Chapter 33

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanovic)

E DERIVE HERE the Gutzwiller trace formula and the semiclassical zetafun
W tion, the central results of the semiclassical quantinatbclassically
chaotic systems. In chapt&d we will rederive these formulas for the
case of scattering in open systems. Quintessential wavhan@s &ects such as
creeping, diraction and tunneling will be taken up in chap®t

33.1 Traceformula

Our next task is to evaluate the Green'’s function tréfe1(7) in the semiclassical
approximation. The trace

wGs(E) = [ d4Cs(.0.E) = GoE) + Y, [ ©°aGi(@.q.E)
j

receives contributions from “long” classical trajectari@beled byj which start
and end ing after finite time, and the “zero length” trajectories whosedths
approach zero ag — Q.

First, we work out the contributions coming from the finitend returning
classical orbits, i.e., trajectories that originate and aha given configuration
pointg. As we are identifyingywith ¢, taking of a trace involves (still another!)
stationary phase condition in tiogg¢ — q limit,

0Sj(a.q',E) +<9S,-(q,q’,E)

/ = O ’
o a=q aq a=q
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 546
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Figure 33.1: A returning trajectory in the P
configuration space. The orbit is periodic in the ful

phase space only if the initial and the final momenta «

a returning trajectory coincide as well.

Figure 33.2: A romanticized sketch oBy(E) =
S(q,0,E) = 9§p(q, E)dqg landscape orbit. Unstable
periodic orbits traverse isolated ridges and saddles
the mountainous landscape of the act®(q, g, E).
Along a periodic orbit Sp(E) is constant; in
the transverse directions it generically change
quadratically.

meaning that the initial and final momenta2(40Q of contributing trajectories
should coincide

pi(a,9.E) - p{(9.0,E) =0, q € jth periodic orbit (33.1)

so the trace receives contributions only from those longsital trajectories which
areperiodic in the full phase space.

For a periodic orbit the natural coordinate system is thensitc one, withg,
axis pointing in theg direction along the orbit, angl, , the rest of the coordinates
transverse tg. The jth periodic orbit contribution to the trace of the semicieals
Green’s function in the intrinsic coordinates is

(Y _ 1 daj " -1 i (12008~ Zm,
tI’GJ(E)— Wﬁ?ﬁd qL|detDJ_| enim 2,

where the integration ig; goes from 0 td_j, the geometric length of small tube
around the orbit in the configuration space. As always, instiadionary phase
approximation we worry only about the fast variations in piaseS;(q, q., E),
and assume that the density varies smoothly and is well appated by its
value Di(q”,o, E) on the classical trajectorg, = 0 . The topological index
m;(q, 9., E) is an integer which does not depend on the initial pgjnand not
change in the infinitesimal neighborhood of an isolatedqgakei orbit, so we set

m;(E) = m;(ay, .. B).

The transverse integration is again carried out by theostaty phase method,
with the phase stationary on the periodic orQit,= 0. The result of the transverse
integration can depend only on the parallel coordinate

detD_j(qy, 0, E)

1/2
is
detD’ (g, 0. E)

.
i—2m;
b

1 (dg
trG;(E) = ESEF”
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 547

where the new determinant in the denominator,Digt=

8°S(0,q,E) = 8°S(q.q,E) . 8°S(q,q', E) . 8°S(q.q', E)

det +
quoqy | oq,09. | oqudd,, | od,0d

>

is the determinant of the second derivative matrix comirgnfithe stationary
phase integral in transverse directions. Mercifully, thiegral also removes most
of the 27 prefactors in (?7?).

The ratio deD“-/detD’Lj is here to enforce the periodic boundary condition
for the semiclassical Green’s function evaluated on a gariorbit. It can be given
a meaning in terms of the monodromy matrix of the periodidtdsi following
observations

ap, Ha(%, P.)
3 H oq. ||~ |loGaL. )
detD/ HapL _ 6pL pJ_ apj_ — Ha(pl - pl’ qJ_ - ql)’ ‘
- aq,  oq.  oq, 9 4(0..9,)

Defining the 2D - 1)-dimensional transverse vectar = (q., p.) in the full
phase space we can express the ratio

detD’, _ Ha(pL PLa—d)) Ha(xl
detD, o, p)
= det(M-1), (33.2)

in terms of the monodromy matrik for a surface of section transverse to the
orbit within the constant enerdy = H(q, p) shell.

The classical periodic orbit actids;(E) = § p(qy, E)dg; is an integral around
a loop defined by the periodic orbit, and does not depend ost#irténg pointy
along the orbit, see figurg3.2 The eigenvalues of the monodromy matrix are
also independent of wheid; is evaluated along the orbit, so det{M;) can also
be taken out of the they integral

1 1 ig. _imm. dq
eI Y gsiegm) £ 9%
trG;(E) ih;wet(l— Mj)|1/2err - gm qu“ .

Here we have assumed thislt; has no marginal eigenvalues. The determinant
of the monodromy matrix, the actid®,(E) = § p(qy, E)dg; and the topological
index are all classical invariants of the periodic orbit.eTihtegral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a geriorbit is also
a periodic orbit. The action and the topological index arditagt along the
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 548

trajectory, so forrth repeat they simply get multiplied by The monodromy
matrix of therth repeat of a prime cycle is (by the chain rule for derivatives)
My, where M, is the prime cycle monodromy matrix. Let us denote the time
period of the prime cyclg, the single, shortest traversal of a periodic orbifThy
The remaining integral can be carried out by change of viesath = doj/q(t)

Lo doy f To
TN = dt = T .
fo at) Jo P

Note that the spatial integral corresponds @rgle traversal. If you do not see
why this is so, rethink the derivation of the classical trémenula (L6.23 - that
derivation takes only three pages of text. Regrettablyhéngquantum case we do
not know of an honest derivation that takes less than 30 pafes final result,
the Gutzwiller trace formula

1 . 1 iq _ir
trGg(E) =trGo(E)+ — > T ——— ____dGSe2™)  (33.3
<(E) = tr Go( )+|th: p;metu_ TG (33.3)

an expression for the trace of the semiclassical Greeniitumin terms of periodic
orbits, is beautiful in its simplicity and elegance.

The topological indexmy(E) counts the number of changes of sign of the
matrix of second derivatives evaluated along the primeogeriorbit p. By
now we have gone through so many stationary phase appraaimatat you
have surely lost track of what the tota,(E) actually is. The rule is this: The
topological index of a closed curve in ®2hase space is the sum of the number
of times the patrtial derivative%% for each dual pairdi, p)),i = 1,2,...,D (no
sum oni) change their signs as one goes once around the curve.

33.1.1 Averagedensity of states

We still have to evaluate &q(E), the contribution coming from the infinitesimal
trajectories. The real part of@(E) is infinite in theq” — q limit, so it makes
no sense to write it down explicitly here. However, the inmagy part is finite,
and plays an important role in the density of states fornwlkach we derive next.

The semiclassical contribution to the density of stat&3.1(7) is given by
the imaginary part of the Gutzwiller trace formula3(3 multiplied with —1/7x.
The contribution coming from the zero length trajectorethie imaginary part of
(32.48 for g — qintegrated over the configuration space

1
o(E) = —— f dPqIm Go(g, 6, E).

The resulting formula has a pretty interpretation; it estiés the number of
quantum states that can be accommodated up to the eBebyycounting the
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 549

available quantum cells in the phase space. This numberas biy theeyl rule
, as the ratio of the phase space volume bounded by eiediyided byhP, the
volume of a quantum cell,

N(B) = ;5 [ &®PdaO(E - H(a. p). (334)

where®(X) is the Heaviside functior80.22. N« (E) is an estimate of the spectral
staircase 30.21), so its derivative yields the average density of states

d
co(E) = 3ENs(E) = 5 [ P p®as(E - H(a. p). (335

precisely the semiclassical resuft3(6. For Hamiltonians of typep?/2m +
V(q), the energy shell volume ir88.5) is a sphere of radiug/2m(E - V(q)). The
surface of al-dimensional sphere of radiuss 7%2r%-1/I'(d/2), so the average

i is gi ise 33.3
density of states is given by [exercise ]

2m

— D _ D/2-1
hDZdzrDzl"(D/Z) V(q)<Ed q[zm(E V(Q))] s (336)

do(E) =

and

1 P2

- - D _ D/2
hP I'(1+ D/2) V(q)<Ed a[2m(E - V(a)]~'*. (33.7)

Ne(E) =

Physically this means that at a fixed energy the phase spacsup@ortNg.(E)
distinct eigenfunctions; anything finer than the quantuthi@cannot be resolved,
so the quantum phase spaceftgeetively finite dimensional. The average density

of states is of a particularly simple form in one spatial digien fexercise 33.4]

_T(E)
do(E) = - (33.8)
whereT (E) is the period of the periodic orbit of fixed ener@y In two spatial
dimensions the average density of states is

mA(E)

do(E) = W’

(33.9)

whereA(E) is the classically allowed area of configuration space fochV (q) <
E.

[exercise 33.5]

The semiclassical density of states is a sum of the averagpitylef states and
the oscillation of the density of states around the avemgéE) = do(E)+dos:(E),
where

1 — COSESp(E)/h — rmpn/2)
dose(E) = — ;Tp; et (L= N2 (33.10)

follows from the trace formula3g3.3.
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 550
33.1.2 Regularization of thetrace

The real part of they — q zero length Green’s functiorB®.49 is ultraviolet

divergent in dimensionsl > 1, and so is its formal trace8(Q.17. The short
distance behavior of the real part of the Green’s functiam toa extracted from
the real part 0of§2.48 by using the Bessel function expansion for snzall

-1r(y) (g)_v forv+0

w2~ { 2(In(z/2)+y) forv=0"

wherey = 0.577... is the Euler constant. The real part of the Green’s functoon f
short distance is dominated by the singular part

e A Ch 2)/ g ford # 2

Gsng(la—-d',E) =
S (IN@m(E - V)lq - q|/2k) +y) ford=2

Theregularized Green'’s function
Greg(a. ', E) = G(q. ', E) — Gsing(la - I, E)

is obtained by subtracting tlgg¢ — q ultraviolet divergence. For the regularized
Green'’s function the Gutzwiller trace formula is

® o (5Sp(E)-$mp(E))
£ |det (1- Mp)|¥/2

tr Greg(E) = —indo(E) + % Zp: T, (33.11)

Now you stand where Gutzwiller stood in 1990. You hold thedréormula in
your hands. You have no clue how good is the» 0 approximation, how to
take care of the sum over an infinity of periodic orbits, ancethier the formula
converges at all.

33.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge whereneed them, at
the individual energy eigenvalues. What to do? Much of thantum chaos
literature responds to the challenge of wrestling the tfacmulas by replacing
the delta functions in the density of stat€®.(18 by Gaussians. But there is no
need to do this - we can compute the eigenenergies withoufuather ado by
remembering that the smart way to determine the eigenvallgsear operators
is by determining zeros of their spectral determinants.

traceSemicl - 2mar2004.tex



CHAPTER 33. SEMICLASSICAL QUANTIZATION 551

Figure 33.3: A sketch of how spectral determinants E, =
convert poles into zeros: The trace show§¢EL- E,) g
type singularities at the eigenenergies while the spe -1 'f'n-u.sj
tral determinant goes smoothly through zeroes. deferminant= &

A sensible way to compute energy levels is to construct thetsgl determin-
ant whose zeroes yield the eigenenergies, et ) = 0. A first guess might
be that the spectral determinant is the Hadamard productiof f

det@ - E) = H(E - En),

but this product is not well defined, since for fixedve multiply larger and larger
numbers E — E,)). This problem is dealt with byegularization, discussed below
in appendix33.1.2 Here we dfer an impressionistic sketch of regularization.

The logarithmic derivative of det{ — E) is the (formal) trace of the Green’s
function

d . 1
g Indeti - E) = an = tr G(E).

E_En_

This quantity, not surprisingly, is divergent again. Thiatien, however, opens a
way to derive a convergent version of det ¢ E)g, by replacing the trace with
the regularized trace

d n

The regularized trace still hag(E — Ep) polgs at the semiclassical eigenenergies,
poles which can be generated only if ddt{ E) has a zero aE = E,, see
figure 33.3 By integrating and exponentiating we obtain

i E
detH - E)s = exp(—f dE’ trGreg(E'))

Now we can use33.1]) and integrate the terms coming from periodic orbits,
using the relation32.17) between the action and the period of a periodic orbit,
dSy(E) = Tp(E)dE, and the relation30.21) between the density of states and the
spectral staircaselNg:(E) = do(E)dE. We obtain thesemiclassical zeta function

1 eir(S [h—mp7/2)
i (33.12)

L S PN
por=

[chapter 18]
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 552

We already know from the study of classical evolution opmrapectra of chapter7
that this can be evaluated by means of cycle expansions. @&aety of this
formula is that everything on the right side — the cycle acg, the topological
indexm, and monodromy matrii, determinant —is intrinsic, coordinate-choice
independent property of the cygte

33.3 One-dof systems

It has been a long trek, a stationary phase upon stationayephlLet us check
whether the result makes sense even in the simplest cagpjdotum mechanics
in one spatial dimension.

In one dimension the average density of states follows fiwgrilitdof form of
the oscillating density3d3.10 and of the average densit$3.9

d(E) = % +> TST(hE) cos¢Sp(E)/h — rmp(E)r/2). (33.13)

The classical particle oscillates in a single potential wéh period T(E). There
is no monodromy matrix to evaluate, as in one dimension tisevely the parallel
coordinate, and no transverse directions. Thepetition sum in§3.13 can be
rewritten by using the Fourier series expansion of a deltedpain

(o) [ee)

Z s(x-n) = Z g =1 4 i 2 cos(Zrkx).

n=-co k=—c0 k=1
We obtain
To(E
d(E) = % D" 8(Sp(E)/2rh — my(E)/4 - n). (33.14)

This expression can be simplified by using the relati®n.17) betweenT, and
Sp, and the identity 14.7) 6(x — x*) = [f"(X)[6(f (X)), wherex" is the only zero of
the functionf(x*) = 0 in the interval under consideration. We obtain

d(E) = ), 6(E - En).

where the energids, are the zeroes of the arguments of delta function83n1)

Sp(En)/27h = n— my(E)/4,

traceSemicl - 2mar2004.tex



CHAPTER 33. SEMICLASSICAL QUANTIZATION 553

wheremp(E) = mp = 2 for smooth potential at both turning points, ang(E) =
m, = 4 for two billiard (infinite potential) walls. These are pisaly theBohr-
Sommerfeld quantized energies E,,, defined by the condition

¢ piaEda=n(n-72). (33.15)

In this way the trace formula recovers the well known 1-dofmfization rule.
In one dimension, the average of states can be expressedtequantization

condition. AtE = E, the exact number of statesnswhile the average number
of states i1 — 1/2 since the staircase functidf(E) has a unit jump in this point

Ne(E) = n— 1/2 = Sp(E)/2xh — my(E) /4 — 1/2. (33.16)

The 1-dof spectral determinant follows fro88( 12 by dropping the monodromy
matrix part and using33.16

det - E)s = exp(—ﬁsp + I—ﬂmp) exp(— Z %e%rsp‘%’rmp] . (33.17)
r

2
Summation yields a logarithm by, t"/r = —In(1 - t) and we get
det(|:| - B¢ = e‘ﬁSerirnTpJf%(l — e%sp_i%)

2sin(Sp(E)/h - mp(E)/4) .

So in one dimension, where there is only one periodic orbiafgiven energy E,
nothing is gained by going from the trace formula to the gjaédeterminant. The
spectral determinant is a real function for real energied,its zeros are again the
Bohr-Sommerfeld quantized eigenenergie3.{9.

33.4 Two-dof systems

For flows in two configuration dimensions the monodromy malfi, has two
eigenvalues\, and /A, as explained in sect.2 Isolated periodic orbits can
be elliptic or hyperbolic. Here we discuss only the hypedobse, when the
eigenvalues are real and their absolute value is not equeleoThe determinant
appearing in the trace formulas can be written in terms oékipanding eigenvalue
as

et (1- MP)IY2 = [ALM2 (1-1/A}) .

and its inverse can be expanded as a geometric series

[ee)

1 53 1
det (1- Mp)[Y2 &4 [AL[2AK
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 554

With the 2-dof expression for the average density of st&i@9)the spectral
determinant becomes

N - mAE © X dr(Sp/h-myr/2)
detH-E)g = €22 exp[— o
; 24 TN

) g iy

j MAE ernp—2'p

= e 2 1—-— . (33.18)
l:[ Q ( |Ap|1/2/\lr(3)
Résum é

Spectral determinants and dynamical zeta functions aodge in classical and
guantum mechanics because in both the dynamical evolugiorbe described by
the action of linear evolution operators on infinite-dimienal vector spaces. In
quantum mechanics the periodic orbit theory arose fromesuaf semi-conductors,
and the unstable periodic orbits have been measured inimgyds on the very
paradigm of Bohr’s atom, the hydrogen atom, this time inrgjrexternal fields.

In practice, most “quantum chaos” calculations take thigostary phase approximation
to quantum mechanics (the Gutzwiller trace formula, pdgsibproved by including
tunneling periodic trajectories, filiaction corrections, etc.) as the point of departure.
Once the stationary phase approximation is made, whatifsllsclassical in the
sense that all quantities used in periodic orbit calcufetie actions, stabilities,
geometrical phases - are classical quantities. The proldahen to understand
and control the convergence of classical periodic orbinidas.

While various periodic orbit formulas are formally equiral, practice shows
that some are preferable to others. Three classes of pewobit formulas are
frequently used:

Trace formulas. The trace of the semiclassical Green’s function

tr G (E) ZquGsc(Qaq’ E)

is given by a sum over the periodic orbit33(11). While easiest to derive, in
calculations the trace formulas are inconvenient for angtbther than the leading
eigenvalue estimates, as they tend to be divergent in tih@refphysical interest.
In classical dynamics trace formulas hide under a variegppfellations such as
the f —a or multifractal formalism; in quantum mechanics they arewn as the
Gutzwiller trace formulas.

Zeros ofRuelle or dynamical zeta functions

p p
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CHAPTER 33. SEMICLASSICAL QUANTIZATION 555

yield, in combination with cycle expansions, the semidad®stimates ofuantum
resonances. For hyperbolic systems the dynamical zettdnathave good convergence
and are a useful tool for determination of classical and twamechanical averages.

Soectral determinants, Selberg-type zeta functions, Fredholm determinants,
functional determinants are the natural objects for spectral calculations, witlveagence
better than for dynamical zeta functions, but with lessdpament cycle expansions.
The 2-dof semiclassical spectral determin&#. {8

0 e|Sp/h itmp/2
det@ — E)g = €™N=(B®) ( — )
l_[lk_l |Ap|1/2A

is a typical example. Most periodic orbit calculations aaedx on cycle expansions
of such determinants.

As we have assumed repeatedly during the derivation of #we tformula
that the periodic orbits are isolated, and do not form famil(as is the case
for integrable systems or in KAM tori of systems with mixedagk space), the
formulas discussed so far are valid only for hyperbolic dhiptie periodic orbits.

For deterministic dynamical flows and number theory, spécteterminants
and zeta functions are exact. The quantum-mechanical deeged by the Gutzwiller
approach, are at best only the stationary phase approxinsa the exact quantum
spectral determinants, and for guantum mechanics an iangardbnceptual problem
arises already at the level of derivation of the semiclasétcmulas; how accurate
are they, and can the periodic orbit theory be systematiaalbroved?

Commentary

Remark 33.1 Gutzwiller quantization of classically chaotic systems. The derivation
given here and in sect82.3and 33.1 follows closely the excellent expositioZ][ by
Martin Gutzwiller, the inventor of the trace formula. Theigation presented here is self
contained, but refs3] 1] might also be of help to the student.

Remark 33.2 Zeta functions. For “zeta function” nomenclature, see remark4on
page296

traceSemicl - 2mar2004.tex



EXERCISES 556

Exercises
33.1. Monodromy matrix from second variations of the by (33.9
action. Show that fi5) - T(E)
D.j/D’j=(1-M) (33.19) 27h
where T(E) is the time period of the 1-dimensional
33.2. Jacobi gymnastics. Prove that the ratio of motion and show that
determinants in%.48§ can be expressed as B S(E)
, N(E) = —=. (33.21)
detDlj(q“, 0,E) | — qu _qu 2rh
——— =det iy =M = det (1-M;), (33.20)
detD, (g, 0, E) Pa PP whereS(E) = ¢ p(q, E) dqis the action of the orbit.

whereM; is the monodromy matrix of the periodic orbit.33.5. Averagedensity of statesin 2dimensions.  Show that
in 2 dimensions the average density of states is given by

33.3. Volume of d-dimensional sphere. Show that the (33.9
volume of ad-dimensional sphere of radiusequals d(E) = mA(E)
729/2r9 /T (1 + d/2). Show thal'(1 + d/2) = I'(d/2)d;/2. (B)=——7 -
33.4. Averagedensity of statesin 1 dimension. Show that where A(E) is the classically allowed area of

in one dimension the average density of states is given  configuration space for whidd(q) < E.

References

[33.1] R.G. Littlejohn,J. Sat. Phys. 68, 7 (1992).
[33.2] L.D. Landau and E.M. Lifshitaylechanics (Pergamon, London, 1959).

[33.3] R.G. Littlejohn, “Semiclassical structure of traimemulas,” in G. Casati
and B. Chirikov, eds.,Quantum Chaos, (Cambridge University Press,
Cambridge 1994).

[33.4] M.C. Gutzwiller,J. Math. Phys. 8, 1979 (1967)10, 1004 (1969)11, 1791
(1970):12, 343 (1971).

[33.5] M.C. Gutzwiller,J. Math. Phys. 12, 343 (1971)
[33.6] M.C. Gutzwiller,J. Phys. Chem. 92, 3154 (1984).
[33.7] A. Voros,J. Phys. A 21, 685 (1988).

[33.8] A. Voros, Aspects of semiclassical theory in the presence of classical
chaos, Prog. Theor. Phys. Suppl. 116, 17 (1994).

[33.9] P. Cvitanovit and P.E. Rosengvist, in G.F. Dell’'anip, S. Fantoni and
V.R. Manfredi, eds.fFrom Classical to Quantum Chaos, Soc. Italiana di
Fisica Conf. Proceed. 41, pp. 57-64 (Ed. Compositori, Bologna 1993).

[33.10] A. Wirzba, “Validity of the semiclassical periodicbit approximation in
the 2-and 3-disk problemsCHAOS?2, 77 (1992).

refsTraceScl - 27dec2004.tex



