that trajectories to one side bounfferdintly from those to the other
side, refs. P, 4,5, 8, 9].

e a point scattererl[), 11] or a magnetic flux line]2, 1] such that we do not know
how to continue classical mechanics through the discoititasu
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Remark 37.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extegdhe geometrical ray
picture of optics to cases where there is a discontinuity. ntééntained that we could
hang onto that ray-tracing picture by allowing rays to srike vertex and then leave at
any angle with amplitude3(7.9. Both he and Sommerfeld were thinking of optics and not
guantum mechanics and they did not phrase the results irs tefsemiclassical Green’s
functions but the essential idea is the same.

Remark 37.3 Generalizations  Consider the fect of replacing our half line by a
wedge of angle; and the right angle by an arbitrary angle If y2 > y1 andy, > /2 this

is an open problem whose solution is given by equati@is2) and @7.29 (there will
then be odd resonances) but with modified weights refleciagchanged geometrg][
(Fory, < nr/2, more difractive periodic orbits appear and the dynamical zeta fanst
are more complicated but can be calculated with the sameineagt) Wheny, = y1, the
problem in fact has bound statesl] 27]. This last case has been of interest in studying
electron transport in mesoscopic devices and in microwaxeguides. However we can
not use our formalism as it stands because theadiive periodic orbits for this geometry
lie right on the border between illuminated and shadowebregso that equatior8{.7)

is invalid. Even the more uniform derivation df][fails for that particular geometry, the
problem being that the firactive orbit actually lives on the edge of a family of georizet
orbits and this makes the analysis still mor&idult.

Remark 37.4 Diffractive Green’s functions. The result 87.17 is proportional to the
length of the orbit times the semiclassical Green’s fumc(®7.9 to go from the vertex
back to itself along the classical path. The multidictive formula87.19 is proportional
to the total length of the orbit times the product of the séasisical Green's functions to
go from one vertex to the next along classical paths. Thidtrgeneralizes to any system
— either a pinball or a potential — which contains point silagities such that we can
define a difraction constant as above. The contribution to the trackesemiclassical
Green’s function coming from afiliactive orbit which hits the singularities is proportional
to the total length (or period) of the orbit times the prodattsemiclassical Green’s
functions in going from one singularity to the next. Thisukedirst appeared in reference
[2] and a derivation can be found in referené [A similar structure also exists for
creeping .

Remark 37.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of diractive
orbits has been made in affdirent atomic physics system, the response of hydrogenic
atoms to strong magnetic fieldsd. In these systems, a single electron is highly excited
and takes long traversals far from the nucleus. Upon retgria a hydrogen nucleus, it is
re-ejected with the reversed momentum as discussed inertgptHowever, if the atom

is not hydrogen but sodium or some other atom with one valetemron, the returning
electron feels the charge distribution of the core elestramd not just the charge of the
nucleus. This so-called quantum defect induces scattémiragldition to the classical
re-ejection present in the hydrogen atom. (In this case dballanalysis consists of
neglecting the magnetic field when the trajectory is neamti@eus.) This is formally
similar to the vertex which causes both specular reflectrahdifraction. There is then
additional structure in the Fourier transform of the quamgpectrum corresponding to
the induced diractive orbits, and this has been observed experimentafly [
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EXERCISES 624
Exercises
37.1. Stationary phase integral. Evaluate the two that a slight variation of the ffractive orbit only #ect

stationary phase integrals corresponding to contBurs
andE; of figure37.3and thereby verify%7.7).
(N. Whelan)

one leg at a time.
(N. Whelar

4. Unsymmetrized dynamical zeta function.  Assum

37.2. Scattering from a small disk  Imagine that instead
of a wedge, we have a disk whose radaiss much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for small Following
the discussion above, show that thédiction constant

1S 37.5.

s S
Iog(é)—yﬁ—i%

whereye = 0.577--- is Euler’s constant. Note that in
this limit d depends weakly okbut not on the scattering
angle.

(37.28)

(N. Whelan)

37.3. Several diffractivelegs. Derive equation¥7.19. The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself
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